Endophenotype-Informed Association Analyses for Liver Fat Accumulation and Metabolic Dysfunction in the Fels Longitudinal Study
Abstract
1. Introduction
2. Results
2.1. Heritability of Liver Fat Content
2.2. Potential Endophenotypes
2.3. Bivariate Linkage Analyses Using Liver Fat and Top-Ranked Endophenotypes
2.4. Targeted Association Analyses at Significant and Suggestive Univariate and Bivariate QTLs
3. Discussion
4. Materials and Methods
4.1. Participants and Study Design
4.2. Pedigree Structure and Implications
4.3. Data Collection
4.4. Statistical Methods
4.4.1. Quantitative Genetic Analyses
4.4.2. Endophenotype Ranking
4.4.3. Bivariate Linkage Analysis
4.4.4. Measured Genotype Association Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MASLD | Metabolic dysfunction-associated steatotic liver disease |
NAFLD | Non-alcoholic fatty liver disease |
BMI | Body mass index |
T2D | Type 2 diabetes |
HCC | Hepatocellular carcinoma |
GWAS | Genome-wide association studies |
ERV | Endophenotype ranking value |
FLS | Fels Longitudinal Study |
MRI | Magnetic resonance imaging |
CVD | Cardiovascular disease |
MGA | Measured genotype association |
QGA | Quantitative genetic analysis |
IRB | Institutional Review Board |
PDFF | Proton density fat fraction |
H-MRS | Proton magnetic resonance spectrometry |
VAT | Visceral adipose tissue |
SAT | Subcutaneous adipose tissue |
CV | Coefficient of variation |
DXA | Dual-energy x-ray absorptiometry |
FG | Fasting glucose |
TG | Triglycerides |
HDL-C | High-density lipoprotein cholesterol |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
MAP | Mean arterial pressure |
SNP | Single nucleotide polymorphism |
SOLAR | Sequential oligogenic linkage analysis routines |
FI | Fasting insulin |
HOMA-IR | Homeostatic model assessment-estimated insulin resistance |
BF% | Body fat percent |
WC | Waist circumference |
QTL | Quantitative trait loci |
LOD | Logarithm of odds |
MAF | Minor allele frequency |
References
- Ciardullo, S.; Carbone, M.; Invernizzi, P.; Perseghin, G. Exploring the landscape of steatotic liver disease in the general US population. Liver Int. 2023, 43, 2425–2433. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.E.; Koh, T.J.L.; Tang, A.S.P.; Quek, J.; Yong, J.N.; Tay, P.; Tan, D.J.H.; Lim, W.H.; Lin, S.Y.; Huang, D.; et al. Global Prevalence and Clinical Characteristics of Metabolic-associated Fatty Liver Disease: A Meta-Analysis and Systematic Review of 10 739 607 Individuals. J. Clin. Endocrinol. Metab. 2022, 107, 2691–2700. [Google Scholar] [CrossRef]
- Tokushige, K.; Yatsuji, S.; Hashimoto, E.; Kabutake, A.; Tobari, M.; Taniai, M.; Shiratori, K. Familial aggregation in patients with non-alcoholic steatohepatitis. Intern. Med. 2008, 47, 405–410. [Google Scholar] [CrossRef]
- Speliotes, E.K.; Yerges-Armstrong, L.M.; Wu, J.; Hernaez, R.; Kim, L.J.; Palmer, C.D.; Gudnason, V.; Eiriksdottir, G.; Garcia, M.E.; Launer, L.J.; et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011, 7, e1001324. [Google Scholar] [CrossRef]
- Chandrasekharan, K.; Alazawi, W. Genetics of Non-Alcoholic Fatty Liver and Cardiovascular Disease: Implications for Therapy? Front. Pharmacol. 2020, 10, 1413. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef]
- Glahn, D.C.; Curran, J.E.; Winkler, A.M.; Carless, M.A.; Kent, J.W., Jr.; Charlesworth, J.C.; Johnson, M.P.; Goring, H.H.; Cole, S.A.; Dyer, T.D.; et al. High dimensional endophenotype ranking in the search for major depression risk genes. Biol. Psychiatry 2012, 71, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, I.I.; Gould, T.D. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am. J. Psychiatry 2003, 160, 636–645. [Google Scholar] [CrossRef]
- Glahn, D.C.; Knowles, E.E.M.; McKay, D.R.; Sprooten, E.; Raventós, H.; Blangero, J.; Gottesman, I.I.; Almasy, L. Arguments for the sake of endophenotypes: Examining common misconceptions about the use of endophenotypes in psychiatric genetics. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014, 165B, 122–130. [Google Scholar] [CrossRef]
- Szczepaniak, L.S.; Nurenberg, P.; Leonard, D.; Browning, J.D.; Reingold, J.S.; Grundy, S.; Hobbs, H.H.; Dobbins, R.L. Magnetic resonance spectroscopy to measure hepatic triglyceride content: Prevalence of hepatic steatosis in the general population. Am. J. Physiol. Endocrinol. Metab. 2005, 288, 462. [Google Scholar] [CrossRef]
- Shu, X.O.; Long, J.; Cai, Q.; Qi, L.; Xiang, Y.; Cho, Y.S.; Tai, E.S.; Li, X.; Lin, X.; Chow, W.; et al. Identification of new genetic risk variants for type 2 diabetes. PLoS Genet. 2010, 6, e1001127. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, W.; Zhang, C.; Xu, C.; Duan, H.; Tian, X.; Zhang, D. Heritability and Genome-Wide Association Study of Plasma Cholesterol in Chinese Adult Twins. Front. Endocrinol. 2018, 9, 677. [Google Scholar] [CrossRef]
- Graham, S.E.; Clarke, S.L.; Wu, K.H.; Kanoni, S.; Zajac, G.J.M.; Ramdas, S.; Surakka, I.; Ntalla, I.; Vedantam, S.; Winkler, T.W.; et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 2021, 600, 675–679. [Google Scholar] [CrossRef]
- Akiyama, M.; Okada, Y.; Kanai, M.; Takahashi, A.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 2017, 49, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Cule, M.; Basty, N.; Tyrrell, J.; Beaumont, R.N.; Wood, A.R.; Frayling, T.M.; Sorokin, E.; Whitcher, B.; Liu, Y.; et al. Genetic Evidence for Different Adiposity Phenotypes and Their Opposing Influences on Ectopic Fat and Risk of Cardiometabolic Disease. Diabetes 2021, 70, 1843–1856. [Google Scholar] [CrossRef]
- Meeks, K.A.C.; Bentley, A.R.; Gouveia, M.H.; Chen, G.; Zhou, J.; Lei, L.; Adeyemo, A.A.; Doumatey, A.P.; Rotimi, C.N. Genome-wide analyses of multiple obesity-related cytokines and hormones informs biology of cardiometabolic traits. Genome Med. 2021, 13, 156. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, P.; Scherer, N.; Grundner-Culemann, F.; Monteiro-Martins, S.; Haug, S.; Steinbrenner, I.; Uluvar, B.; Wuttke, M.; Cheng, Y.; Ekici, A.B.; et al. Genetic studies of paired metabolomes reveal enzymatic and transport processes at the interface of plasma and urine. Nat. Genet. 2023, 55, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, H. Molecular Mechanisms of the SLC13A5 Gene Transcription. Metabolites 2021, 11, 706. [Google Scholar] [CrossRef]
- Huard, K.; Brown, C.; Jones, J.C.; Cabral, S.; Futatsugi, K.; Gorgoglione, M.; Lanba, A.; Vera, N.B.; Zhu, J.; Apte, U.; et al. Discovery and characterization of novel inhibitors of the Na+-coupled citrate transporter (NaCT or SLC13A5). Sci. Rep. 2015, 5, 17391. [Google Scholar] [CrossRef]
- Bhutia, Y.D.; Kopel, J.J.; Lawrence, J.J.; Neugebauer, V.; Fei, Y.; Ganapathy, V. SLC13A5 (NaCT): A plasma membrane transporter for citrate and other tricarboxylic acid cycle intermediates. Biochim. Et Biophys. Acta (BBA)—Mol. Cell Res. 2017, 1864, 1910–1917. [Google Scholar] [CrossRef]
- Kettunen, J.; Demirkan, A.; Würtz, P.; Draisma, H.H.M.; Haller, T.; Rawal, R.; Vaarhorst, A.; Kangas, A.J.; Lyytikäinen, L.; Pirinen, M.; et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 2016, 7, 11122. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Fauman, E.B.; Petersen, A.; Krumsiek, J.; Santos, R.; Huang, J.; Arnold, M.; Erte, I.; Forgetta, V.; Yang, T.; et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 2014, 46, 543–550. [Google Scholar] [CrossRef]
- Giri, A.; Hellwege, J.N.; Keaton, J.M.; Park, J.; Qiu, C.; Warren, H.R.; Torstenson, E.S.; Kovesdy, C.P.; Sun, Y.V.; Wilson, O.D.; et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 2019, 51, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Kichaev, G.; Bhatia, G.; Loh, P.; Gazal, S.; Burch, K.; Freund, M.K.; Schoech, A.; Pasaniuc, B.; Price, A.L. Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am. J. Hum. Genet. 2019, 104, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Liu, Y.; White, C.C.; Feitosa, M.; Smith, A.V.; Heard-Costa, N.; Lohman, K.; GIANT Consortium; MAGIC Consortium; GLGC Consortium; et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet. 2012, 8, e1002695. [Google Scholar] [CrossRef]
- Tachmazidou, I.; Süveges, D.; Min, J.L.; Ritchie, G.R.S.; Steinberg, J.; Walter, K.; Iotchkova, V.; Schwartzentruber, J.; Huang, J.; Memari, Y.; et al. Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. Am. J. Hum. Genet. 2017, 100, 865–884. [Google Scholar] [CrossRef]
- Zhou, A. Causal effects of adiposity on liver fat and nonalcoholic fatty liver disease: A Mendelian randomization study. Hepatology 2023, 78, 273–285. [Google Scholar]
- Locke, A.E. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef]
- Scott, R.A. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 2012, 44, 991–1005. [Google Scholar] [CrossRef]
- Shungin, D. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015, 518, 187–196. [Google Scholar] [CrossRef]
- Yao, J. Gene-centric meta-analysis of lipid traits in African, East Asian and South Asian ancestry populations. PLoS ONE 2013, 8, e57694. [Google Scholar] [CrossRef]
- Heid, I.M. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 2010, 42, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Siemens, A.G. Syngo MR-B15V Operator’s Manual. 2009. Available online: https://www.yumpu.com/en/document/view/22997510/syngo-mr-b15v-operator-manual-siemens-healthcare#google_vignette (accessed on 8 May 2015).
- Musso, G.; Gambino, R.; Cassader, M.; Pagano, G. Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann. Med. 2011, 43, 617–649. [Google Scholar] [CrossRef] [PubMed]
- Demerath, E.W.; Reed, D.; Rogers, N.; Sun, S.S.; Lee, M.; Choh, A.C.; Couch, W.; Czerwinski, S.A.; Chumlea, W.C.; Siervogel, R.M.; et al. Visceral adiposity and its anatomical distribution as predictors of the metabolic syndrome and cardiometabolic risk factor levels. Am. J. Clin. Nutr. 2008, 88, 1263–1271. [Google Scholar] [CrossRef]
- Demerath, E.W.; Shen, W.; Lee, M.; Choh, A.C.; Czerwinski, S.A.; Siervogel, R.M.; Towne, B. Approximation of total visceral adipose tissue with a single magnetic resonance image. Am. J. Clin. Nutr. 2007, 85, 362–368. [Google Scholar] [CrossRef]
- Hologic Inc. QDR Series X-Ray Bone Densitometers—Technical Specifications Manual; Internal Technical Document; Hologic Inc.: Marlborough, MA, USA, 2015. [Google Scholar]
- Kim, D.; Kim, W.; Joo, S.K.; Kim, J.H.; Harrison, S.A.; Younossi, Z.M.; Ahmed, A. Predictors of nonalcoholic steatohepatitis and significant fibrosis in non-obese nonalcoholic fatty liver disease. Liver Int. 2019, 39, 332–341. [Google Scholar] [CrossRef]
- Angulo, P.; Bugianesi, E.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Barrera, F.; Haflidadottir, S.; Day, C.P.; George, J. Simple noninvasive systems predict long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2013, 145, 782–789.e4. [Google Scholar] [CrossRef]
- Lohman, T.G. Advances in Body Composition Assessment; Human Kinetics Publishers: Champaign, IL, USA, 1992. [Google Scholar]
- DeMers, D.; Wachs, D. Physiology, Mean Arterial Pressure; StatPearls Publishing LLC: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sobel, E.; Lange, K. Descent graphs in pedigree analysis: Applications to haplotyping, location scores, and marker-sharing statistics. Am. J. Hum. Genet. 1996, 58, 1323–1337. [Google Scholar]
- Thomas, A.; Camp, N.J. Maximum likelihood estimates of allele frequencies and error rates from samples of related individuals by gene counting. Bioinformatics 2006, 22, 771–772. [Google Scholar] [CrossRef]
- Li, Y.; Willer, C.J.; Ding, J.; Scheet, P.; Abecasis, G.R. MaCH: Using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 2010, 34, 816–834. [Google Scholar] [CrossRef]
- Li, Y.; Willer, C.; Sanna, S.; Abecasis, G. Genotype imputation. Annu. Rev. Genom. Hum. Genet. 2009, 10, 387–406. [Google Scholar] [CrossRef]
- Almasy, L.; Blangero, J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 1998, 62, 1198–1211. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.A.; Crone, E.E. Genetics and Analysis of Quantitative Traits. Michael Lynch, Bruce Walsh. Q. Rev. Biol. 1999, 74, 225. [Google Scholar] [CrossRef]
- Almasy, L.; Blangero, J. Endophenotypes as quantitative risk factors for psychiatric disease: Rationale and study design. Am. J. Med. Genet. 2001, 105, 42–44. [Google Scholar] [CrossRef] [PubMed]
- Feingold, E.; Brown, P.O.; Siegmund, D. Gaussian models for genetic linkage analysis using complete high-resolution maps of identity by descent. Am. J. Hum. Genet. 1993, 53, 234–251. [Google Scholar]
- Blangero, J.; Williams, J.T.; Almasy, L. Variance component methods for detecting complex trait loci. Adv. Genet. 2001, 42, 151–181. [Google Scholar] [CrossRef]
- Haynes, W. Bonferroni Correction. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K., Yokota, H., Eds.; Springer: New York, NY, USA, 2013; p. 154. [Google Scholar]
Unadjusted Heritability | Adjusted Heritability † | ||||
---|---|---|---|---|---|
Phenotype | N | h2 ± SE | p-Value | h2 ± SE | p-Value |
Steatosis | 704 | 0.598 ± 0.157 | 2.420 × 10−5 | 0.723 ± 0.171 | 6.800 × 10−6 |
MRI-PDFF | 704 | 0.445 ± 0.081 | 3.241 × 10−9 | 0.520 ± 0.087 | 1.841 × 10−10 |
ALT | 623 | 0.226 ± 0.096 | 4.982 × 10−5 | 0.253 ± 0.098 | 2.143 × 10−3 |
AST | 623 | 0.330 ± 0.091 | 9.100 × 10−6 | 0.274 ± 0.089 | 1.462 × 10−4 |
FG | 670 | 0.418 ± 0.080 | 3.826 × 10−10 | 0.424 ± 0.081 | 1.669 × 10−10 |
FI | 688 | 0.378 ± 0.086 | 9.000 × 10−7 | 0.377 ± 0.086 | 1.100 × 10−6 |
HOMA-IR | 662 | 0.449 ± 0.090 | 4.374 × 10−8 | 0.443 ± 0.090 | 1.000 × 10−7 |
VAT | 704 | 0.366 ± 0.081 | 6.000 × 10−7 | 0.665 ± 0.080 | 8.076 × 10−17 |
SAT | 704 | 0.441 ± 0.075 | 6.207 × 10−12 | 0.487 ± 0.081 | 5.721 × 10−12 |
BMI | 704 | 0.493 ± 0.073 | 8.079 × 10−14 | 0.558 ± 0.076 | 3.931 × 10−15 |
%BF | 676 | 0.370 ± 0.086 | 2.000 × 10−7 | 0.493 ± 0.090 | 1.669 × 10−9 |
WC | 704 | 0.406 ± 0.075 | 8.875 × 10−10 | 0.520 ± 0.079 | 8.923 × 10−13 |
SBP | 704 | 0.335 ± 0.080 | 1.600 × 10−6 | 0.367 ± 0.084 | 5.000 × 10−7 |
DBP | 704 | 0.304 ± 0.090 | 1.634 × 10−4 | 0.334 ± 0.093 | 5.540 × 10−5 |
MAP | 704 | 0.369 ± 0.085 | 1.500 × 10−6 | 0.373 ± 0.087 | 2.400 × 10−6 |
TG | 693 | 0.430 ± 0.085 | 1.524 × 10−8 | 0.519 ± 0.086 | 7.138 × 10−11 |
HDL-C | 693 | 0.521 ± 0.089 | 4.802 × 10−10 | 0.603 ± 0.080 | 1.272 × 10−13 |
Endophenotype | N | ERV | p-Value | ρg ± SE | h2 ± SE |
---|---|---|---|---|---|
Glucose homeostasis | |||||
HOMA-IR | 662 | 0.406 | 1.727 × 10−8 | 0.847 ± 0.078 | 0.443 ± 0.090 |
FI | 688 | 0.364 | 9.568 × 10−8 | 0.822 ± 0.082 | 0.377 ± 0.086 |
FG | 670 | 0.282 | 1.780 × 10−5 | 0.599 ± 0.109 | 0.424 ± 0.081 |
Adiposity distribution | |||||
VAT | 704 | 0.392 | 6.960 × 10−8 | 0.666 ± 0.078 | 0.665 ± 0.080 |
WC | 704 | 0.269 | 1.099 × 10−3 | 0.518 ± 0.085 | 0.520 ± 0.079 |
BMI | 704 | 0.267 | 9.350 × 10−5 | 0.496 ± 0.098 | 0.558 ± 0.076 |
DXA %BF | 676 | 0.263 | 2.054 × 10−4 | 0.521 ± 0.107 | 0.493 ± 0.090 |
SAT | 704 | 0.261 | 1.700 × 10−4 | 0.518 ± 0.104 | 0.487 ± 0.081 |
CVD risk factors | |||||
HDL-C | 693 | 0.332 | 3.480 × 10−5 | −0.593 ± 0.121 | 0.603 ± 0.080 |
TG | 693 | 0.293 | 4.780 × 10−5 | 0.564 ± 0.100 | 0.519 ± 0.086 |
MAP | 704 | 0.187 | 7.750 × 10−3 | 0.424 ± 0.142 | 0.373 ± 0.087 |
SBP | 704 | 0.172 | 1.148 × 10−2 | 0.393 ± 0.140 | 0.367 ± 0.084 |
DBP | 704 | 0.169 | 1.860 × 10−2 | 0.406 ± 0.158 | 0.334 ± 0.093 |
Liver function | |||||
ALT | 623 | 0.163 | 0.029 | 0.449 ± 0.185 | 0.253 ± 0.098 |
AST | 623 | 0.047 | 0.508 | 0.126 ± 0.187 | 0.274 ± 0.089 |
Trait(s) | N | Location (hg.19) | LOD Score | p-Value |
---|---|---|---|---|
MRI-PDFF † | 696 | 17p13.2 | 2.9010 ** | 1.29 × 10−4 |
HOMA-IR † | 656 | 13q12.13 | 2.4948 * | 3.50 × 10−4 |
19q13.2 | 2.1086 * | 9.16 × 10−4 | ||
VAT ‡ | 696 | 7q31.32 | 2.415 * | 4.27 × 10−4 |
12q24.33 | 2.2385 * | 6.62 × 10−4 | ||
21q22.2 | 2.2037 * | 7.22 × 10−4 | ||
HDL-C ‡ | 685 | 12q23.3 | 3.0872 ** | 8.14 × 10−5 |
8q22.1 | 2.4495 * | 3.92 × 10−4 |
Location (hg. 19) | N | Trait(s) | LOD Score | Nominal p |
---|---|---|---|---|
13q31.1 | 656 | MRI-PDFF † + HOMA-IR † | 2.1144 * | 9.03 × 10−4 |
696 | MRI-PDFF † | 1.7703 * | 2.15 × 10−3 | |
656 | HOMA-IR † | 1.6081 | 3.25 × 10−3 | |
17p13.2 | 656 | MRI-PDFF † + HOMA-IR † | 2.0901 * | 9.60 × 10−4 |
696 | MRI-PDFF † | 2.9010 ** | 1.29 × 10−4 | |
656 | HOMA-IR † | 0.1527 | 0.201 | |
6q22.32 | 696 | MRI-PDFF ‡ + VAT ‡ | 2.3459 * | 5.07 × 10−4 |
696 | MRI-PDFF ‡ | 0.1298 | 0.220 | |
696 | VAT ‡ | 1.3833 | 5.80 × 10−3 | |
12q23.3 | 685 | MRI-PDFF ‡ + HDL-C ‡ | 2.3635 * | 4.85 × 10−4 |
696 | MRI-PDFF ‡ | 0.0535 | 0.310 | |
685 | HDL-C ‡ | 3.0872 ** | 8.14 × 10−5 |
Variant | Location (hg. 19) | Associated Trait | MAF | p-Value |
---|---|---|---|---|
rs738409 | 22q13.31 | MRI-PDFF ‡ | 0.24 | 1.6 × 10−4 |
rs738408 | 22q13.31 | MRI-PDFF ‡ | 0.24 | 1.64 × 10−4 |
rs1571830 | 13q31.1 | MRI-PDFF ‡, MRI-PDD ‡ + HOMA-IR ‡ | 0.39 | 1.0 × 10−5, 6.4 × 10−5 |
rs680625 | 17p13.2 | MRI-PDFF ‡ | 0.14 | 3.1 × 10−4 |
rs7219134 | 17p13.2 | MRI-PDFF ‡ | 0.73 | 3.65 × 10−4 |
rs12150116 | 17p13.2 | MRI-PDFF ‡ | 0.26 | 3.67 × 10−4 |
rs218670 | 17p13.2 | MRI-PDFF ‡ + HOMA-IR ‡ | 0.03 | 2.4 × 10−4 |
rs170149 | 17p13.2 | MRI-PDFF ‡ + HOMA-IR ‡ | 0.08 | 2.7 × 10−4 |
rs218698 | 17p13.2 | MRI-PDFF ‡ + HOMA-IR ‡ | 0.92 | 2.7 × 10−4 |
rs184295 | 17p13.2 | MRI-PDFF ‡ + HOMA-IR ‡ | 0.08 | 2.9 × 10−4 |
rs218697 | 17p13.2 | MRI-PDFF ‡ + HOMA-IR ‡ | 0.91 | 3.1 × 10−4 |
rs218695 | 17p13.2 | MRI-PDFF ‡ + HOMA-IR ‡ | 0.08 | 3.2 × 10−4 |
rs11078484 | 17p13.2 | MRI-PDFF † + HOMA-IR † | 0.85 | 1.1 × 10−4 |
rs781762 | 6q22.32 | MRI-PDFF ‡ + VAT ‡ | 0.06 | 1.7 × 10−4 |
rs10080285 | 6q22.32 | MRI-PDFF ‡ | 0.006 | 2.9 × 10−4 |
rs9491850 | 6q22.32 | MRI-PDFF ‡ | 0.006 | 3.0 × 10−4 |
rs10085184 | 6q22.32 | MRI-PDFF ‡ | 0.007 | 3.0 × 10−4 |
rs1080437 | 6q22.32 | MRI-PDFF ‡ | 0.007 | 4.0 × 10−4 |
rs9491851 | 6q22.32 | MRI-PDFF ‡ | 0.007 | 4.3 × 10−4 |
Relationship Degree | Relationship Description | N Pairs |
---|---|---|
1st | Parent–offspring | 378 |
Siblings | 354 | |
2nd | Grandparent–grandchild | 65 |
Avuncular | 450 | |
Half-siblings | 37 | |
Double 1st cousins | 4 | |
3rd | 1st cousins and 2nd cousins | 12 |
Grand avuncular | 69 | |
Half avuncular | 63 | |
1st cousins | 500 | |
Double 1st cousins, 1 removed | 19 | |
4th | 1st cousins, 1 removed and 2nd cousins, 1 removed | 16 |
1st cousins, 1 removed | 522 | |
Half 1st cousins | 32 | |
Double 2nd cousins | 22 | |
Double 1st cousins, 2 removed | 9 | |
5th and greater | Other | 637 |
Total relative pairs | 3189 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garza, A.L.; Blangero, J.; Lee, M.; Bauer, C.X.; Czerwinski, S.A.; Choh, A.C. Endophenotype-Informed Association Analyses for Liver Fat Accumulation and Metabolic Dysfunction in the Fels Longitudinal Study. Int. J. Mol. Sci. 2025, 26, 4812. https://doi.org/10.3390/ijms26104812
Garza AL, Blangero J, Lee M, Bauer CX, Czerwinski SA, Choh AC. Endophenotype-Informed Association Analyses for Liver Fat Accumulation and Metabolic Dysfunction in the Fels Longitudinal Study. International Journal of Molecular Sciences. 2025; 26(10):4812. https://doi.org/10.3390/ijms26104812
Chicago/Turabian StyleGarza, Ariana L., John Blangero, Miryoung Lee, Cici X. Bauer, Stefan A. Czerwinski, and Audrey C. Choh. 2025. "Endophenotype-Informed Association Analyses for Liver Fat Accumulation and Metabolic Dysfunction in the Fels Longitudinal Study" International Journal of Molecular Sciences 26, no. 10: 4812. https://doi.org/10.3390/ijms26104812
APA StyleGarza, A. L., Blangero, J., Lee, M., Bauer, C. X., Czerwinski, S. A., & Choh, A. C. (2025). Endophenotype-Informed Association Analyses for Liver Fat Accumulation and Metabolic Dysfunction in the Fels Longitudinal Study. International Journal of Molecular Sciences, 26(10), 4812. https://doi.org/10.3390/ijms26104812