Allelic Variations in Phenology Genes in Club Wheat (Triticum compactum) and Their Association with Heading Date
Abstract
1. Introduction
2. Results
2.1. Allelic Variation at the VRN1 and PPD-D1 Genes in the T. compactum Collection
2.2. Effect of VRN1 and PPD-D1 Allele Combinations on T. compactum Heading Date
2.3. Geographical Distribution of VRN1 and PPD-D1 Alleles and Allele Combinations
2.4. Simple Sequence Repeat Marker and Cluster Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Phenotyping
4.3. Genotyping
PCR Amplification of Allele-Specific Markers
4.4. Simple Sequence Repeat Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filatenko, A.A.; Hammer, K. Wheat landraces from Oman: A botanical analysis. Emir. J. Food Agric. 2014, 26, 119–136. [Google Scholar] [CrossRef]
- Gul, A.; Allan, R.E. Relation of the club gene with yield and yield components of near-isogenic wheat lines. Crop Sci. 1972, 12, 297–301. [Google Scholar] [CrossRef]
- Johnson, E.B.; Nalam, V.J.; Zemetra, R.S.; Riera-Lizarau, O. Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica 2008, 163, 193–201. [Google Scholar] [CrossRef]
- Kajla, A.; Schoen, A.; Paulson, C.; Yadav, I.S.; Neelam, K.; Riera-Lizarazu, O.; Leonard, J.; Gill, B.S.; Venglat, P.; Datla, R.; et al. Physical mapping of the wheat genes in low-recombination regions: Radiation hybrid mapping of the C-locus. Theor. Appl Genet. 2023, 21, 136–159. [Google Scholar] [CrossRef]
- Wen, M.; Su, J.; Jiao, C.; Zhang, X.; Xu, T.; Wang, T.; Liu, X.; Wang, Z.; Sun, L.; Yuan, C.; et al. Pleiotropic Effect of the compactum gene and its combined effects with other loci for spike and grain-related traits in wheat. Plants 2022, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Rayfuse, L.M.; Jones, S.S. Variation at Glu-1 loci in club wheats. Plant Breed. 1993, 111, 89–98. [Google Scholar] [CrossRef]
- Jernigan, K.L.; Morris, C.F.; Zemetra, R.; Chen, J.; Garland-Campbell, K.; Carter, A.H. Genetic analysis of soft white wheat end-use quality traits in a club by common wheat cross. J. Cereal Sci. 2017, 76, 148–156. [Google Scholar] [CrossRef]
- Xu, L.L.; Li, W.; Wei, Y.M.; Zheng, Y.L. Genetic diversity of HMW glutenin subunits in diploid, tetraploid and hexaploid Triticum species. Genet. Resour. Crop Evol. 2009, 56, 377–391. [Google Scholar] [CrossRef]
- Alvarez, J.B.; Guzmán, C. Recovery of wheat heritage for traditional food: Genetic variation for high molecular weight glutenin subunits in neglected/underutilized wheat. Agronomy 2019, 9, 755. [Google Scholar] [CrossRef]
- Ayala, M.; Alvarez, J.B.; Yamamori, M.; Guzmán, C. Molecular characterization of waxy alleles in three subspecies of hexaploid wheat and identification of two novel Wx-B1 alleles. Theor. Appl. Genet. 2015, 128, 2427–2435. [Google Scholar] [CrossRef]
- Eagle, J.; Liu, Y.; Naruoka, Y.; Liu, W.; Ruff, T.; Hooker, M.; Sthapit, S.; Marston, E.; Marlowe, K.; Pumphrey, M.; et al. Identification and mapping of quantitative trait loci associated with stripe rust resistance in spring club wheat cultivar JD. Plant Dis. 2022, 106, 2490–2497. [Google Scholar] [CrossRef] [PubMed]
- Zwer, P.K.; Sombrero, A.; Rickman, R.W.; Klepper, B. Club and common wheat yield component and spike development in the Pacific Northwest. Crop Sci. 1995, 35, 1590–1597. [Google Scholar] [CrossRef]
- Trevaskis, B.; Bagnall, D.J.; Ellis, M.H.; Peacock, W.J.; Dennis, E.S. MADS box genes control vernalization-induced flowering in cereals. Proc. Natl. Acad. Sci. USA 2003, 100, 13099–13104. [Google Scholar] [CrossRef]
- Danyluk, J.; Kane, N.A.; Breton, G.; Limin, A.E.; Fowler, D.B.; Sarhan, F. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 2003, 132, 1849–1860. [Google Scholar] [CrossRef]
- Yan, L.; Helguera, M.; Kato, K.; Fukuyama, S.; Sherman, J.; Dubcovsky, J. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 2004, 109, 1677–1686. [Google Scholar] [CrossRef]
- Pugsley, A.T. A genetic analysis of spring-winter habit of growth in wheat. Aust. J. Agric. Res. 1971, 22, 21–31. [Google Scholar] [CrossRef]
- Law, C.N.; Worland, A.J.; Giorgi, B. The genetic-control of ear emergence time by chromosomes-5A and chromosomes 5D of wheat. Heredity 1976, 36, 49–58. [Google Scholar] [CrossRef]
- Dubcovsky, J.; Lijavetzky, D.; Appendino, L.; Tranquilli, G.; Dvorak, J.D. Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor. Appl. Genet. 1998, 97, 968–975. [Google Scholar] [CrossRef]
- Fu, L.; Szücs, S.P.; Yan, L.L.; Helguera, M.; Skinner, J.S.; Von Zitzewitz, J.; Hayes, P.M.; Dubcovsky, J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Genet. Genom. 2005, 273, 54–65. [Google Scholar] [CrossRef]
- Milec, Z.; Tomkova, L.; Sumikova, T.; Pankova, K. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol. Breed. 2012, 30, 317–323. [Google Scholar] [CrossRef]
- Shcherban, A.B.; Efremova, T.T.; Salina, E.A. Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time. Mol. Breed. 2012, 29, 675–685. [Google Scholar] [CrossRef]
- Welsh, J.R.; Kein, D.L.; Pirasteh, B.; Richards, R.D. Genetic control of photoperiod response in wheat. In Proceedings of the 4th International Wheat Genetics Symposium, Columbia, MO, USA, 6–11 August 1973; Sears, E.R., Sears, L.M.S., Eds.; Agricultural Experimental Station, University of Missouri: Columbia, MO, USA, 1973; pp. 879–884. [Google Scholar]
- Worland, A.J.; Börner, A.; Korzun, V.; Li, W.M.; Petrovíc, S.; Sayers, E.J. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica 1998, 100, 385–394. [Google Scholar] [CrossRef]
- Law, C.N.; Sutka, J.; Worland, A.J. A genetic study of daylength response in wheat. Heredity 1978, 41, 185–191. [Google Scholar] [CrossRef]
- Beales, J.; Turner, A.; Griffiths, S.; Snape, J.; Laurie, D.A. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 2007, 115, 721–733. [Google Scholar] [CrossRef]
- Bentley, A.; Horsnell, R.; Werner, C.P.; Turner, A.S.; Rose, G.A.; Bedard, C.; Howell, P.; Wilhelm, E.P.; Mackay, I.J.; Howells, R.M.; et al. Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different Photoperiod-1 (Ppd-1) alleles. J. Exp. Bot. 2013, 64, 1783–1793. [Google Scholar] [CrossRef]
- Muterko, A.; Balashova, I.; Cockram, J.; Kalendar, R.; Sivolap, Y. The new wheat vernalization response allele Vrn-D1s is caused by DNA transposon insertion in the first intron. Plant Mol. Biol. Repor. 2015, 33, 294–303. [Google Scholar] [CrossRef]
- Guo, Z.; Song, Y.; Zhou, R.; Ren, Z.; Jia, J. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol. 2010, 185, 841–851. [Google Scholar] [CrossRef]
- Cho, E.J.; Kang, C.S.; Jung, J.U.; Yoon, Y.M.; Park, C.S. Allelic variation of Rht-1, Vrn-1 and Ppd-1 in Korean wheats and its effect on agronomic traits. Plant Breed. Biotechnol. 2015, 3, 129–138. [Google Scholar] [CrossRef]
- Ma, F.; Brown-Guedira, G.; Kang, M.; Baik, B.-K. Allelic variations in phenology genes of Eastern U.S. soft winter and Korean winter wheat and their associations with heading date. Plants 2022, 11, 3116. [Google Scholar] [CrossRef]
- Zhang, X.K.; Xiao, Y.G.; Zhang, Y.; Xia, X.C.; Dubcovsky, J.; He, Z.H. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci. 2008, 48, 458–470. [Google Scholar] [CrossRef]
- Santra, D.K.; Santra, M.; Allan, R.E.; Campbell, K.G.; Kidwell, K.K. Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1, and Vrn-D1 in spring wheat germplasm from the Pacific Northwest region of the USA. Plant Breed. 2009, 128, 576–584. [Google Scholar] [CrossRef]
- Shcherban, A.B.; Börner, A.; Salina, A. Effect of VRN-1 and PPD-1 genes on heading time in European bread wheat cultivars. Plant Breed. 2015, 134, 49–55. [Google Scholar] [CrossRef]
- Andeden, E.; Yediay, F.; Baloch, F.; Shaaf, S.; Kilian, B.; Nachit, M.; Özkan, H. Distribution of vernalization and photoperiod genes (Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3, Ppd-D1) in Turkish bread wheat cultivars and landraces. Cereal Res. Commun. 2011, 39, 352–364. [Google Scholar] [CrossRef]
- Dragovich, A.Y.; Fisenko, A.V.; Yankovskava, A.A. Vernalization (VRN) and photoperiod (PPD) genes in spring hexaploid wheat landraces. Russ. J. Genet. 2021, 57, 329–340. [Google Scholar] [CrossRef]
- Milec, Z.; Sumikova, T.; Tomkova, L.; Pankova, K. Distribution of different Vrn-B1 alleles in hexaploid spring wheat germplasm. Euphytica 2013, 192, 371–378. [Google Scholar] [CrossRef]
- Palomino, C.; Cabrera, A. Evaluation of the allelic variations in vernalisation (VRN1) and photoperiod (PPD1) genes and genetic diversity in a Spanish spelt wheat collection. Int. J. Mol. Sci. 2023, 24, 16041. [Google Scholar] [CrossRef]
- Kippes, N.; Guedira, M.; Lin, L.; Alvarez, M.A.; Brown-Guedira, G.L.; Dubcovsky, J. Single nucleotide polymorphisms in a regulatory site of VRN-A1 first intron are associated with differences in vernalization requirement in winter wheat. Mol. Genet. Genom. 2018, 293, 231–1243. [Google Scholar] [CrossRef]
- Dreisigacker, S.; Burgueño, J.; Pacheco, A.; Molero, G.; Sukumaran, S.; Rivera-Amado, C.; Reynolds, M.; Griffiths, S. Effect of flowering time-related genes on biomass, harvest index, and grain yield in CIMMYT elite spring bread heat. Biology 2021, 10, 855. [Google Scholar] [CrossRef]
- Muterko, A.; Kalendar, R.; Salina, E. Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. BMC Plant Biol. 2016, 16, 9. [Google Scholar] [CrossRef]
- Muterko, A.; Salina, E. Origin and distribution of the VRN-A1 exon 4 and exon 7 haplotypes in domesticated wheat species. Agronomy 2018, 8, 156. [Google Scholar] [CrossRef]
- Fourquet, L.; Barber, T.; Campos-Mantello, C.; Howell, P.; Orman-Ligeza, B.; Percival-Alwyn, L.; Rose, G.A.; Sheehan, H.; Wright, T.I.; Longin, F.; et al. An eight-founder wheat MAGIC population allows fine-mapping of flowering time loci and provides novel insights into the genetic control of flowering time. Theor. Appl. Genet. 2024, 137, 277. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Zikhali, M.; Turner, A.S.; Isaac, P.; Laurie, D.A. Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE 2012, 7, e33234. [Google Scholar] [CrossRef] [PubMed]
- Muterko, A.; Salina, E. VRN1-ratio test for polyploid wheat. Planta 2019, 250, 1955–1965. [Google Scholar] [CrossRef] [PubMed]
- Strejcková, B.; Milec, Z.; Holušová, K.; Cápal, P.; Vojtková, T.; Cegan, R.; Šafár, J. In-depth sequence analysis of bread wheat VRN1 genes. Int. J. Mol. Sci. 2021, 22, 12284. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Bernard, M.; Ravel, C.; Balfourier, F.; Leroy, P.; Feuillet, C.; Sourdille, P. Wheat EST-SSRs for tracing chromosome segments from a wide range of grass species. Plant Breed. 2007, 126, 251–258. [Google Scholar] [CrossRef]
- Fandade, V.; Singh, P.; Singh, D.; Sharma, H.; Thakur, G.; Saini, S.; Kumar, P.; Mantri, S.; Bishnoi, O.P.; Roy, J. Genome-wide identification of microsatellites for mapping, genetic diversity and cross-transferability in wheat (Triticum spp.). Gene 2024, 896, 148039. [Google Scholar] [CrossRef]
- Verma, S.; Chaudhary, H.K.; Singh, K.; Kumar, N.; Dhillon, K.S.; Sharma, M.; Sood, V.K. Genetic diversity dissection and population structure analysis for augmentation of bread wheat (Triticum aestivum L.) germplasm using morpho-molecular markers. Genet. Resour. Crop Evol. 2024, 71, 4093–4114. [Google Scholar] [CrossRef]
- Chen, X.; Min, D.; Yasir, T.A.; Hu, Y.G. Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS ONE 2012, 7, e44510. [Google Scholar] [CrossRef]
- Türkoğlu, A.; Haliloğlu, K.; Mohammadi, S.A.; Öztürk, A.; Bolouri, P.; Özkan, G.; Bocianowski, J.; Pour-Aboughadareh, A.; Jamshidi, B. Genetic diversity and population structure in Türkiye bread wheat genotypes revealed by Simple Sequence Repeats (SSR) markers. Genes 2023, 14, 1182. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Li, G.; Zhang, S.; Zhang, Z.; Ma, L. Genetic diversity and association mapping of agronomic yield traits in eighty six synthetic hexaploid wheat. Euphytica 2017, 213, 111. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [PubMed]
- Röder, M.S.; Korzun, V.; Wendehake, K.; Plaschke, J.; Tixier, M.H.; Leroy, P.; Ganal, M.W. A microsatellite map of wheat. Genetics 1998, 149, 2007–2023. [Google Scholar] [CrossRef] [PubMed]
- Botstein, G.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar] [PubMed] [PubMed Central]
Haplotype | Allelic Composition | No. of Accessions (%) | Average Heading Time (No. of Days to Heading ± SE) | ||||
---|---|---|---|---|---|---|---|
Greenhouse | Field | ||||||
- | 1 Vrn-A1a | vrn-B1 | Vrn-D1a | Ppd-D1a | - | 40.0 ± 0.5 a | 62.5 ± 1.5 a |
1 | Vrn-A1a | Vrn-B1a | Vrn-D1a | Ppd-D1a | 1 (1.1%) | 41.0 ± 0.7 a | 61.0 ± 0.1 a |
2 | Vrn-A1a | Vrn-B1a | vrn-D1 | Ppd-D1b | 6 (6.7%) | 40.3 ± 4.1 a | 75.9 ± 2.5 bc |
3 | Vrn-A1b | Vrn-B1a | vrn-D1 | Ppd-D1b | 9 (10.1%) | 54.5 ± 3.3 ab | 75.0 ± 2.6 bc |
4 | vrn-A1 | Vrn-B1a | Vrn-D1a | Ppd-D1b | 3 (3.4%) | 54.7 ± 4.8 ab | 82.0 ± 3.5 cde |
5 | Vrn-A1a | vrn-B1 | vrn-D1 | Ppd-D1b | 11 (12.3%) | 61.9 ± 3.0 bc | 84.8 ± 1.8 e |
6 | Vrn-A1b | vrn-B1 | vrn-D1 | Ppd-D1b | 3 (3.4%) | 66.3 ± 5.7 c | 80.0 ± 1.7 cde |
7 | vrn-A1 | Vrn-B1a | vrn-D1 | Ppd-D1b | 12 (13.5%) | 60.2 ± 2.9 bc | 80.7 ± 1.7 cde |
8 | vrn-A1 | vrn-B1 | Vrn-D1a | Ppd-D1b | 7 (7.9%) | 50.3 ± 3.8 ab | 82.5 ± 2.3 cde |
9 | vrn-A1 | vrn-B1 | vrn-D1 | Ppd-D1a | 3 (3.4%) | No spikes | No spikes |
10 | vrn-A1 | vrn-B1 | vrn-D1 | Ppd-D1b | 34 (38.2%) | No spikes | No spikes |
VRN-A1 | VRN-B1 | VRN-D1 | PPD-D1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Vrn-A1a | Vrn-A1b | vrn-A1 | Vrn-B1a | vrn-B1 | Vrn-D1a | vrn-D1 | Ppd-D1a | Ppd-D1b | |
Africa (4) a | 0 | 2 (50) b | 2 (50) | 4 (100) | 0 | 0 | 4 (100) | 0 | 4 (100) |
America (38) | 9 (23.7) | 1 (2.6) | 28 (73.7) | 5 (13.1) | 33 (86.9) | 2 (5.3) | 36 (94.7) | 2 (5.3) | 36 (94.7) |
Australia (9) | 3 (33.3) | 6 (66.7) | 0 | 8 (88.9) | 1 (11.1) | 0 | 9 (100) | 0 | 9 (100) |
Southeast/Central Asia (13) | 0 | 1 (7.7) | 12 (92.3) | 7 (53.8) | 6 (46.2) | 9 (69.2) | 4 (30.8) | 0 | 13 (100) |
Southeastern Europe (7) | 3 (42.9) | 0 | 4 (57.1) | 4 (57.1) | 3 (42.9) | 0 | 7 (100) | 0 | 7 (100) |
Western/Central Europe (12) | 2 (16.7) | 0 | 10 (83.3) | 2 (16.7) | 10 (83.3) | 0 | 12 (100) | 1 (16.7) | 11 (83.3) |
Southern Europe (6) | 1 (16.7) | 2 (33.3) | 3 (50.0) | 1 (16.7) | 5 (83.3) | 0 | 6 (100) | 1 (16.7) | 5 (83.3) |
Total (89) | 18 (20.2) | 12 (13.5) | 59 (66.3) | 31 (34.8) | 58 (65.2) | 11 (12.4) | 78 (87.6) | 4 (4.5) | 85 (95.5) |
Simple Sequence Repeat Marker | Size Range (bp) | Number of Alleles | PIC c | |
---|---|---|---|---|
N a | Mean b | |||
Xgwm43 | 118–256 | 7 | 5.9 | 0.84 |
Xgwm44 | 54–58 | 2 | 1.0 | 0.49 |
Xgwm55 | 111–245 | 7 | 5.9 | 0.83 |
Xgwm135 | 133–158 | 7 | 2.5 | 0.68 |
Xgwm205 | 134–184 | 11 | 3.2 | 0.77 |
Xgwm219 | 79–100 | 10 | 1.0 | 0.70 |
Xgwm249 | 152–200 | 6 | 3.0 | 0.70 |
Xgwm257 | 182–214 | 7 | 3.1 | 0.75 |
Xgwm271 | 172–217 | 7 | 3.2 | 0.94 |
Xgwm285 | 108–260 | 19 | 6.1 | 0.87 |
Xgwm291 | 114–138 | 10 | 2.8 | 0.75 |
Xgwm294 | 83–151 | 9 | 1.0 | 0.75 |
Xgwm314 | 100–223 | 8 | 3.4 | 0.75 |
Xgwm382 | 104–216 | 18 | 3.7 | 0.85 |
Xgwm391 | 134 | 1 | 1 | - |
Xgwm397 | 183–280 | 3 | 1.7 | 0.61 |
Xgwm403 | 105–129 | 2 | 1.6 | 0.52 |
Xgwm513 | 150–168 | 10 | 3.9 | 0.80 |
Xgwm544 | 185–240 | 7 | 1.8 | 0.70 |
Xgwm565 | 93–246 | 21 | 8.9 | 0.92 |
Xgwm614 | 131–180 | 11 | 2.0 | 0.77 |
Total | - | 183 | - | - |
Mean | - | 8.7 | 3.2 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mata, B.; Cabrera, A. Allelic Variations in Phenology Genes in Club Wheat (Triticum compactum) and Their Association with Heading Date. Int. J. Mol. Sci. 2025, 26, 4875. https://doi.org/10.3390/ijms26104875
Mata B, Cabrera A. Allelic Variations in Phenology Genes in Club Wheat (Triticum compactum) and Their Association with Heading Date. International Journal of Molecular Sciences. 2025; 26(10):4875. https://doi.org/10.3390/ijms26104875
Chicago/Turabian StyleMata, Bárbara, and Adoración Cabrera. 2025. "Allelic Variations in Phenology Genes in Club Wheat (Triticum compactum) and Their Association with Heading Date" International Journal of Molecular Sciences 26, no. 10: 4875. https://doi.org/10.3390/ijms26104875
APA StyleMata, B., & Cabrera, A. (2025). Allelic Variations in Phenology Genes in Club Wheat (Triticum compactum) and Their Association with Heading Date. International Journal of Molecular Sciences, 26(10), 4875. https://doi.org/10.3390/ijms26104875