The Impact of Selected COL1A1 and COL1A2 Gene Polymorphisms on Bone Mineral Density and the Risk of Metabolic Diseases in Postmenopausal Women
Abstract
1. Introduction
2. Results
2.1. General Characteristics of the Study Group
2.2. COL1A1 and COL1A2 Gene—Polymorphisms
2.3. COL1A1 and COL1A2 Gene Polymorphisms and BMD
2.4. Family History of Fractures
2.5. COL1A1 and COL1A2 Gene Polymorphisms and Their Association with BMI, Overweight, and Obesity
2.6. COL1A1 and COL1A2 Gene Polymorphisms and Diabetes
2.7. COL1A1 and COL1A2 Gene Polymorphisms and Confounding Factors
3. Discussion
3.1. COL1A1 rs1107946 and BMD
3.2. COL1A1 rs1800012 and Age-Dependent BMD Effects
3.3. COL1A2 rs42524 and Maternal Fracture History
3.4. COL1A1 rs1107946 and Obesity
3.5. COL1A1 rs1107946 and T2D
4. Materials and Methods
4.1. Study Group
4.2. Bone Mineral Density Measurement
4.3. Genetic Analyses
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COL | Collagen |
BMD | Bone mineral density |
T2D | Type 2 diabetes |
T1D | Type 1 diabetes |
FN | Femoral neck |
TH | Total hip |
HJ | Hip joint |
WHO | World Health Organization |
NHANES | National Health and Nutrition Examination Survey |
CV | Coefficient of variation |
DNA | Deoxyribonucleic acid |
EDTA | Ethylenediaminetetraacetic acid |
PCR | Polymerase chain reaction |
SNP | Single-nucleotide polymorphism |
QD | Quartile deviation |
References
- Thapa, S.; Nandy, A.; Rendina-Ruedy, E. Endocrinal metabolic regulation on the skeletal system in post-menopausal women. Front. Physiol. 2022, 13, 1052429. [Google Scholar] [CrossRef]
- Cheng, C.H.; Chen, L.R.; Chen, K.H. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int. J. Mol. Sci. 2022, 23, 1376. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Liu, B.; Zhang, L.; Chen, R.; Yang, B.; Dong, J.; Rong, L. Association of COL1A1 polymorphisms with osteoporosis: A meta-analysis of clinical studies. Int. J. Clin. Exp. Med. 2015, 8, 14764–14781. [Google Scholar]
- Jin, H.; Evangelou, E.; Ioannidis, J.P.; Ralston, S.H. Polymorphisms in the 5′ flank of COL1A1 gene and osteoporosis: Meta-analysis of published studies. Osteoporos. Int. 2011, 22, 911–921. [Google Scholar] [CrossRef]
- Xu, P.; Wang, Y.; Wu, X.; Wang, W.; Wang, Q.; Lin, W.; Zhang, Z.; Li, M. The COL1A1 rs1800012 polymorphism is associated with osteoporosis or fracture risk: A meta-analysis of 30 studies. Int. J. Burns Trauma 2024, 14, 148–159. [Google Scholar] [CrossRef]
- Lindahl, K.; Rubin, C.J.; Brändström, H.; Karlsson, M.K.; Holmberg, A.; Ohlsson, C.; Mellström, D.; Orwoll, E.; Mallmin, H.; Kindmark, A.; et al. Heterozygosity for a coding SNP in COL1A2 confers a lower BMD and an increased stroke risk. Biochem. Biophys. Res. Commun. 2009, 4, 501–505. [Google Scholar] [CrossRef]
- Available online: https://omim.org/entry/120150 (accessed on 10 April 2025).
- Available online: https://www.ncbi.nlm.nih.gov/snp/rs1800012#variant_details (accessed on 10 April 2025).
- Available online: https://www.ncbi.nlm.nih.gov/snp/rs1107946 (accessed on 10 April 2025).
- Majchrzycki, M.; Bartkowiak-Wieczorek, J.; Wolski, H.; Drews, K.; Bogacz, A.; Czerny, B.; Zagrodnik-Ułan, E.; Seremak-Mrozikiewicz, A. Polymorphisms of collagen 1A1 (COL1A1) gene and their relation to bone mineral density in postmenopausal women. Ginekol. Pol. 2015, 86, 907–914. [Google Scholar] [CrossRef]
- Niemiec, P.; Jarosz, A.; Nowak, T.; Balcerzyk-Matić, A.; Iwanicki, T.; Iwanicka, J.; Gawron, K.; Kalita, M.; Górczyńska-Kosiorz, S.; Kania, W.; et al. Impact of the COL1A1 Gene Polymorphisms on Pain Perception in Tennis Elbow Patients: A Two-Year Prospective Cohort Study. Int. J. Mol. Sci. 2024, 25, 13221. [Google Scholar] [CrossRef]
- Zhong, B.; Huang, D.; Ma, K.; Deng, X.; Shi, D.; Wu, F.; Shao, Z. Association of COL1A1 rs1800012 polymorphism with musculoskeletal degenerative diseases: A meta-analysis. Oncotarget 2017, 8, 75488–75499. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Chen, K.; Wu, B.; Liu, H. Association of polymorphisms rs1800012 in COL1A1 with sports-related tendon and ligament injuries: A meta-analysis. Oncotarget 2017, 8, 27627–27634. [Google Scholar] [CrossRef]
- Jacob, Y.; Anderton, R.S.; Cochrane Wilkie, J.L.; Rogalski, B.; Laws, S.M.; Jones, A.; Spiteri, T.; Hince, D.; Hart, N.H. Genetic Variants within NOGGIN, COL1A1, COL5A1, and IGF2 are Associated with Musculoskeletal Injuries in Elite Male Australian Football League Players: A Preliminary Study. Sports Med. Open 2022, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Rojano-Mejía, D.; Coral-Vázquez, R.M.; Espinosa, L.C.; López-Medina, G.; Aguirre-García, M.C.; Coronel, A.; Canto, P. JAG1 and COL1A1 polymorphisms and haplotypes in relation to bone mineral density variations in postmenopausal Mexican-Mestizo Women. Age 2013, 35, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://omim.org/entry/120160 (accessed on 10 April 2025).
- Available online: https://www.ncbi.nlm.nih.gov/snp/rs42524 (accessed on 10 April 2025).
- Yoneyama, T.; Kasuya, H.; Onda, H.; Akagawa, H.; Hashiguchi, K.; Nakajima, T.; Hori, T.; Inoue, I. Collagen type I alpha2 (COL1A2) is the susceptible gene for intracranial aneurysms. Stroke 2004, 35, 443–448. [Google Scholar] [CrossRef]
- Takeda, R.; Yamaguchi, T.; Hayashi, S.; Sano, S.; Kawame, H.; Kanki, S.; Taketani, T.; Yoshimura, H.; Nakamura, Y.; Kosho, T. Clinical and molecular features of patients with COL1-related disorders: Implications for the wider spectrum and the risk of vascular complications. Am. J. Med. Genet. A 2022, 188, 2560–2575. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Méndez-Gutiérrez, A.; Aguilera, C.M.; Plaza-Díaz, J. Extracellular Matrix Remodeling of Adipose Tissue in Obesity and Metabolic Diseases. Int. J. Mol. Sci. 2019, 20, 4888. [Google Scholar] [CrossRef]
- Aleksandrowicz, R.; Strączkowski, M. Link between insulin resistance and skeletal muscle extracellular matrix remodeling. Endocr. Connect. 2023, 12, e230023. [Google Scholar] [CrossRef]
- Dytfeld, J.; Marcinkowska, M.; Drwęska-Matelska, N.; Michalak, M.; Horst-Sikorska, W.; Słomski, R. Association analysis of the COL1A1 polymorphism with bone mineral density and prevalent fractures in Polish postmenopausal women with osteoporosis. Arch. Med. Sci. 2016, 12, 288–294. [Google Scholar] [CrossRef]
- Hu, W.W.; He, J.W.; Zhang, H.; Wang, C.; Gu, J.M.; Yue, H.; Ke, Y.H.; Hu, Y.Q.; Fu, W.Z.; Li, M.; et al. No association between polymorphisms and haplotypes of COL1A1 and COL1A2 genes and osteoporotic fracture in postmenopausal Chinese women. Acta Pharmacol. Sin. 2011, 32, 947–955. [Google Scholar] [CrossRef]
- Boroňová, I.; Mathia, M.; Mačeková, S.; Bernasovská, J.; Gaľová, J. Evaluation of COLIA1 gene rs1107946 polymorphism in relation to bone mineral density and fracture risk in Slovak postmenopausal women. Cent. Eur. J. Public Health 2023, 1, 25–29. [Google Scholar] [CrossRef]
- Huynh, N.; De Dios, K.; Tran, T.S.; Center, J.R.; Nguyen, T.V. Association between the Sp1-binding-site polymorphism in the collagen type I alpha 1 (COLIA1) gene and bone phenotypes: The Dubbo Osteoporosis Epidemiology Study. J. Bone Miner. Metab. 2025, 2, 114–122. [Google Scholar] [CrossRef]
- Du, X.; Wu, X.; Yu, L.; Min, W.; Chen, G.; Liu, F.; Li, J. COL1A1 regulates the apoptosis of embryonic stem cells by mediating the PITX1/TBX4 signaling. Birth Defects Res. 2024, 116, e2277. [Google Scholar] [CrossRef]
- Roumans, N.J.; Vink, R.G.; Gielen, M.; Zeegers, M.P.; Holst, C.; Wang, P.; Astrup, A.; Saris, W.H.; Valsesia, A.; Hager, J.; et al. Variation in extracellular matrix genes is associated with weight regain after weight loss in a sex-specific manner. Genes Nutr. 2015, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.J.; Yan, X.Y.; Sun, A.; Zhang, L.; Zhang, J.; Yan, Y.E. Adipose extracellular matrix deposition is an indicator of obesity and metabolic disorders. J. Nutr. Biochem. 2023, 111, 109159. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13 (Suppl. S1), S31–S34. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A., on behalf of the World Health Organization Scientific Group. Assessment of Osteoporosis at the Primary Health Care Level; Technical Report; World Health Organization Collaborating Center for Metabolic Bone Diseases: Geneva, Switzerland; University of Sheffield: Sheffield, UK, 2007. [Google Scholar]
Characteristics | |||
---|---|---|---|
General | number of subjects, n (%) | 554 | (100.00) |
age [years], median ± QD | 66.02 | 6.31 | |
age range [years], n (%) | |||
| 143 | (25.81) | |
| 215 | (38.81) | |
| 166 | (29.96) | |
| 30 | (5.42) | |
years after menopause [years], median ± QD | 16.92 | 6.56 | |
BMI [kg/m2], median ± QD | 30.85 | 3.93 | |
obesity [BMI ≥ 30], n (%) | 306 | (55.23) | |
cigarette smokers, n (%) | 62 | (11.19) | |
alcohol consumption [≥3 units/day], n (%) | 4 | (0.72) | |
BMD parameters * | BMD FN [mg/cm2], median ± QD | 857.00 | 88.50 |
BMD FN T-score, median ± QD | −1.30 | 1.20 | |
| 222 | (40.59) | |
| 274 | (50.09) | |
| 51 | (9.32) | |
BMD TH [mg/cm2], median ± QD | 945.00 | 94.00 | |
BMD TH T-score, median ± QD | −0.50 | 1.50 | |
| 362 | (66.18) | |
| 163 | (29.80) | |
| 22 | (4.02) | |
Comorbidities | T1D, n (%) | 19 | (3.43) |
T2D, n (%) | 81 | (14.62) | |
glucocoticosteroid therapy, n (%) | 24 | (4.33) | |
rheumatoid arthritis, n (%) | 38 | (6.86) | |
thyroid gland diseases, n (%) | 5 | (0.90) | |
chronic kidney disease, n (%) | 6 | (1.08) |
Gene | SNP | Chromosome: Coordinate (GRCh38) | Genotypes | n (%) | Alleles | n (%) | p Value HWE Test |
---|---|---|---|---|---|---|---|
COL1A1 | rs1107946 | chr17:50203629 | AA | 13 (2.34) | A | 178 (16.06) | 0.931 |
AC | 152 (27.44) | C | 930 (83.94) | ||||
CC | 389 (70.22) | ||||||
COL1A1 | rs1800012 | chr17:50200388 | AA | 17 (3.07) | A | 202 (18.23) | 0.882 |
AC | 168 (30.32) | C | 906 (81.77) | ||||
CC | 369 (66.61) | ||||||
COL1A2 | rs42524 | chr7:94413927 | CC | 37 (6.68) | C | 301 (27.17) | 0.681 |
CG | 227 (40.97) | G | 807 (72.83) | ||||
GG | 290 (52.35) |
BMD Parameter | SNP | Genotypes, Median ± QD | p Value for Models | |||
---|---|---|---|---|---|---|
Additive | Recessive/Dominant | |||||
rs1107946 | AA | AC | CC | AA vs. AC/CC | ||
FN [mg/cm2] | 990.00 ± 81.00 | 855.00 ± 87.50 | 855.00 ± 86.00 | 0.074 | 0.023 | |
FN T-score | −0.30 ± 0.60 | −1.30 ± 0.60 | −1.30 ± 0.65 | 0.075 | 0.025 | |
TH [mg/cm2] | 1008.00 ± 47.00 | 945.00 ± 87.00 | 941.00 ± 100.50 | 0.174 | 0.064 | |
TH T-score | 0.00 ± 0.35 | −0.50 ± 0.70 | −0.50 ± 0.80 | 0.183 | 0.066 | |
rs1800012 | AA | AC | CC | AA vs. AC/CC | ||
FN [mg/cm2] | 825.50 ± 61.00 | 855.00 ± 85.50 | 862.00 ± 0.89 | 0.596 | 0.328 | |
FN T-score | −1.50 ± 0.43 | −1.30 ± 0.60 | −1.30 ± 0.60 | 0.586 | 0.305 | |
TH [mg/cm2] | 937.00 ± 104.50 | 935.00 ± 95.50 | 945.00 ± 88.50 | 0.907 | 0.694 | |
TH T-score | −0.55 ± 0.83 | −0.55 ± 0.75 | −0.50 ± 0.70 | 0.835 | 0.717 | |
rs42524 | CC | CG | GG | GG vs. CG/CC | ||
FN [mg/cm2] | 857.00 ± 80.50 | 859.00 ± 106.25 | 856.00 ± 81.50 | 0.910 | 0.676 | |
FN T-score | −1.30 ± 0.60 | −1.30 ± 0.78 | −1.30 ± 0.55 | 0.886 | 0.625 | |
TH [mg/cm2] | 959.00 ± 93.50 | 947.50 ± 109.25 | 942.00 ± 90.50 | 0.980 | 0.944 | |
TH T-score | −0.40 ± 0.75 | −0.50 ± 0.88 | −0.50 ± 0.75 | 0.946 | 0.750 |
Positive Family History of Fractures | Genotypes, n (%) | p Value for Models: | ||||
---|---|---|---|---|---|---|
Additive | Recessive/Dominant | |||||
CC | CG | GG | GG vs. CC/CG | |||
on both parents’ sides | Yes | 7 (18.92) | 49 (21.59) | 86 (29.66) | 0.071 | 0.023 1 |
No | 30 (81.08) | 178 (78.41) | 204 (70.34) | |||
on the mother’s side | Yes | 6 (16.00) | 38 (17.00) | 74 (26.00) | 0.040 | 0.011 2 |
No | 31 (84.00) | 189 (83.00) | 216 (74.00) | |||
on the father’s side | Yes | 2 (5.41) | 14 (6.55) | 19 (6.17) | 0.957 | 0.812 |
No | 35 (94.59) | 213 (93.45) | 271 (93.83) |
Potential Confounder | SNP | Genotypes, n (%) | p Value | |||
---|---|---|---|---|---|---|
rs1107946 | AA | AC | CC | |||
rheumatoid arthritis | Yes | 0 (0.00) | 10 (1.81) | 28 (5.05) | 0.593 | |
No | 13 (2.35) | 142 (25.63) | 361 (65.16) | |||
anti-osteoporotic therapy | Yes | 3 (0.54) | 27 (4.87) | 57 (10.29) | 0.510 | |
No | 10 (1.81) | 125 (22.56) | 332 (59.93) | |||
Ca2+ supplementation | Yes | 3 (0.54) | 26 (4.69) | 55 (9.93) | 0.498 | |
No | 10 (1.81) | 126 (22.74) | 334 (60.29) | |||
D vit. supplementation | Yes | 3 (0.54) | 24 (4.33) | 47 (8.48) | 0.304 | |
No | 10 (1.81) | 128 (23.10) | 342 (61.73) | |||
rs1800012 | AA | AC | CC | |||
rheumatoid arthritis | Yes | 2 (0.36) | 6 (1.08) | 30 (5.42) | 0.099 | |
No | 14 (2.53) | 163 (29.42) | 339 (61.19) | |||
anti-osteoporotic therapy | Yes | 1 (0.18) | 28 (5.05) | 58 (10.47) | 0.556 | |
No | 15 (2.71) | 141 (25.45) | 311 (56.14) | |||
Ca2+ supplementation | Yes | 1 (0.18) | 26 (4.69) | 57 (10.29) | 0.601 | |
No | 15 (2.71) | 143 (25.81) | 312 (56.32) | |||
D vit. supplementation | Yes | 1 (0.18) | 24 (4.33) | 49 (8.84) | 0.669 | |
No | 15 (2.71) | 145 (26.17) | 320 (57.76) | |||
rs42524 | CC | CG | GG | |||
rheumatoid arthritis | Yes | 2 (0.36) | 17 (3.07) | 19 (3.43) | 0.858 | |
No | 35 (6.32) | 210 (37.91) | 271 (48.92) | |||
anti-osteoporotic therapy | Yes | 5 (0.90) | 36 (6.50) | 46 (8.30) | 0.931 | |
No | 32 (5.78) | 191 (34.48) | 244 (44.04) | |||
Ca2+ supplementation | Yes | 5 (0.90) | 34 (6.14) | 45 (8.12) | 0.945 | |
No | 32 (5.78) | 193 (34.84) | 245 (44.22) | |||
D vit. supplementation | Yes | 6 (1.08) | 29 (5.23) | 39 (7.04) | 0.848 | |
No | 31 (5.60) | 198 (35.74) | 251 (45.31) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichocka, E.; Górczyńska-Kosiorz, S.B.; Niemiec, P.; Trautsolt, W.; Gumprecht, J. The Impact of Selected COL1A1 and COL1A2 Gene Polymorphisms on Bone Mineral Density and the Risk of Metabolic Diseases in Postmenopausal Women. Int. J. Mol. Sci. 2025, 26, 4981. https://doi.org/10.3390/ijms26114981
Cichocka E, Górczyńska-Kosiorz SB, Niemiec P, Trautsolt W, Gumprecht J. The Impact of Selected COL1A1 and COL1A2 Gene Polymorphisms on Bone Mineral Density and the Risk of Metabolic Diseases in Postmenopausal Women. International Journal of Molecular Sciences. 2025; 26(11):4981. https://doi.org/10.3390/ijms26114981
Chicago/Turabian StyleCichocka, Edyta, Sylwia Barbara Górczyńska-Kosiorz, Paweł Niemiec, Wanda Trautsolt, and Janusz Gumprecht. 2025. "The Impact of Selected COL1A1 and COL1A2 Gene Polymorphisms on Bone Mineral Density and the Risk of Metabolic Diseases in Postmenopausal Women" International Journal of Molecular Sciences 26, no. 11: 4981. https://doi.org/10.3390/ijms26114981
APA StyleCichocka, E., Górczyńska-Kosiorz, S. B., Niemiec, P., Trautsolt, W., & Gumprecht, J. (2025). The Impact of Selected COL1A1 and COL1A2 Gene Polymorphisms on Bone Mineral Density and the Risk of Metabolic Diseases in Postmenopausal Women. International Journal of Molecular Sciences, 26(11), 4981. https://doi.org/10.3390/ijms26114981