A Single Dose of AC102 Reverts Tinnitus by Restoring Ribbon Synapses in Noise-Exposed Mongolian Gerbils
Abstract
1. Introduction
2. Results
2.1. Effects of AC102 on Hearing Thresholds
2.2. Effects of AC102 on Tinnitus-Related Behavior
2.3. Effects of AC102 on IHC Ribbon Synapses
3. Discussion
4. Materials and Methods
4.1. Animals, Housing, and Ethics Statement
4.2. Experimental Protocol
4.2.1. Monaural Acoustic Noise
4.2.2. Surgery
4.2.3. AC102 Gel Formulation
4.2.4. Behavioral Measurements
4.2.5. Brainstem Audiometry
4.2.6. Immunohistochemistry
4.3. Data Evaluation and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABR | auditory brainstem response |
ATP | adenosine triphosphate |
AC102 | small molecule pyridoindole drug under clinical development |
CTBP2 | carboxy-terminal binding protein 2 |
dB | decibel |
GPIAS | gap prepulse inhibition of acoustic startle |
HC | hair cell |
HL | hearing loss |
HHL | hidden hearing loss |
IHC | inner hair cell |
kHz | kilohertz |
PPI | prepulse inhibition |
RMS | root mean square |
ROS | reactive oxygen species |
SGN | spiral ganglion neuron |
SNHL | sensorineural hearing loss |
SPL | sound pressure level |
T+/T− | tinnitus positive/tinnitus negative frequencies obtained by GPIAS |
References
- Liberman, L.D.; Suzuki, J.; Liberman, M.C. Dynamics of cochlear synaptopathy after acoustic overexposure. J. Assoc. Res. Otolaryngol. 2015, 16, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Tziridis, K.; Forster, J.; Buchheidt-Dorfler, I.; Krauss, P.; Schilling, A.; Wendler, O.; Sterna, E.; Schulze, H. Tinnitus development is associated with synaptopathy of inner hair cells in Mongolian gerbils. Eur. J. Neurosci. 2021, 54, 4768–4780. [Google Scholar] [CrossRef] [PubMed]
- Kohrman, D.C.; Wan, G.; Cassinotti, L.; Corfas, G. Hidden hearing loss: A disorder with multiple etiologies and mechanisms. Cold Spring Harb. Perspect. Med. 2020, 10, a035493. [Google Scholar] [CrossRef]
- Schaette, R.; McAlpine, D. Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model. J. Neurosci. 2011, 31, 13452–13457. [Google Scholar] [CrossRef]
- Nelson, J.J.; Chen, K. The relationship of tinnitus, hyperacusis, and hearing loss. Ear Nose Throat J. 2004, 83, 472–476. [Google Scholar] [CrossRef]
- Savastano, M. Tinnitus with or without hearing loss: Are its characteristics different? Eur. Arch. Otorhinolaryngol. 2008, 265, 1295–1300. [Google Scholar] [CrossRef]
- Hoffman, H.J.; Reed, G.W. Epidemiology of Tinnitus. In Tinnitus: Theory and Management; Snow, J.B., Ed.; BC Decker Inc: Hamilton, ON, Canada, 2004; pp. 16–41. [Google Scholar]
- Tziridis, K.; Friedrich, J.; Brueggemann, P.; Mazurek, B.; Schulze, H. Estimation of Tinnitus-Related Socioeconomic Costs in Germany. Int. J. Environ. Res. Public. Health 2022, 19, 10455. [Google Scholar] [CrossRef]
- Hebert, S.; Canlon, B.; Hasson, D. Emotional exhaustion as a predictor of tinnitus. Psychother. Psychosom. 2012, 81, 324–326. [Google Scholar] [CrossRef]
- Grewal, R.; Spielmann, P.M.; Jones, S.E.; Hussain, S.S. Clinical efficacy of tinnitus retraining therapy and cognitive behavioural therapy in the treatment of subjective tinnitus: A systematic review. J. Laryngol. Otol. 2014, 128, 1028–1033. [Google Scholar] [CrossRef]
- Fuller, T.; Cima, R.; Langguth, B.; Mazurek, B.; Vlaeyen, J.W.; Hoare, D.J. Cognitive behavioural therapy for tinnitus. Cochrane Database Syst. Rev. 2020, 2020, CD012614. [Google Scholar] [CrossRef]
- Teixeira, A.C. Analytic Review on Tinnitus and the Impact of Tinnitus Retraining Therapy on Patient’s Quality of Life. Master’s Thesis, Universidade de Lisboa, Lisboa, Portugal, 2018. [Google Scholar]
- Tyler, R.; Cacace, A.; Stocking, C.; Tarver, B.; Engineer, N.; Martin, J.; Deshpande, A.; Stecker, N.; Pereira, M.; Kilgard, M. Vagus nerve stimulation paired with tones for the treatment of tinnitus: A prospective randomized double-blind controlled pilot study in humans. Sci. Rep. 2017, 7, 11960. [Google Scholar] [CrossRef] [PubMed]
- Pantev, C.; Okamoto, H.; Teismann, H. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment. Front. Syst. Neurosci. 2012, 6, 50. [Google Scholar] [CrossRef] [PubMed]
- Tass, P.A.; Adamchic, I.; Freund, H.-J.; von Stackelberg, T.; Hauptmann, C. Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor. Neurol. Neurosci. 2012, 30, 137–159. [Google Scholar] [CrossRef]
- Aytac, I.; Baysal, E.; Gulsen, S.; Tumuklu, K.; Durucu, C.; Mumbuc, L.S.; Kanlikama, M. Masking Treatment and its Effect on Tinnitus Parameters. Int. Tinnitus J. 2017, 21, 83–89. [Google Scholar] [CrossRef]
- Langguth, B.; Kreuzer, P.M.; Kleinjung, T.; De Ridder, D. Tinnitus: Causes and clinical management. Lancet Neurol. 2013, 12, 920–930. [Google Scholar] [CrossRef]
- Kujawa, S.G.; Liberman, M.C. Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. J. Neurosci. 2009, 29, 14077–14085. [Google Scholar] [CrossRef]
- Rommelspacher, H.; Bera, S.; Brommer, B.; Ward, R.; Kwiatkowska, M.; Zygmunt, T.; Theden, F.; Üsekes, B.; Eren, N.; Nieratschker, M. A single dose of AC102 restores hearing in a guinea pig model of noise-induced hearing loss to almost prenoise levels. Proc. Natl. Acad. Sci. USA 2024, 121, e2314763121. [Google Scholar] [CrossRef]
- Nieratschker, M.; Mistrik, P.; Petrasek, Z.; Yildiz, E.; Gadenstaetter, A.J.; Gerlitz, M.; Kramer, A.-M.; Kwiatkowska, M.; Braun, S.; Schlingensiepen, R. Silicone-based AC102-loaded cochlear implant coatings protect residual hearing in an animal model of cochlear implantation. Hear. Res. 2024, 454, 109150. [Google Scholar] [CrossRef]
- Nieratschker, M.; Yildiz, E.; Gerlitz, M.; Bera, S.; Gadenstaetter, A.J.; Kramer, A.-M.; Kwiatkowska, M.; Mistrik, P.; Landegger, L.D.; Braun, S. A preoperative dose of the pyridoindole AC102 improves the recovery of residual hearing in a gerbil animal model of cochlear implantation. Cell Death Dis. 2024, 15, 531. [Google Scholar] [CrossRef]
- Schilling, A.; Krauss, P.; Gerum, R.; Metzner, C.; Tziridis, K.; Schulze, H. A New Statistical Approach for the Evaluation of Gap-prepulse Inhibition of the Acoustic Startle Reflex (GPIAS) for Tinnitus Assessment. Front. Behav. Neurosci. 2017, 11, 198. [Google Scholar] [CrossRef]
- Turner, J.G.; Brozoski, T.J.; Bauer, C.A.; Parrish, J.L.; Myers, K.; Hughes, L.F.; Caspary, D.M. Gap detection deficits in rats with tinnitus: A potential novel screening tool. Behav. Neurosci. 2006, 120, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Schrode, K.M.; Muniak, M.A.; Kim, Y.-H.; Lauer, A.M. Central compensation in auditory brainstem after damaging noise exposure. Eneuro 2018, 5, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Schilling, A.; Sedley, W.; Gerum, R.; Metzner, C.; Tziridis, K.; Maier, A.; Schulze, H.; Zeng, F.-G.; Friston, K.J.; Krauss, P. Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception. Brain 2023, 146, 4809–4825. [Google Scholar] [CrossRef]
- Buckiová, D.; Ranjan, S.; Newman, T.A.; Johnston, A.H.; Sood, R.; Kinnunen, P.K.; Popelář, J.; Chumak, T.; Syka, J. Minimally invasive drug delivery to the cochlea through application of nanoparticles to the round window membrane. Nanomedicine 2012, 7, 1339–1354. [Google Scholar] [CrossRef]
- Korver, K.D.; Rybak, L.P.; Whitworth, C.; Campbell, K.M. Round window application of D-methionine provides complete cisplatin otoprotection. Otolaryngol.—Head. Neck Surg. 2002, 126, 683–689. [Google Scholar] [CrossRef]
- Harrop-Jones, A.; Wang, X.; Fernandez, R.; Dellamary, L.; Ryan, A.F.; LeBel, C.; Piu, F. The sustained-exposure dexamethasone formulation OTO-104 offers effective protection against noise-induced hearing loss. Audiol. Neurotol. 2016, 21, 12–21. [Google Scholar] [CrossRef]
- Salt, A.N.; Hartsock, J.; Plontke, S.; LeBel, C.; Piu, F. Distribution of dexamethasone and preservation of inner ear function following intratympanic delivery of a gel-based formulation. Audiol. Neurotol. 2011, 16, 323–335. [Google Scholar] [CrossRef]
- Chandrasekhar, S.S.; Tsai Do, B.S.; Schwartz, S.R.; Bontempo, L.J.; Faucett, E.A.; Finestone, S.A.; Hollingsworth, D.B.; Kelley, D.M.; Kmucha, S.T.; Moonis, G. Clinical practice guideline: Sudden hearing loss (update). Otolaryngol.–Head. Neck Surg. 2019, 161, S1–S45. [Google Scholar] [CrossRef]
- Chrysouli, K.; Kollia, P.; Papanikolaou, V.; Chrysovergis, A. The effectiveness of intratympanic steroid injection in addition to systemic corticosteroids in the treatment of idiopathic sudden sensorineural hearing loss. Am. J. Otolaryngol. 2023, 44, 103872. [Google Scholar] [CrossRef]
- Yang, T.; Liu, H.; Chen, F.; Li, A.; Wang, Z.; Yang, S.; Yang, S.; Zhang, W. Intratympanic vs systemic use of steroids as first-line treatment for sudden hearing loss: A meta-analysis of randomized, controlled trials. J. Otol. 2021, 16, 165–177. [Google Scholar] [CrossRef]
- Plontke, S.K. The HODOKORT trial and current aspects of treatment of idiopathic sudden sensorineural hearing loss with glucocorticoids. HNO 2024, 72, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Plontke, S.K.; Meisner, C.; Agrawal, S.; Caye-Thomasen, P.; Galbraith, K.; Mikulec, A.A.; Parnes, L.; Premakumar, Y.; Reiber, J.; Schilder, A.G. Intratympanic corticosteroids for sudden sensorineural hearing loss. Cochrane Database Syst. Rev. 2022, 2022, CD008080. [Google Scholar] [CrossRef]
- Turner, J.G. Behavioral measures of tinnitus in laboratory animals. Prog. Brain Res. 2007, 166, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Schilling, A.; Gerum, R.; Krauss, P.; Metzner, C.; Tziridis, K.; Schulze, H. Objective estimation of sensory thresholds based on neurophysiological parameters. Front. Neurosci. 2019, 13, 481. [Google Scholar] [CrossRef]
- Gerum, R.; Rahlfs, H.; Streb, M.; Krauss, P.; Grimm, J.; Metzner, C.; Tziridis, K.; Günther, M.; Schulze, H.; Kellermann, W. Open (G) PIAS: An open-source solution for the construction of a high-precision acoustic startle response setup for tinnitus screening and threshold estimation in rodents. Front. Behav. Neurosci. 2019, 13, 140. [Google Scholar] [CrossRef]
- Müller, M. The cochlear place-frequency map of the adult and developing Mongolian gerbil. Hear. Res. 1996, 94, 148–156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tziridis, K.; Rasheed, J.; Kwiatkowska, M.; Wright, M.; Schlingensiepen, R. A Single Dose of AC102 Reverts Tinnitus by Restoring Ribbon Synapses in Noise-Exposed Mongolian Gerbils. Int. J. Mol. Sci. 2025, 26, 5124. https://doi.org/10.3390/ijms26115124
Tziridis K, Rasheed J, Kwiatkowska M, Wright M, Schlingensiepen R. A Single Dose of AC102 Reverts Tinnitus by Restoring Ribbon Synapses in Noise-Exposed Mongolian Gerbils. International Journal of Molecular Sciences. 2025; 26(11):5124. https://doi.org/10.3390/ijms26115124
Chicago/Turabian StyleTziridis, Konstantin, Jwan Rasheed, Monika Kwiatkowska, Matthew Wright, and Reimar Schlingensiepen. 2025. "A Single Dose of AC102 Reverts Tinnitus by Restoring Ribbon Synapses in Noise-Exposed Mongolian Gerbils" International Journal of Molecular Sciences 26, no. 11: 5124. https://doi.org/10.3390/ijms26115124
APA StyleTziridis, K., Rasheed, J., Kwiatkowska, M., Wright, M., & Schlingensiepen, R. (2025). A Single Dose of AC102 Reverts Tinnitus by Restoring Ribbon Synapses in Noise-Exposed Mongolian Gerbils. International Journal of Molecular Sciences, 26(11), 5124. https://doi.org/10.3390/ijms26115124