High-Throughput Screens of Repurposing Hub and DOS Chemical Libraries Reveal Compounds with Novel and Potent Inhibitory Activity Against the Essential Non-Neuronal Acetylcholinesterase of Schistosoma mansoni (SmTAChE)
Abstract
1. Introduction
2. Results and Discussion
2.1. In Silico Analysis of SmTAChE Predicted Structure
2.2. High-Throughput Screening of the Drug Repurposing Hub and the DOS-A Library
2.3. Hit Validation and Parasite Specificity
2.4. Parasite-Specific Hits from the Drug Repurposing Hub Library
2.5. Parasite-Specific Hits from the DOS-A Library
2.6. HsAChE-Specific Hits from the Drug Repurposing Hub and DOS-A Libraries
3. Materials and Methods:
3.1. Expression and Purification of rSmTAChE
3.2. SmTAChE Activity
3.3. Chemical Libraries
3.4. Screening of the Chemical Libraries for SmTAChE Inhibitors
3.5. Hit Validation Using Concentration-Dependent Assays (IC50) and Parasite Specificity Determination
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AChE | Acetylcholinesterase |
Sm | Schistosoma mansoni |
Hs | Homo sapiens |
TAChE | Tegumental AChE |
PZQ | Praziquantel |
HTS | High-throughput screening |
References
- Steinmann, P.; Keiser, J.; Bos, R.; Tanner, M.; Utzinger, J. Schistosomiasis and water resources develop-ment: Systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 2006, 6, 411–425. [Google Scholar] [CrossRef]
- Gryseels, B. Schistosomiasis. Infect. Dis. Clin. N. Am. 2012, 26, 383–397. [Google Scholar] [CrossRef] [PubMed]
- King, C.H.; Dangerfield-Cha, M. The unacknowledged impact of chronic schistosomiasis. Chronic Illn. 2008, 4, 65–79. [Google Scholar] [CrossRef]
- King, C.H. Parasites and poverty: The case of schistosomiasis. Acta Trop. 2010, 113, 95–104. [Google Scholar] [CrossRef]
- King, C.H.; Dickman, K.; Tisch, D.J. Reassessment of the cost of chronic helmintic infection: A me-ta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 2005, 365, 1561–1569. [Google Scholar] [CrossRef]
- Hotez, P.J.; Alvarado, M.; Basanez, M.G.; Bolliger, I.; Bourne, R.; Boussinesq, M.; Brooker, S.J.; Brown, A.S.; Buckle, G.; Budke, C.M.; et al. The global burden of disease study 2010: Interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis. 2014, 8, e2865. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.Y. Praziquantel treatment in trematode and cestode infections: An update. Infect. Chemother. 2013, 45, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Cioli, D.; Basso, A.; Valle, C.; Pica-Mattoccia, L. Decades down the line: The viability of praziquantel for future schistosomiasis treatment. Expert Rev. Anti-Infect. Ther. 2012, 10, 835–837. [Google Scholar] [CrossRef]
- Pica-Mattoccia, L.; Cioli, D. Sex- and stage-related sensitivity of Schistosoma mansoni to in vivo and in vitro praziquantel treatment. Int. J. Parasitol. 2004, 34, 527–533. [Google Scholar] [CrossRef]
- Sabah, A.A.; Fletcher, C.; Webbe, G.; Doenhoff, M.J. Schistosoma mansoni: Chemotherapy of infections of different ages. Exp. Parasitol. 1986, 61, 294–303. [Google Scholar] [CrossRef]
- Aboagye, I.F.; Addison, Y.A.A. Praziquantel efficacy, urinary and intestinal schistosomiasis reinfection—A systematic review. Pathog. Glob. Health 2023, 117, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Sturrock, R.F. The control of schistosomiasis: Epidemiological aspects of reinfection. Mem. Inst. Oswaldo Cruz 1989, 84 (Suppl. S1), 134–148. [Google Scholar] [CrossRef] [PubMed]
- Gobert, G.N.; Jones, M.K. Discovering new schistosome drug targets: The role of transcriptomics. Curr. Drug Targets 2008, 9, 922–930. [Google Scholar] [CrossRef]
- Cioli, D.; Valle, C.; Angelucci, F.; Miele, A.E. Will new antischistosomal drugs finally emerge? Trends Parasitol. 2008, 24, 379–382. [Google Scholar] [CrossRef]
- Massoulie, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Vallette, F.M. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 1993, 41, 31–91. [Google Scholar] [CrossRef]
- Spring, F.A.; Gardner, B.; Anstee, D.J. Evidence that the antigens of the Yt blood group system are located on human erythrocyte acetylcholinesterase. Blood 1992, 80, 2136–2141. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, B.; Parizade, M.; Ortega, E.; Tarrab-Hazdai, R.; Zilberg, D.; Arnon, R. Monoclonal antibodies against acetylcholinesterase of Schistosoma mansoni: Production and characterization. Hybridoma 1995, 14, 577–586. [Google Scholar] [CrossRef]
- Levi-Schaffer, F.; Tarrab-Hazdai, R.; Schryer, M.D.; Arnon, R.; Smolarsky, M. Isolation and partial characterization of the tegumental outer membrane of schistosomula of Schistosoma mansoni. Mol. Biochem. Parasitol. 1984, 13, 283–300. [Google Scholar] [CrossRef]
- Espinoza, B.; Tarrab-Hazdai, R.; Silman, I.; Arnon, R. Acetylcholinesterase in Schistosoma mansoni is anchored to the membrane via covalently attached phosphatidylinositol. Mol. Biochem. Parasitol. 1988, 29, 171–179. [Google Scholar] [CrossRef]
- Camacho, M.; Alsford, S.; Agnew, A. Molecular forms of tegumental and muscle acetylcholinesterases of Schistosoma. Parasitology 1996, 112 Pt 2, 199–204. [Google Scholar] [CrossRef]
- Skelly, P.J.; Da’dara, A.A. A novel, non-neuronal acetylcholinesterase of schistosome parasites is essential for definitive host infection. Front. Immunol. 2023, 14, 1056469. [Google Scholar] [CrossRef] [PubMed]
- Austin, L.; Berry, W.K. Two selective inhibitors of cholinesterase. Biochem. J. 1953, 53, ix. [Google Scholar] [CrossRef]
- Bentley, G.N.; Jones, A.K.; Agnew, A. Expression and comparative functional characterisation of recombinant acetylcholinesterase from three species of Schistosoma. Mol. Biochem. Parasitol. 2005, 141, 119–123. [Google Scholar] [CrossRef]
- Bentley, G.N.; Jones, A.K.; Agnew, A. Mapping and sequencing of acetylcholinesterase genes from the platyhelminth blood fluke Schistosoma. Gene 2003, 314, 103–112. [Google Scholar] [CrossRef]
- Camacho, M.; Tarrab-Hazdai, R.; Espinoza, B.; Arnon, R.; Agnew, A. The amount of acetylcholinesterase on the parasite surface reflects the differential sensitivity of schistosome species to metrifonate. Parasitology 1994, 108 Pt 2, 153–160. [Google Scholar] [CrossRef]
- Kramer, C.V.; Zhang, F.; Sinclair, D.; Olliaro, P.L. Drugs for treating urinary schistosomiasis. Cochrane Database Syst. Rev. 2014, CD000053. [Google Scholar] [CrossRef] [PubMed]
- Danso-Appiah, A.; Utzinger, J.; Liu, J.; Olliaro, P. Drugs for treating urinary schistosomiasis. Cochrane Database Syst. Rev. 2008, CD000053. [Google Scholar] [CrossRef]
- Skelly, P.J.; Da’dara, A.A. Expression, Characterization and Selective Chemical Inhibition of Essential Schistosoma mansoni Tegumental Acetylcholinesterase (SmTAChE). Int. J. Mol. Sci. 2025, 26, 1975. [Google Scholar] [CrossRef]
- Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; et al. The Drug Repurposing Hub: A next-generation drug library and information resource. Nat. Med. 2017, 23, 405–408. [Google Scholar] [CrossRef]
- Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 2019, 4, 565–577. [Google Scholar] [CrossRef]
- Jourdan, J.P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Pharm. Pharmacol. 2020, 72, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.E.; Schreiber, S.L. Towards the optimal screening collection: A synthesis strategy. Angew. Chem. Int. Ed. Engl. 2008, 47, 48–56. [Google Scholar] [CrossRef]
- Gerard, B.; Marie, J.C.; Pandya, B.A.; Lee, M.D.t.; Liu, H.; Marcaurelle, L.A. Large-scale synthesis of all stereoisomers of a 2,3-unsaturated C-glycoside scaffold. J. Org. Chem. 2011, 76, 1898–1901. [Google Scholar] [CrossRef]
- Gerard, B.; Duvall, J.R.; Lowe, J.T.; Murillo, T.; Wei, J.; Akella, L.B.; Marcaurelle, L.A. Synthesis of a stereochemically diverse library of medium-sized lactams and sultams via S(N)Ar cycloetherification. ACS Comb. Sci. 2011, 13, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Comer, E.; Liu, H.; Joliton, A.; Clabaut, A.; Johnson, C.; Akella, L.B.; Marcaurelle, L.A. Fragment-based domain shuffling approach for the synthesis of pyran-based macrocycles. Proc. Natl. Acad. Sci. USA 2011, 108, 6751–6756. [Google Scholar] [CrossRef]
- Marcaurelle, L.A.; Comer, E.; Dandapani, S.; Duvall, J.R.; Gerard, B.; Kesavan, S.; Lee, M.D.t.; Liu, H.; Lowe, J.T.; Marie, J.C.; et al. An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: Discovery of macrocyclic histone deacetylase inhibitors. J. Am. Chem. Soc. 2010, 132, 16962–16976. [Google Scholar] [CrossRef] [PubMed]
- Dandapani, S.; Marcaurelle, L.A. Current strategies for diversity-oriented synthesis. Curr. Opin. Chem. Biol. 2010, 14, 362–370. [Google Scholar] [CrossRef]
- Clemons, P.A.; Bittker, J.A.; Wagner, F.F.; Hands, A.; Dancik, V.; Schreiber, S.L.; Choudhary, A.; Wagner, B.K. The Use of Informer Sets in Screening: Perspectives on an Efficient Strategy to Identify New Probes. SLAS Discov. 2021, 26, 855–861. [Google Scholar] [CrossRef]
- Galloway, W.R.; Isidro-Llobet, A.; Spring, D.R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 2010, 1, 80. [Google Scholar] [CrossRef]
- Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 2010, 187, 10–22. [Google Scholar] [CrossRef]
- BoSmith, R.E.; Briggs, I.; Sturgess, N.C. Inhibitory actions of ZENECA ZD7288 on whole-cell hyperpolarization activated inward current (If) in guinea-pig dissociated sinoatrial node cells. Br. J. Pharmacol. 1993, 110, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Min, X.C.; Xu, X.L.; Zheng, M.; Guo, L.J. ZD7288, a selective hyperpolarization-activated cyclic nucleotide-gated channel blocker, inhibits hippocampal synaptic plasticity. Neural Regen. Res. 2016, 11, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Meng, X.; He, J.; Wu, H.; Zou, F. Effects of ZD7288 on firing pattern of thermosensitive neurons isolated from hypothalamus. Neurosci. Lett. 2012, 506, 336–341. [Google Scholar] [CrossRef]
- Wickenden, A.D.; Maher, M.P.; Chaplan, S.R. HCN pacemaker channels and pain: A drug discovery perspective. Curr. Pharm. Des. 2009, 15, 2149–2168. [Google Scholar] [CrossRef]
- Maher, M.P.; Wu, N.T.; Guo, H.Q.; Dubin, A.E.; Chaplan, S.R.; Wickenden, A.D. HCN channels as targets for drug discovery. Comb. Chem. High Throughput Screen. 2009, 12, 64–72. [Google Scholar] [CrossRef]
- Liang, D.; Li, Q.; Du, L.; Dou, G. Pharmacological Effects and Clinical Prospects of Cepharanthine. Molecules 2022, 27, 8933. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C. Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. Phytomedicine 2019, 62, 152956. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Liu, H.; Zhou, H.; Liu, M.; Liang, D.; Meng, Z.; Gan, H.; Wu, Z.; Zhu, X.; et al. Cepharanthine Ameliorates Pulmonary Fibrosis by Inhibiting the NF-kappaB/NLRP3 Pathway, Fibroblast-to-Myofibroblast Transition and Inflammation. Molecules 2023, 28, 753. [Google Scholar] [CrossRef]
- Chen, J.; Xia, C.L.; Dong, R.; Liu, X.G.; Xia, J. Cepharanthine Inhibits Doxorubicin-Induced Cellular Senescence by Activating Autophagy via the mTOR Signaling Pathway. Discov. Med. 2023, 35, 777–786. [Google Scholar] [CrossRef]
- Liu, K.; Hong, B.; Wang, S.; Lou, F.; You, Y.; Hu, R.; Shafqat, A.; Fan, H.; Tong, Y. Pharmacological Activity of Cepharanthine. Molecules 2023, 28, 5019. [Google Scholar] [CrossRef]
- Huang, H.; Hu, G.; Wang, C.; Xu, H.; Chen, X.; Qian, A. Cepharanthine, an alkaloid from Stephania cepharantha Hayata, inhibits the inflammatory response in the RAW264.7 cell and mouse models. Inflammation 2014, 37, 235–246. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Wang, H.; Liu, W.; Li, X.; Wang, X.; Zhang, Y. A mechanistic updated overview on Cepharanthine as potential anticancer agent. Biomed. Pharmacother. 2023, 165, 115107. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Zhu, C.Y.; Ding, Y.X.; Wang, B.; Zhao, S.F.; Lv, J.; Chen, S.M.; Wang, S.S.; Wang, Y.; Wang, R.; et al. Cepharanthine, a regulator of keap1-Nrf2, inhibits gastric cancer growth through oxidative stress and energy metabolism pathway. Cell Death Discov. 2023, 9, 450. [Google Scholar] [CrossRef]
- Desgrouas, C.; Dormoi, J.; Chapus, C.; Ollivier, E.; Parzy, D.; Taudon, N. In vitro and in vivo combination of cepharanthine with anti-malarial drugs. Malar. J. 2014, 13, 90. [Google Scholar] [CrossRef]
- Desgrouas, C.; Chapus, C.; Desplans, J.; Travaille, C.; Pascual, A.; Baghdikian, B.; Ollivier, E.; Parzy, D.; Taudon, N. In vitro antiplasmodial activity of cepharanthine. Malar. J. 2014, 13, 327. [Google Scholar] [CrossRef]
- Baghdikian, B.; Mahiou-Leddet, V.; Bory, S.; Bun, S.S.; Dumetre, A.; Mabrouki, F.; Hutter, S.; Azas, N.; Ollivier, E. New antiplasmodial alkaloids from Stephania rotunda. J. Ethnopharmacol. 2013, 145, 381–385. [Google Scholar] [CrossRef]
- Tamez, P.A.; Lantvit, D.; Lim, E.; Pezzuto, J.M. Chemosensitizing action of cepharanthine against drug-resistant human malaria, Plasmodium falciparum. J. Ethnopharmacol. 2005, 98, 137–142. [Google Scholar] [CrossRef]
- Rogosnitzky, M.; Danks, R. Therapeutic potential of the biscoclaurine alkaloid, cepharanthine, for a range of clinical conditions. Pharmacol. Rep. 2011, 63, 337–347. [Google Scholar] [CrossRef]
- Gwak, H.S.; Youn, S.M.; Kwon, A.H.; Lee, S.H.; Kim, J.H.; Rhee, C.H. ACNU-cisplatin continuous infusion chemotherapy as salvage therapy for recurrent glioblastomas: Phase II study. J. Neurooncol. 2005, 75, 173–180. [Google Scholar] [CrossRef]
- Gentilin, E. New Advancements in Cisplatin-Based Treatments. Int. J. Mol. Sci. 2023, 24, 5920. [Google Scholar] [CrossRef]
- Hesham, A.; David Kim, D.; Alshamrani, Y.; AlOtaibi, F.; Hyppolito, J. The efficacy of docetaxel, cisplatin, and 5-fluorouracil chemotherapy in recurrent head and neck squamous cell carcinoma. Report of a case and review of the literature. Oral Oncol. 2024, 154, 106863. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, S.; Wang, X.; Cai, J.; Huang, H.; Tang, S.; He, D. Cisplatin-Based Combination Therapy for Enhanced Cancer Treatment. Curr. Drug Targets 2024, 25, 473–491. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.P.; Gianolio, D.; Cibin, G.; Tomkinson, J.; Parker, S.F.; Valero, R.; Pedro Lopes, R.; Batista de Carvalho, L.A. A molecular view of cisplatin’s mode of action: Interplay with DNA bases and acquired resistance. Phys. Chem. Chem. Phys. 2015, 17, 5155–5171. [Google Scholar] [CrossRef]
- Bodur, E. Human serum butyrylcholinesterase interactions with cisplatin and cyclophosphamide. Biochimie 2010, 92, 979–984. [Google Scholar] [CrossRef]
- Al-Jafari, A.A.; Al-Khwyter, F.; Kamal, M.A. Kinetics of the inhibition of acetylcholinesterase in camel retina by cisplatin. Cancer Lett. 1998, 128, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Elmorsy, E.A.; Saber, S.; Hamad, R.S.; Abdel-Reheim, M.A.; El-Kott, A.F.; AlShehri, M.A.; Morsy, K.; Salama, S.A.; Youssef, M.E. Advances in understanding cisplatin-induced toxicity: Molecular mechanisms and protective strategies. Eur. J. Pharm. Sci. 2024, 203, 106939. [Google Scholar] [CrossRef]
- Kamal, M.A.; Nasim, F.H.; al-Jafari, A.A. Investigation of the effect of anti-neoplastic drugs, cyclophosphamide, cisplatin and methotrexate on the turnover kinetics of human erythrocyte acetylcholinesterase. Biochem. Mol. Biol. Int. 1996, 39, 293–302. [Google Scholar] [CrossRef]
- Aljafari, A.A. Kinetics for the inhibition of acetylcholinesterase from human erythrocyte by cisplatin. Int. J. Biochem. Cell Biol. 1995, 27, 965–970. [Google Scholar] [CrossRef]
- al-Jafari, A.A.; Kamal, M.A.; Duhaiman, A.S. The mode of inhibition of human erythrocyte membrane-bound acetylcholinesterase by cisplatin in vitro. J. Enzym. Inhib. 1995, 8, 281–289. [Google Scholar] [CrossRef]
- Zhong, Y.; Jia, C.; Zhang, X.; Liao, X.; Yang, B.; Cong, Y.; Pu, S.; Gao, C. Targeting drug delivery system for platinum(Ⅳ)-Based antitumor complexes. Eur. J. Med. Chem. 2020, 194, 112229. [Google Scholar] [CrossRef]
- Kostova, I. Platinum complexes as anticancer agents. Recent Pat. Anticancer Drug Discov. 2006, 1, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Adeel, A.A. Recent updates in the WHO guidelines for malaria case management. Sudan J. Paediatr. 2024, 24, 155–163. [Google Scholar] [CrossRef]
- Pukrittayakamee, S.; Chotivanich, K.; Chantra, A.; Clemens, R.; Looareesuwan, S.; White, N.J. Activities of artesunate and primaquine against asexual- and sexual-stage parasites in falciparum malaria. Antimicrob. Agents Chemother. 2004, 48, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Chotivanich, K.; Sattabongkot, J.; Udomsangpetch, R.; Looareesuwan, S.; Day, N.P.; Coleman, R.E.; White, N.J. Transmission-blocking activities of quinine, primaquine, and artesunate. Antimicrob. Agents Chemother. 2006, 50, 1927–1930. [Google Scholar] [CrossRef]
- Kore, M.; Rao, A.G.; Acharya, D.; Kirwale, S.S.; Bhanot, A.; Govekar, A.; Mohanty, A.K.; Roy, A.; Vembar, S.S.; Sundriyal, S. Design, synthesis and in vitro evaluation of primaquine and diaminoquinazoline hybrid molecules against the malaria parasite. Chem. Asian J. 2025, 20, e202401366. [Google Scholar] [CrossRef]
- Camarda, G.; Jirawatcharadech, P.; Priestley, R.S.; Saif, A.; March, S.; Wong, M.H.L.; Leung, S.; Miller, A.B.; Baker, D.A.; Alano, P.; et al. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat. Commun. 2019, 10, 3226. [Google Scholar] [CrossRef]
- Katewa, S.D.; Katyare, S.S. Antimalarials inhibit human erythrocyte membrane acetylcholinesterase. Drug Chem. Toxicol. 2005, 28, 467–482. [Google Scholar] [CrossRef]
- Kamel, R.O.; Bayaumy, F.E. Ultrastructural alterations in Schistosoma mansoni juvenile and adult male worms after in vitro incubation with primaquine. Mem. Inst. Oswaldo Cruz 2017, 112, 247–254. [Google Scholar] [CrossRef]
- Koban, I.; Holtfreter, B.; Hubner, N.O.; Matthes, R.; Sietmann, R.; Kindel, E.; Weltmann, K.D.; Welk, A.; Kramer, A.; Kocher, T. Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro—Proof of principle experiment. J. Clin. Periodontol. 2011, 38, 956–965. [Google Scholar] [CrossRef]
- Devi Daimary, U.; Girisa, S.; Parama, D.; Verma, E.; Kumar, A.; Kunnumakkara, A.B. Embelin: A novel XIAP inhibitor for the prevention and treatment of chronic diseases. J. Biochem. Mol. Toxicol. 2022, 36, e22950. [Google Scholar] [CrossRef]
- Basha, N.J.; Basavarajaiah, S.M.; Baskaran, S.; Kumar, P. A comprehensive insight on the biological potential of embelin and its derivatives. Nat. Prod. Res. 2022, 36, 3054–3068. [Google Scholar] [CrossRef]
- Kamath, A.J.; Chandy, A.S.; Joseph, A.A.; Gorantla, J.N.; Donadkar, A.D.; Nath, L.R.; Sharifi-Rad, J.; Calina, D. Embelin: A multifaceted anticancer agent with translational potential in targeting tumor progression and metastasis. EXCLI J. 2023, 22, 1311–1329. [Google Scholar] [CrossRef]
- Debebe, Y.; Tefera, M.; Mekonnen, W.; Abebe, D.; Woldekidan, S.; Abebe, A.; Belete, Y.; Menberu, T.; Belayneh, B.; Tesfaye, B.; et al. Evaluation of anthelmintic potential of the Ethiopian medicinal plant Embelia schimperi Vatke in vivo and in vitro against some intestinal parasites. BMC Complement. Altern. Med. 2015, 15, 187. [Google Scholar] [CrossRef]
- Githiori, J.B.; Hoglund, J.; Waller, P.J.; Baker, R.L. The anthelmintic efficacy of the plant, Albizia anthelmintica, against the nematode parasites Haemonchus contortus of sheep and Heligmosomoides polygyrus of mice. Vet. Parasitol. 2003, 116, 23–34. [Google Scholar] [CrossRef]
- Bhuvanendran, S.; Hanapi, N.A.; Ahemad, N.; Othman, I.; Yusof, S.R.; Shaikh, M.F. Embelin, a Potent Molecule for Alzheimer’s Disease: A Proof of Concept From Blood-Brain Barrier Permeability, Acetylcholinesterase Inhibition and Molecular Docking Studies. Front. Neurosci. 2019, 13, 495. [Google Scholar] [CrossRef]
- Nuthakki, V.K.; Sharma, A.; Kumar, A.; Bharate, S.B. Identification of embelin, a 3-undecyl-1,4-benzoquinone from Embelia ribes as a multitargeted anti-Alzheimer agent. Drug Dev. Res. 2019, 80, 655–665. [Google Scholar] [CrossRef]
- Bhuvanendran, S.; Kumari, Y.; Othman, I.; Shaikh, M.F. Amelioration of Cognitive Deficit by Embelin in a Scopolamine-Induced Alzheimer’s Disease-Like Condition in a Rat Model. Front. Pharmacol. 2018, 9, 665. [Google Scholar] [CrossRef]
- Arora, R.; Deshmukh, R. Embelin Mitigates Amyloid-beta-Induced Neurotoxicity and Cognitive Impairment in Rats: Potential Therapeutic Implications for Alzheimer’s Disease. Mol. Neurobiol. 2025, 62, 1577–1590. [Google Scholar] [CrossRef]
- Kask, A.; Vasar, E.; Heidmets, L.T.; Allikmets, L.; Wikberg, J.E. Neuropeptide Y Y(5) receptor antagonist CGP71683A: The effects on food intake and anxiety-related behavior in the rat. Eur. J. Pharmacol. 2001, 414, 215–224. [Google Scholar] [CrossRef]
- Della Zuana, O.; Sadlo, M.; Germain, M.; Feletou, M.; Chamorro, S.; Tisserand, F.; de Montrion, C.; Boivin, J.F.; Duhault, J.; Boutin, J.A.; et al. Reduced food intake in response to CGP 71683A may be due to mechanisms other than NPY Y5 receptor blockade. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 84–94. [Google Scholar] [CrossRef]
- Pasche, V.; Laleu, B.; Keiser, J. Screening a repurposing library, the Medicines for Malaria Venture Stasis Box, against Schistosoma mansoni. Parasites Vectors 2018, 11, 298. [Google Scholar] [CrossRef] [PubMed]
- Babich, H.; Zuckerbraun, H.L.; Ricklis, A.S.; Blau, L. In vitro toxicity of sodium nitroprusside to human endothelial ECV304 cells. Environ. Toxicol. Pharmacol. 1998, 5, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, G.C.; Yan, F.; Polk, D.B. Mesalamine blocks tumor necrosis factor growth inhibition and nuclear factor kappaB activation in mouse colonocytes. Gastroenterology 1999, 116, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Allgayer, H. Review article: Mechanisms of action of mesalazine in preventing colorectal carcinoma in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2003, 18 (Suppl. S2), 10–14. [Google Scholar] [CrossRef]
- D’Amico, F.; Lusetti, F.; Peyrin-Biroulet, L.; Danese, S. MMX mesalamine in ulcerative colitis: Major advantages towards classical mesalamine formulations. Dig. Liver Dis. 2024, 56, 1425–1432. [Google Scholar] [CrossRef]
- Liu, X.; Dong, Y.; Wang, C.; Guo, Z. Application of chitosan as nano carrier in the treatment of inflammatory bowel disease. Int. J. Biol. Macromol. 2024, 278, 134899. [Google Scholar] [CrossRef]
- Chibbar, R.; Moss, A.C. Mesalamine in the Initial Therapy of Ulcerative Colitis. Gastroenterol. Clin. N. Am. 2020, 49, 689–704. [Google Scholar] [CrossRef]
- Cazorla, O.; Lacampagne, A.; Fauconnier, J.; Vassort, G. SR33805, a Ca2+ antagonist with length-dependent Ca2+ -sensitizing properties in cardiac myocytes. Br. J. Pharmacol. 2003, 139, 99–108. [Google Scholar] [CrossRef]
- Hainaud, P.; Bonneau, M.; Pignaud, G.; Bal dit Sollier, C.; Andre, P.; Hadjiisky, P.; Fieffe, J.P.; Caen, J.P.; Herbert, J.M.; Dol, F.; et al. The calcium inhibitor SR33805 reduces intimal formation following injury of the porcine carotid artery. Atherosclerosis 2001, 154, 301–308. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
No. | Compound ID | Compound Name | HTS/rSmTAChE | IC50 (µM) | SI $ (Hs/Sm) | Clinical Phase | MOA | ||
---|---|---|---|---|---|---|---|---|---|
[Comp.] (µM) | Inhibition (Ave, %) | rSmTAChE | rHsAChE | ||||||
1 | BRD-K18678457-003-03-6 | ZD-7288 | 10 | 75.00 | 0.416 | 19.5 | 46.87 | Phase 2 | HCN channel blocker |
2 | BRD-K96194081-001-11-0 | Cepharanthine | 10 | 66.29 | 0.655 | 13.9 | 21.22 | Phase 2 | NFκB pathway inhibitor |
3 | BRD-K69172251-001-08-9 | Cisplatin | 20 | 89.23 | 3.81 | 38.0 | 9.97 | Launched | DNA alkylating agent, DNA synthesis inhibitor |
4 | BRD-K34321528-003-02-0 | CGP-71683 | 5 | 61.37 | 2.21 | 19.5 | 8.82 | Preclinical | Neuropeptide receptor antagonist |
5 | BRD-K89152108-236-06-8 | Liothyronine | 20 | 78.78 | 5.21 | 38.0 | 7.29 | Launched | Thyroid hormone stimulant |
6 | BRD-K88186167-001-04-8 | GW-4064 | 20 | 66.00 | 1.47 | 8.83 | 6.00 | Preclinical | FXR agonist |
7 | BRD-K41731458-001-15-1 | Triclosan | 20 | 68.01 | 6.57 | 38.0 | 5.78 | Launched | Antibacterial agent |
8 | BRD-K14991967-001-02-6 | GSK-650394 | 10 | 75.44 | 2.34 | 8.1 | 3.46 | Preclinical | Serum glucocorticoid-regulated kinase inhibitor |
9 | BRD-K48526231-304-03-6 | Sodium Nitroprusside | 20 | 86.41 | 10.02 | 26.02 | 2.60 | Launched | Nitric oxide donor |
10 | BRD-K39841531-001-02-1 | TG-101209 | 20 | 71.00 | 6.13 | 15.4 | 2.51 | Preclinical | JAK inhibitor |
11 | BRD-A87130939-001-07-9 | Masoprocol | 20 | 76.44 | 16.4 | 38.0 | 2.32 | Launched | Lipoxygenase inhibitor |
12 | BRD-K58501140-002-01-0 | TAK-875 | 20 | 65.04 | 16.9 | 38.0 | 2.25 | Phase 3 | Insulin secretagogue |
13 | BRD-K45906612-001-01-8 | Presatovir | 20 | 66.88 | 17.2 | 38.0 | 2.21 | Phase 2 | RSV fusion inhibitor |
14 | BRD-A55913614-316-09-6 | Primaquine phosphate | 20 | 73.71 | 17.2 | 38.0 | 2.21 | Launched | DNA inhibitor; antimalarial agent |
15 | BRD-K22149900-001-05-4 | Ceritinib | 20 | 66.98 | 24.0 | 38.0 | 1.58 | Launched | ALK Tyrosine Kinase Receptor Inhibitor |
16 | BRD-K86727142-001-12-4 | Embelin | 10 | 88.65 | 1.25 | 1.80 | 1.44 | Preclinical | HCV inhibitor, XIAP inhibitor |
17 | BRD-K16732600-001-01-7 | MK-0893 | 20 | 88.71 | 3.11 | Inactive * | ND # | Phase 2 | Glucagon Receptor antagonist |
18 | BRD-K43002771-034-02-4 | SR-33805 | 5 | 74.26 | 6.82 | Inactive | ND | Phase 1 | Calcium channel blocker |
19 | BRD-K28849549-001-13-4 | Mesalazine | 10 | 66.7 | 1.70 | Inactive | ND | Launched | Cyclooxygenase inhibitor, lipoxygenase inhibitor |
No. | Compound ID (Name) | rSmTAChE HTS | IC50 (µM) | SI $ (Hs/Sm) | ||
---|---|---|---|---|---|---|
[Comp.] (µM) | Inhibition (Ave, %) | rSmTAChE | rHsAChE | |||
1 | BRD-K64190282-004-01-8 (BRD0282) | 20 | 92.21 | 13.0 | 33.7 | 2.59 |
2 | BRD-K49441594-001-01-4 | 20 | 61.81 | 15.1 | 35.5 | 2.35 |
3 | BRD-K32986110-001-01-2 (BRD6110) | 20 | 71.41 | 29.4 | 31.2 | 1.1 |
4 | BRD-K85440939-001-01-5 | 20 | 63.89 | 16.2 | Inactive * | ND # |
No. | Compound ID | Compound Name | rSmTAChE HTS | IC50 (µM) | SI $ (Sm/Hs) | Clinical Phase | MOA | ||
---|---|---|---|---|---|---|---|---|---|
[Comp.] (µM) | Inhibition (Ave, %) | rSmTAChE | rHsAChE | ||||||
1 | BRD-K51471001-303-04-7 | Demecarium bromide | 20 | 65.33 | 11.93 | 0.02 | 531.20 | Launched | Acetylcholinesterase inhibitor |
2 | BRD-K62240499-001-05-9 | Huperzine A | 20 | 64.07 | 8.81 | 0.06 | 146.97 | Phase 2 | Acetylcholinesterase inhibitor |
3 | BRD-K69688083-004-23-1 | Pyridostigmine bromide | 20 | 92.44 | 0.87 | 0.018 | 48.41 | Launched | Acetylcholinesterase inhibitor |
4 | BRD-K18922609-004-23-1 | Neostigmine bromide | 20 | 88.11 | 3.79 | 0.16 | 24.28 | Launched | Acetylcholinesterase inhibitor |
5 | BRD-K12068470-001-02-5 | LY2608204 | 20 | 76.45 | 12.00 | 0.52 | 23.28 | Phase 2 | Glucokinase activator |
6 | BRD-K25650355-065-02-0 | Physostigmine sulfate | 20 | 100.00 | 0.47 | 0.08 | 5.92 | Launched | Acetylcholinesterase inhibitor |
7 | BRD-K72029282-001-22-0 | Probucol | 20 | 93.68 | 38.00 | 7.09 | 5.36 | Launched | Atherogenesis inhibitor |
8 | BRD-K25650355-059-19-7 | Physostigmine salicylate | 20 | 91.99 | 0.77 | 0.15 | 5.10 | Launched | Acetylcholinesterase inhibitor |
9 | BRD-K87700323-003-05-1 | Cetylpyridinium chloride | 20 | 71.00 | 7.37 | 1.47 | 5.01 | Launched | Gingivitis- antiseptic |
10 | BRD-K29656036-001-02-5 | MK-8245 | 20 | 71.49 | 37.35 | 7.93 | 4.71 | Phase 2 | Stearoyl-CoA desaturase inhibitor |
11 | BRD-A71774530-001-05-9 | Lufenuron | 20 | 92.64 | 38.00 | 12.00 | 3.17 | Launched | Chitin inhibitor |
12 | BRD-K51899933-001-02-6 | Azeliragon | 20 | 78.5 | 15.55 | 5.00 | 3.11 | Phase 3 | RAGE receptor antagonist |
13 | BRD-K13387373-004-14-5 | Thonzonium bromide | 20 | 66.98 | 1.12 | 0.38 | 2.92 | Launched | ATPase inhibitor |
14 | BRD-K29415052-050-05-5 | NVP-BGT226 | 10 | 84.34 | 38.00 | 13.5 | 2.81 | Phase 1/2 | PI3K Inhibitor |
15 | BRD-M30288325-001-01-4 | G15 | 20 | 77.99 | 38.00 | 13.5 | 2.81 | Preclinical | Estrogen receptor antagonist |
16 | BRD-K95523387-001-09-6 | OLDA | 20 | 94.46 | 36.07 | 13.5 | 2.67 | Preclinical | TRPV agonist |
17 | BRD-K97045029-001-04-3 | Pranlukast | 20 | 66.30 | 27.34 | 12.57 | 2.18 | Launched | Leukotriene receptor antagonist |
18 | BRD-K98251413-001-06-5 | IOX2 | 5 | 66.25 | 16.73 | 7.75 | 2.16 | Preclinical | Hypoxia-inducible factor inhibitor |
19 | BRD-K35367061-001-01-1 | LY223982 | 20 | 80.52 | 15.18 | 7.22 | 2.1 | Phase 2 | Leukotriene receptor antagonist |
20 | BRD-K84544951-236-01-0 | Sodium-tetradecyl-sulfate | 20 | 74.65 | 11.38 | 5.66 | 2.01 | Launched | Sclerosing agent |
21 | BRD-K22127577-001-03-7 | Crenolanib | 20 | 64.48 | 19.5 | 9.91 | 1.97 | Phase 2 | PDGFR tyrosine kinase receptor inhibitor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skelly, P.J.; Da’dara, A.A. High-Throughput Screens of Repurposing Hub and DOS Chemical Libraries Reveal Compounds with Novel and Potent Inhibitory Activity Against the Essential Non-Neuronal Acetylcholinesterase of Schistosoma mansoni (SmTAChE). Int. J. Mol. Sci. 2025, 26, 5415. https://doi.org/10.3390/ijms26115415
Skelly PJ, Da’dara AA. High-Throughput Screens of Repurposing Hub and DOS Chemical Libraries Reveal Compounds with Novel and Potent Inhibitory Activity Against the Essential Non-Neuronal Acetylcholinesterase of Schistosoma mansoni (SmTAChE). International Journal of Molecular Sciences. 2025; 26(11):5415. https://doi.org/10.3390/ijms26115415
Chicago/Turabian StyleSkelly, Patrick J., and Akram A. Da’dara. 2025. "High-Throughput Screens of Repurposing Hub and DOS Chemical Libraries Reveal Compounds with Novel and Potent Inhibitory Activity Against the Essential Non-Neuronal Acetylcholinesterase of Schistosoma mansoni (SmTAChE)" International Journal of Molecular Sciences 26, no. 11: 5415. https://doi.org/10.3390/ijms26115415
APA StyleSkelly, P. J., & Da’dara, A. A. (2025). High-Throughput Screens of Repurposing Hub and DOS Chemical Libraries Reveal Compounds with Novel and Potent Inhibitory Activity Against the Essential Non-Neuronal Acetylcholinesterase of Schistosoma mansoni (SmTAChE). International Journal of Molecular Sciences, 26(11), 5415. https://doi.org/10.3390/ijms26115415