Botulinum Toxin A for Elbow Flexor Spasticity: A Non-Randomized Observational Study of Muscle-Specific Injection Strategies
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.2.1. Patient Selection
2.2.2. Inclusion Criteria
- Patients who provided written informed consent;
- Aged ≥18 and ≤80 years;
- Hemiparesis due to a single stroke occurred ≥2 months before the assessment;
- Presence of muscle hypertonia at elbow level;
- Clinical assessment performed just before (T0 = baseline, at the moment of inpatient hospital admission) and after BoNT-A treatment (T1 = follow-up evaluation at 28 days ± 5 days, after hospital discharge) which included the following: (a) motor control at elbow level; (b) spasticity and paresis angle; (c) muscle tone elbow flexors and pronator teres muscle; and (d) active ROM supination angle.
2.2.3. Exclusion Criteria
- Recurrent strokes or other medical conditions in addition to stroke likely to interfere with the clinical assessment reported in the inclusion criteria;
- Use of intrathecal baclofen [32];
- Patients with documented or reported medical history of adverse effects following previous BoNT-A injection (e.g., myalgia, muscle weakness, asthenia, flu-like syndrome, local reactions at the injection site, etc.).
- Severe cognitive impairment;
- Severe aphasia interfering with patient’s assessment;
- Degree of spasticity 1 or 4 on MAS (Modified Ashworth Scale);
- Severe tendon contractures, heterotopic ossification, history of elbow arthrodesis, or other conditions causing secondary limitation of elbow joint mobility;
- Patients who refused to provide written informed consent.
2.3. Assessment and Procedure
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Patient Safety and Selection Considerations
4.2. Forearm Position in Assessment of Elbow Flexor Spasticity
4.3. Selection of Target Muscle
4.4. Primary and Secondary Outcomes: Key Findings and Implications
4.5. Significant Additional Results
4.6. Impact of Stroke Onset on Primary and Secondary Outcome Variables
4.7. Limitation of Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sommerfeld, D.K.; Eek, E.U.; Svensson, A.K.; Holmqvist, L.W.; von Arbin, M.H. Spasticity after stroke: Its occurrence and association with motor impairments and activity limitations. Stroke 2004, 35, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Watkins, C.L.; Leathley, M.J.; Gregorson, J.M.; Moore, A.P.; Smith, T.L.; Sharma, A.K. Prevalence of spasticity post stroke. Clin. Rehabil. 2002, 16, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Lundström, E.; Terént, A.; Lindmark, B.; Axelsson, T.P. Prevalence of arm pain after stroke in relation to different definitions of spasticity. J. Rehabil. Med. 2008, 403, 202–207. [Google Scholar]
- Hackett, M.L.; Hodgkinson, S.C.; Anderson, C.S.; ASSIST Study Group. Health-related quality of life 3 months after stroke: Results from the Australian Stroke Surveillance Study (ASSIST). Stroke 2005, 3610, 2206–2211. [Google Scholar]
- Aprile, I.; Di Stasio, E.; Romitelli, F.; Lancellotti, S.; Caliandro, P.; Tonali, P.; Gilardi, A.; Padua, L. Effects of rehabilitation on quality of life in patients with chronic stroke. Brain Inj. 2008, 22, 451–456. [Google Scholar] [CrossRef]
- Shin, J.C.; Jang, S.H.; Kim, Y.H.; Lee, P.K.; Cho, S.H.; Kim, S.H. Factors affecting quality of life after stroke. J. Rehabil. Med. 2012, 446, 518–523. [Google Scholar]
- Săndulescu, M.I.; Cinteză, D.; Poenaru, D.; Potcovaru, C.-G.; Păunescu, H.; Coman, O.A. The Complex Role of Botulinum Toxin in Enhancing Goal Achievement for Post-Stroke Patients. Toxins 2024, 16, 172. [Google Scholar] [CrossRef]
- Lance, J. 1980 symposium synopsis. In Spasticity Disordered Motor Control; Feldman, R.G., Young, R.R., Koella, W.P., Eds.; Year Book Medical Publishers: Chicago, IL, USA, 1980; pp. 485–494. [Google Scholar]
- Pandyan, A.D.; Gregoric, M.; Barnes, M.P.; Wood, D.; Van Wijck, F.; Burridge, J.; Hermens, H.; Johnson, G. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef]
- Ivanhoe, C.B.; Reistetter, T.A. Spasticity after stroke: A review. Top. Stroke Rehabil. 2004, 10, 1–12. [Google Scholar]
- Sheean, G.; McGuire, J.R. Spasticity management. Lancet 2009, 373, 125–133. [Google Scholar]
- Davis, E.C.; Barnes, M.P. Botulinum toxin and spasticity. J. Neurol. Neurosurg. Psychiatry 2000, 69, 143–147. [Google Scholar] [CrossRef]
- Hefter, H.; Jost, W.H.; Reissig, A.; Zakine, B.; Bakheit, A.M.; Wissel, J. Classification of posture in poststroke upper limb spasticity: A potential decision tool for botulinum toxin A treatment? Int. J. Rehabil. Res. 2012, 35, 3227–3233. [Google Scholar] [CrossRef]
- Brunnstrom, S. Movement Therapy in Hemiplegia: A Neurophysiological Approach; Harper & Row: New York, NY, USA, 1970. [Google Scholar]
- Li, S.; Francisco, G.E.; Zhou, X.D. Management of spasticity in stroke. World J. Methodol. 2009, 5, 1. [Google Scholar]
- Potcovaru, C.G.; Salmen, T.; Bîgu, D.; Săndulescu, M.I.; Filip, P.V.; Diaconu, L.S.; Pop, C.; Ciobanu, I.; Cinteză, D.; Berteanu, M. Assessing the Effectiveness of Rehabilitation Interventions through the World Health Organization Disability Assessment Schedule 2.0 on Disability—A Systematic Review. J. Clin. Med. 2024, 13, 1252. [Google Scholar] [CrossRef]
- Simpson, D.M.; Gracies, J.-M.; Graham, H.K.; Miyasaki, J.M.; Naumann, M.; Russman, B.; Simpson, L.L.; So, Y. Assessment: Botulinum neurotoxin for the treatment of spasticity. Neurology 2008, 70, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- Gracies, J.M.; Lugassy, M.; Weisz, D.J.; Vecchio, M.; Flanagan, S.; Simpson, D.M. Botulinum toxin dilution and endplate targeting in spasticity: A double-blind controlled study. Arch. Phys. Med. Rehabil. 2009, 90, 9–16.e2. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D.; Thompson, T.B.; Jankovic, J. Botulinum toxin and spasticity: An update. Eur. J. Neurol. 2005, 122, 99–109. [Google Scholar]
- Bakheit, A.M. Long-term effects of botulinum toxin on upper limb spasticity in patients with stroke. J. Neurol. Neurosurg. Psychiatry 2006, 771, 117–118. [Google Scholar]
- Esquenazi, A.; Mayer, N.; Garreta, R. Influence of botulinum toxin type A treatment of elbow flexor spasticity on hemiparetic gait. Am. J. Phys. Med. Rehabil. 2008, 87, 305–329. [Google Scholar] [CrossRef]
- Esquenazi, A.; Mayer, N.H.; Werner, R.; Francisco, G.E. International consensus statement update on the use of incobotulinumtoxinA for adult lower limb spasticity. Toxins 2013, 511, 2158–2169. [Google Scholar]
- Poenaru, D.; Sandulescu, M.I.; Cinteza, D. Pain Modulation in Chronic Musculoskeletal Disorders: Botulinum Toxin, a Descriptive Analysis. Biomedicines 2023, 11, 1888. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coman, L.; Coman, O.A.; Păunescu, H.; Drăghia Fl Fulga, I. VEGF-induced corneal neovascularisation in a rabbit experimental model. Rom. J. Morphol. Embryol. 2010, 51, 327–336. [Google Scholar]
- Fridman, E.A.; Crespo, M.; Gomez Argüello, S.; Degue, L.; Villareal, M.; Bohlhalter, S.; Wheaton, L.; Hallet, M. Kinematic improvement following Botulinum Toxin-A injection in upper-limb spasticity due to stroke. Neurol. Neurosurg. Psychiatry 2010, 81, 423–427. [Google Scholar] [CrossRef]
- Sengul, I.; Askin, A.; Tosun, A. Effect of muscle selection for botulinum neurotoxin treatment on spasticity in patients with post-stroke elbow flexor muscle over-activity: An observational prospective study. Somatosens. Mot. Res. 2022, 39, 10–17. [Google Scholar] [CrossRef]
- Sengul, I.; Askin, A.; Bayram, K.; Tosun, A. Assessment of post-stroke elbow flexor spasticity in different forearm positions. Somatosens. Mot. Res. 2018, 35, 218–222. [Google Scholar] [CrossRef]
- Genet, F.; Schnitzler, A.; Droz-Bartholet, F.; Salga, M.; Tatu, L.; Debaud, C.; Denormandie, P.; Parratte, B. Successive motor nerve blocks to identify the muscles causing a spasticity pattern: Example of the arm flexion pattern. J. Anat. 2017, 230, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Keenan, M.A.; Haider, T.T.; Stone, L.R. Dynamic electromyography to assess elbow spasticity. J. Hand Surg. Am. 1990, 15, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.B.; Aguilar, M.; De Beyl, Z.; Gedin, S.; Kanovsky, P.; Molteni, F.; Wissel, J.; Yakovleff, A. Use of botulinum toxin type A in management of adult spasticity—A European consensus statement. J. Rehabil. Med. 2003, 35, 98–99. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.H.; Choi, E.H.; Lim, J.Y. Comparison of Effects of Botulinum Toxin Injection Between Subacute and Chronic Stroke Patients: A Pilot Study. Medicine 2016, 95, e2851. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, S.R. Intrathecal Baclofen Therapy: Pros and Cons. Ann. Rehabil. Med. 2023, 47, 1–3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kistner, K.; Zimmermann, K.; Ehnert, C.; Reeh, P.W.; Leffler, A. The tetrodotoxin-resistant Na channel Na (v)1.8 reduces the potency of local anesthetics in blocking C-fiber nociceptors. Pflug. Arch. 2010, 459, 751–763. [Google Scholar] [CrossRef] [PubMed]
- Scholz, A.; Vogel, W. Tetrodotoxin-resistant action potentials in dorsal root ganglion neurons are blocked by local anesthetics. Pain 2000, 89, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Cuvillon, P.; Nouvellon, E.; Ripart, J.; Boyer, J.C.; Dehour, L.; Mahamat, A.; L’hermite, J.; Boisson, C.; Vialles, N.; Lefrant, J.Y.; et al. A comparison of the pharmacodynamics and pharmacokinetics of bupivacaine, ropivacaine (with epinephrine) and their equal volume mixtures with lidocaine used for femoral and sciatic nerve blocks: A double-blind randomized study. Anesth. Analg. 2009, 108, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Potcovaru, C.-G.; Salmen, T.; Potcovaru, A.M.; Săndulescu, I.-M.; Chiriac, O.; Balasa, A.-C.; Diaconu, L.S.; Poenaru, D.; Pantea Stoian, A.; Cinteza, D.; et al. The Long-Term Impact of COVID-19 on Disability after Post-Acute Rehabilitation: A Pilot Study. J. Clin. Med. 2024, 13, 4694. [Google Scholar] [CrossRef]
- Tardieu, G. Research on a technic for measurement of spasticity. Rev. Neurol. Paris. 1954, 91, 143–144. [Google Scholar] [PubMed]
- Gracies, J.M.; Bayle, N.; Vinti, M.; Alkandari, S.; Vu, P.; Loche, C.M.; Colas, C. Five-step clinical assessment in spastic paresis. Eur. J. Phys. Rehabil. Med. 2010, 46, 411–421. [Google Scholar] [PubMed]
- Armstrong, A.D.; MacDermid, J.C.; Chinchalkar, S.; Stevens, R.S.; King, G.J. Reliability of range-of-motion measurement in the elbow and forearm. J. Shoulder Elb. Surg. 1998, 7, 573–580. [Google Scholar] [CrossRef] [PubMed]
- DYSPORT® (Abobotulinumtoxina) for Injection, for Intramuscular Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/125274s107lbl.pdf (accessed on 31 March 2025).
- Jacinto, J.; Camões-Barbosa, A.; Carda, S.; Hoad, D.; Wissel, J. A Practical Guide to Botulinum Neurotoxin Treatment of Shoulder Spasticity 1: Anatomy, Physiology, and Goal Setting. Front. Neurol. 2022, 13, 1004629. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Ashford, S.; Bhakta, B.; Heward, K.; Moore, P.; Robertson, A.; Ward, A. Spasticity in Adults: Management Using Botulinum Toxin. National 13. Guidelines; Royal College of Physicians: London, UK, 2008. [Google Scholar]
- Reurean-Pintilei, D.; Potcovaru, C.-G.; Salmen, T.; Mititelu-Tartau, L.; Cinteză, D.; Lazăr, S.; Pantea Stoian, A.; Timar, R.; Timar, B. Assessment of Cardiovascular Risk Categories and Achievement of Therapeutic Targets in European Patients with Type 2 Diabetes. J. Clin. Med. 2024, 13, 2196. [Google Scholar] [CrossRef]
- Hara, T.; Momosaki, R.; Niimi, M.; Yamada, N.; Hara, H.; Abo, M. Botulinum Toxin Therapy Combined with Rehabilitation for Stroke: A Systematic Review of Effect on Motor Function. Toxins 2019, 11, 707. [Google Scholar] [CrossRef]
- Basmajian, J.V.; Latif, A. Integrated Actions and Functions of the Chief Flexors of the Elbow: A Detailed Electromyographic Analysis. J. Bone Jt. Surg. 1957, 39, 1106–1118. [Google Scholar] [CrossRef]
- Bakheit, A.M.; Pittock, S.; Swinn, C.D. Lack of uniform guidelines for the use of botulinum toxin in the treatment of spasticity. Disabil. Rehabil. 2001, 2315, 681–684. [Google Scholar]
- Esquenazi, A.; Albanese, A.; Chancellor, M.B.; Elovic, E.; Segal, K.R.; Simpson, D.M. Evidence-based review and assessment of botulinum neurotoxins for the treatment of adult spasticity. PMR 2017, 93, S41–S120. [Google Scholar]
- Shaw, L.C.; Price, C.I.M.; van Wijck, F.M.J.; Shackley, P.; Steen, N.; Barnes, M.P.; Ford, G.A.; Graham, L.A.; Rodgers, H. Botulinum Toxin for the Upper Limb After Stroke (BoTULS) Trial: Effect on Impairment, Activity Limitation, and Pain. Stroke 2011, 42, 1371–1379. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Fheodoroff, K.; Jacinto, J.; Maisonobe, P. Results from the Upper Limb International Spasticity Study-II (ULISII): A large, international, prospective cohort study investigating practice and goal attainment following treatment with botulinum toxin A in real-life clinical management. BMJ Open 2013, 3, e002771. [Google Scholar] [CrossRef]
- Bakheit, A.M.; Thilmann, A.F.; Ward, A.B.; Poewe, W. A prospective, randomised, placebo-controlled, double-blind trial of botulinum toxin type A in upper limb spasticity after stroke. J. Neurol. Neurosurg. Psychiatry 2001, 705, 633–639. [Google Scholar]
- Cardoso, E.; Rodrigues, F.B.; Lucena, R.; Oliveira, I.R.; Pedreira, G.; Melo, A. Botulinum toxin type A for the treatment of the upper limb spasticity after stroke: A meta-analysis. Arq. Neuropsiquiatr. 2005, 63, 30–33. [Google Scholar] [CrossRef]
- Nelson, C.M.; Murray, W.M.; Dewald, J.P.A. Motor Impairment-Related Alterations in Biceps and Triceps Brachii Fascicle Lengths in Chronic Hemiparetic Stroke. Neurorehabilit. Neural Repair 2018, 32, 799–809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kleiber, T.; Kunz, L.; Disselhorst-Klug, C. Muscular coordination of biceps brachii and brachioradialis in elbow flexion with respect to hand position. Front. Physiol. 2015, 6, 215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boland, M.R.; Spigelman, T.; Uhl, T.L. The function of brachioradialis. J. Hand Surg. Am. 2008, 33, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Andringa, A.; van de Port, I.; van Wegen, E.; Ket, J.; Meskers, C.; Kwakkel, G. Effectiveness of Botulinum Toxin Treatment for Upper Limb Spasticity Poststroke Over Different ICF Domains: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2019, 100, 1703–1725. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Wagner, K.; Meissner, D.; Grundmann, K.; Zange, C.; Koch, R.; Pohl, M. Reliability of the Modified Tardieu Scale and the Modified Ashworth Scale in adult patients with severe brain injury: A comparison study. Clin. Rehabil. 2005, 19, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Wu, Y.N.; Huang, S.C.; Lee, H.M.; Wang, Y.L. The use of a portable muscle tone measurement device to measure the effects of botulinum toxin type a on elbow flexor spasticity. Arch. Phys. Med. Rehabil. 2005, 86, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
Biceps Brachii Group | Brachialis Group | Brachialis Plus Brachioradialis Group | n (% of Total) | p | |
---|---|---|---|---|---|
Age, year, mean ± SD | 59.6 ± 12.2 | 53.4 ± 11.4 | 55.6 ± 13.3 | - | 0.406 |
Sex, male, n (%) | 9 (28.1) | 5 (15.6) | 18 (56.2) | 32 (61.5%) | 0.889 |
female, n (% within injection group) | 6 (30.0) | 4 (20.0) | 10 (50.0) | 20 (38.5%) | |
Stroke onset, month | 64 (8 to 256) | 42 (3 to 223) | 38.9 (6 to 123) | - | 0.496 |
Etiology, ischemic, n (% within injection group) | 9 (60.0) | 8 (88.9) | 20 (71.4) | 37 (71.2%) | 0.318 |
haemorrhagic, n (% within injection group) | 6 (40.0) | 1 (11.1) | 8 (28.6) | 15 (28.8%) | |
total n (% within etiology) | 15 (28.8) | 9 (17.3) | 28 (53.8) | 52 (100%) | |
Affected side, right, n (% within injection group) | 8 (53.3) | 1 (11.1) | 10 (35.7) | 19 (36.5%) | 0.473 |
Total BoNT-A dose for elbow flexors, mean unit | 226 (50 to 400) | 122.2 (100 to 350) | 319 (100 to 750) | - | <0.001 * |
Pronator teres BoNT-A dose, mean unit | 143 (50–220) | 120 (50–180) | 112 (50–200) | - | 0.105 * |
Muscle | MAS 1–1+ (Mild) | MAS 2 (Moderate) | MAS 3–4 (Severe) | Chronicity Adjustment (>6 Months) |
---|---|---|---|---|
Biceps brachii | 100–200 U | 200–300 U | 300–400 U | +10–20% |
Brachialis | 75–150 U | 150–250 U | 250–400 U | +10–20% |
Brachioradialis | 50–100 U | 100–200 U | 150–250 U | +10–20% |
Baseline Assessment | |||||||
---|---|---|---|---|---|---|---|
Resting Elbow Angle | Passive Elbow Extension ROM at Slow Velocity (V1) | Active Elbow Extension ROM | Spasticity Angle | Paresis Angle | Supination Angle | Pronator Teres MAS | |
Mean (SE) | Mean (SE) | Mean (SE) | Mean (SE) | Mean (SE) | Mean rank | Mean rank | |
Biceps brachii group | 136.0 (6.8) | 1176.0 (1.9) | 128.0 (11.1) | 60.0 (6.9) | 88.0 (10.6) | 23.87 | 29.77 |
Brachialis group | 151.1 (8.5) | 177.7 (2.2) | 153.3 (10.0) | 45.5 (7.6) | 64.4 (8.6) | 41.17 | 17.94 |
Brachialis plus brachioradialis group | 128.2 (4.9) | 171.4 (2.2) | 112.8 (7.8) | 70.3 (4.5) | 98.5 (6.2) | 23.20 | 27.50 |
p | 0.081 | 0.169 | 0.030 | 0.023 | 0.027 | 0.098 | |
Follow-up assessment | |||||||
Biceps brachii group | 162.6 (5.6) | 180.0 (0.0) | 144.0 (9.7) | 24.6 (7.0) | 76.0 (9.7) | 19.70 | 34.67 |
Brachialis group | 166.6 (4.4) | 180.0 (0.0) | 161.1 (8.0) | 17.7 (7.0) | 58.8 (8.0) | 40.17 | 16.22 |
Brachialis plus brachioradialis group | 153.9 (4.2) | 178.2 (0.9) | 132.5 (7.9) | 34.6 (4.8) | 85.7 (7.3) | 25.75 | 25.43 |
p | 0.119 | 0.162 | 0.119 | 0.179 | 0.121 | ||
Change between assessments | |||||||
Biceps brachii group | 26.3 (1.8) | 4.0 (1.9) | 16.0 (2.8) | 35.3 (4.0) | 12.0 (2.4) | 18.77 | 20.90 |
Brachialis group | 15.5 (6.0) | 2.2 (2.2) | 7.7 (2.7) | 27.7 (4.9) | 5.5 (2.4) | 25.44 | 17.56 |
Brachialis plus brachioradialis group | 25.7 (2.1) | 6.7 (1.3) | 19.6 (3.1) | 35.7 (4.8) | 12.8 (3.7) | 30.98 | 32.38 |
p | 0.105 | 0.214 | 0.086 | 0.484 | 0.247 | 0.037 |
Biceps Brachii Group (A) Mean Rank | Brachialis Group (B) Mean Rank | Brachialis Plus Brachioradialis Group (C) Mean Rank | p (a) | p (b) | |||
---|---|---|---|---|---|---|---|
(A) vs. (B) | (B) vs. (C) | (A) vs. (C) | |||||
Total BoNT-A dose elbow flexors | 23.37 | 9.56 | 33.63 | <0.001 | 0.003 | <0.001 | 0.015 |
BoNT-A dose pronator teres | 33.27 | 26.11 | 23 | 0.103 | 0.446 | 0.433 | 0.033 |
Pronator teres MAS change | 20.9 | 17.56 | 32.38 | 0.005 | 0.558 | 0.012 | 0.009 |
Active supination ROM change | 18.77 | 25.44 | 30.98 | 0.037 | 0.263 | 0.319 | 0.012 |
Active elbow extension ROM change | 27.1 | 16.89 | 29.27 | 0.086 | 0.084 | 0.04 | 0.597 |
Paresis angle baseline | 25 | 15.56 | 30.82 | 0.027 | 0.174 | 0.007 | 0.243 |
Change in paresis angle | 28 | 19.06 | 28.09 | 0.247 | 0.123 | 0.141 | 0.916 |
Stroke Onset | |||||
---|---|---|---|---|---|
Biceps Brachii Group Correlation Coefficient | Brachialis Group Correlation Coefficient | Brachialis Plus Brachioradialis Group Correlation Coefficient | p (Inter-Group Analysis) | Correlation Coefficient (Inter-Group Analysis) | |
Resting elbow angle | 0.336 | 0.173 | 0.200 | 0.008 | 0.365 |
Passive elbow extension ROM at V1 | 0.345 | 0.137 | 0.201 | 0.090 | 0.237 |
Passive elbow extension ROM at V3 | 0.145 | 0.104 | 0.385 (p = 0.043) * | 0.048 | 0.272 |
Active elbow extension ROM | 0.292 | 0.347 | 0.271 | 0.020 | 0.321 |
Active supination ROM | −0.402 | −0.128 | −0.80 | 0.144 | −0.205 |
Paresis angle | 0.084 | 0.224 | 0.168 | 0.177 | 0.190 |
Spasticity angle | 0.182 | 0.097 | 0.262 | 0.273 | 0.155 |
Total BoNT-A dose elbow flexors | 0.327 | 0.274 | 0.360 | 0.11 | 0.350 |
Pronator teres BoNT-A dose | 0.563 (p = 0.029) * | 0.288 | 0.212 | 0.008 | 0.361 |
Pronator teres MAS | 0.409 | 0.156 | 0.038 | 0.362 | 0.129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Săndulescu, M.I.; Cinteză, D.; Poenaru, D.; Potcovaru, C.-G.; Păunescu, H.; Coman, O.A. Botulinum Toxin A for Elbow Flexor Spasticity: A Non-Randomized Observational Study of Muscle-Specific Injection Strategies. J. Clin. Med. 2025, 14, 3864. https://doi.org/10.3390/jcm14113864
Săndulescu MI, Cinteză D, Poenaru D, Potcovaru C-G, Păunescu H, Coman OA. Botulinum Toxin A for Elbow Flexor Spasticity: A Non-Randomized Observational Study of Muscle-Specific Injection Strategies. Journal of Clinical Medicine. 2025; 14(11):3864. https://doi.org/10.3390/jcm14113864
Chicago/Turabian StyleSăndulescu, Miruna Ioana, Delia Cinteză, Daniela Poenaru, Claudia-Gabriela Potcovaru, Horia Păunescu, and Oana Andreia Coman. 2025. "Botulinum Toxin A for Elbow Flexor Spasticity: A Non-Randomized Observational Study of Muscle-Specific Injection Strategies" Journal of Clinical Medicine 14, no. 11: 3864. https://doi.org/10.3390/jcm14113864
APA StyleSăndulescu, M. I., Cinteză, D., Poenaru, D., Potcovaru, C.-G., Păunescu, H., & Coman, O. A. (2025). Botulinum Toxin A for Elbow Flexor Spasticity: A Non-Randomized Observational Study of Muscle-Specific Injection Strategies. Journal of Clinical Medicine, 14(11), 3864. https://doi.org/10.3390/jcm14113864