Evaluation of the Apoptotic, Prooxidative and Therapeutic Effects of Odoroside A on Lung Cancer: An In Vitro Study Extended with In Silico Analyses of Human Lung Cancer Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. CCK-8 Cell Proliferation Assay
2.3. qRT-PCR Analysis
2.4. Western Blotting Analysis
2.5. CASP3 Activity Assay
2.6. Biochemical Analysis of Redox Balance
2.7. Protein–Protein Interaction Network Analysis
2.8. Gene Expression Analysis in Lung Adenocarcinoma and Normal Tissues
2.9. Assessment of Expression and Prognostic Potential of Genes
2.10. Statistical Analysis
3. Results
3.1. Odo A Inhibited the Proliferation of Lung Cancer Cells
3.2. Treatment of Lung Cancer Cells with Odo A Activated the Extrinsic Apoptotic Pathway but Not the Intrinsic Apoptotic Pathway
3.3. Odo A Treatment Led to Increased CASP3 Expression and Activity in Lung Cancer Cells
3.4. The Effect of Odo A Treatment on Redox Balance of Lung Cancer Cells
3.5. Apoptotic Pathway Genes Showed Strong Correlations and Interactions
3.6. No Differential Expression Profiles of Apoptotic Genes Were Observed Between Lung Adenocarcinoma and Healthy Tissues
3.7. Caspases Showed No Prognostic Value in Lung Cancer, Independent of Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oh, S.; Botros, G.N.; Patel, M.; Haigentz, M.; Patel, E.; Kontopidis, I.; Langenfeld, J.; Deek, M.P.; Jabbour, S.K. Locally Advanced Lung Cancer. Hematol. Oncol. Clin. North. Am. 2023, 37, 533–555. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, H.M.; Gaber, M.; Abd-Elwakil, M.M.; Mabrouk, M.T.; Elgohary, M.M.; Kamel, N.M.; Kabary, D.M.; Freag, M.S.; Samaha, M.W.; Mortada, S.M.; et al. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Control Release 2018, 269, 374–392. [Google Scholar] [CrossRef] [PubMed]
- Melero, C.P.; Medarde, M.; San Feliciano, A. A short review on cardiotonic steroids and their aminoguanidine analogues. Molecules 2000, 5, 51–81. [Google Scholar] [CrossRef]
- Schoner, W.; Scheiner-Bobis, G. Endogenous and exogenous cardiac glycosides: Their roles in hypertension, salt metabolism, and cell growth. Am. J. Physiol. Cell Physiol. 2007, 293, C509–C536. [Google Scholar] [CrossRef]
- Prassas, I.; Diamandis, E.P. Novel therapeutic applications of cardiac glycosides. Nat. Rev. Drug Discov. 2008, 7, 926–935. [Google Scholar] [CrossRef]
- Rashan, L.J.; Franke, K.; Khine, M.M.; Kelter, G.; Fiebig, H.H.; Neumann, J.; Wessjohann, L.A. Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum. J. Ethnopharmacol. 2011, 134, 781–788. [Google Scholar] [CrossRef]
- Kepp, O.; Menger, L.; Vacchelli, E.; Adjemian, S.; Martins, I.; Ma, Y.; Sukkurwala, A.Q.; Michaud, M.; Galluzzi, L.; Zitvogel, L. Anticancer activity of cardiac glycosides: At the frontier between cell-autonomous and immunological effects. Oncoimmunology 2012, 1, 1640–1642. [Google Scholar] [CrossRef]
- Kruakaew, S.; Seeka, C.; Lhinhatrakool, T.; Thongnest, S.; Yahuafai, J.; Piyaviriyakul, S.; Siripong, P.; Sutthivaiyakit, S. Cytotoxic cardiac glycoside constituents of Vallaris glabra leaves. J. Nat. Prod. 2017, 80, 2987–2996. [Google Scholar] [CrossRef]
- Wen, S.Y.; Chen, Y.Y.; Deng, C.M.; Zhang, C.Q.; Jiang, M.M. Nerigoside suppresses colorectal cancer cell growth and metastatic potential through inhibition of ERK/GSK3β/β-catenin signaling pathway. Phytomedicine 2018, 57, 352–363. [Google Scholar] [CrossRef]
- Cao, Y.L.; Zhang, M.H.; Lu, Y.F.; Li, C.Y.; Tang, J.S.; Jiang, M.M. Cardenolides from the leaves of Nerium oleander. Fitoterapia 2018, 127, 293–300. [Google Scholar] [CrossRef]
- Ko, Y.S.; Rugira, T.; Jin, H.; Park, S.W.; Kim, H.J. Oleandrin and its derivative odoroside A, both cardiac glycosides, exhibit anticancer effects by inhibiting invasion via suppressing the STAT-3 signaling pathway. Int. J. Mol. Sci. 2018, 19, 3350. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, T.; Zhang, S.; Zhang, Q.; Li, C.; Wang, X. Antitumour effect of odoroside A and its derivative on human leukaemia cells through the ROS/JNK pathway. Basic Clin. Pharmacol. Toxicol. 2022, 130, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Anglada, J.M.; Martins-Costa, M.; Francisco, J.S.; Ruiz-López, M.F. Interconnection of Reactive Oxygen Species Chemistry across the Interfaces of Atmospheric, Environmental, and Biological Processes. Acc. Chem. Res. 2015, 48, 575–583. [Google Scholar] [CrossRef]
- Roy, J.; Galano, J.M.; Durand, T.; Le Guennec, J.Y.; Lee, J.C. Physiological Role of Reactive Oxygen Species as Promoters of Natural Defenses. FASEB J. 2017, 31, 3729–3745. [Google Scholar] [CrossRef]
- Yang, Y.W.; Dai, C.M.; Chen, X.H.; Feng, J.F. The relationship between serum trace elements and oxidative stress of patients with different types of cancer. Oxidative Med. Cell Longev. 2021, 2021, 4846951. [Google Scholar] [CrossRef]
- Fenercioğlu, Ö.; Bozkaya, G.; Uzuncan, N.; Zengel, B. Oxidative stress markers in breast cancer. Pamukkale Med. J. 2024, 17, 402–411. [Google Scholar] [CrossRef]
- Sobantu, M.P.; Okeleye, B.I.; Okudoh, V.I.; Meyer, M.; Aboua, Y.G. In Vitro Antioxidant Mechanism of Action of Hibiscus sabdariffa in the Induction of Apoptosis against Breast Cancer. J. Herbs Spices Med. Plants 2022, 29, 213–228. [Google Scholar] [CrossRef]
- Ahmed, K.A.-A.; Jabbar, A.A.J.; Abdulla, M.A.; Alamri, Z.Z.; Salehen, N.A.; Ibrahim, I.A.A.; Almaimani, G.; Bamagous, G.A.; Almaimani, R.A.; Almasmoum, H.A.; et al. Mangiferin (mango) attenuates AOM-induced colorectal cancer in rat’s colon by augmentation of apoptotic proteins and antioxidant mechanisms. Sci. Rep. 2024, 14, 813. [Google Scholar]
- Gok, O.; Celik, F.S.; Gunes, C.E.; Kurar, E. Investigation of Viburnum opulus L. Apoptotic Effect on LNCaP Prostate Cancer Cell Line. Nat. Prod. Biotechnol. 2023, 3, 16–22. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Bio Chem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Farhadian, M.; Rafat, S.A.; Panahi, B.; Ebrahimie, E. Transcriptome signature of two lactation stages in Ghezel sheep identifies using RNA-Sequencing. Anim. Biotechnol. 2020, 33, 223–233. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Lee, E.Y.; Muller, W.J. Oncogenes and tumor suppressor genes. Cold Spring Harb. Perspect. Biol. 2010, 2, a003236. [Google Scholar] [CrossRef]
- Wen, S.; Chen, Y.; Lu, Y.; Wang, Y.; Ding, L.; Jiang, M. Cardenolides from the Apocynaceae family and their anticancer activity. Fitoterapia 2016, 112, 74–84. [Google Scholar] [CrossRef]
- McConkey, D.J.; Lin, Y.; Nutt, L.K.; Ozel, H.Z.; Newman, R.A. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res. 2000, 60, 3807–3812. [Google Scholar]
- Cerella, C.; Dicato, M.; Diederich, M. Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion 2013, 13, 225–234. [Google Scholar] [CrossRef]
- Güneş, C.E.; Çelik, F.S.; Seçme, M.; Elmas, L.; Dodurga, Y.; Kurar, E. Glycoside oleandrin downregulates toll-like receptor pathway genes and associated miRNAs in human melanoma cells. Gene 2022, 843, 146805. [Google Scholar] [CrossRef]
- Scott, F.L.; Stec, B.; Pop, C.; Dobaczewska, M.K.; Lee, J.J.; Monosov, E.; Robinson, H.; Salvesen, G.S.; Schwarzenbacher, R.; Riedl, S.J. The Fas–FADD death domain complex structure unravels signalling by receptor clustering. Nature 2009, 457, 1019–1022. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Liu, J.; Chen, J.; Yao, C.; Yang, Y.; Wang, J. FADD Phosphorylation Modulates Blood Glucose Levels by Decreasing the Expression of Insulin-Degrading Enzyme. Mol. Cells 2020, 43, 373–383. [Google Scholar] [PubMed]
- Debnath, S.; Sarkar, A.; Das Mukherjee, D.; Ray, S.; Mahata, B.; Mahata, T.; Parida, P.K.; Das, T.; Mukhopadhyay, R.; Ghosh, Z.; et al. Eriodictyol mediated selective targeting of the TNFR1/FADD/TRADD axis in cancer cells induce apoptosis and inhibit tumor progression and metastasis. Transl. Oncol. 2022, 21, 101433. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Meng, X.; Wu, P.; Li, Z.; Li, S.; Zhang, Y. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics 2020, 10, 3351–3365. [Google Scholar] [CrossRef]
- Chen, L.; Xie, G.; Feng, J.; Wen, Q.; Zang, H.; Lu, J.; Zhan, Y.; Fan, S. Overexpression of FADD and Bcl-XS proteins as novel prognostic biomarkers for surgically resected non-small cell lung cancer. Cancer Biomark. 2021, 30, 145–154. [Google Scholar] [CrossRef]
- Marin-Rubio, J.L.; Vela-Martin, L.; Fernandez-Piqueras, J.; Villa-Morales, M. FADD in Cancer: Mechanisms of Altered Expression and Function, and Clinical Implications. Cancers 2019, 11, 1462. [Google Scholar] [CrossRef]
- Mrkvova, Z.; Portesova, M.; Slaninova, I. Loss of FADD and Caspases Affects the Response of T-Cell Leukemia Jurkat Cells to Anti-Cancer Drugs. Int. J. Mol. Sci. 2021, 22, 2702. [Google Scholar] [CrossRef]
- El-Readi, M.Z.; Eid, S.; Abdelghany, A.A.; Al-Amoudi, H.S.; Efferth, T.; Wink, M. Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. Phytomedicine 2019, 55, 269–281. [Google Scholar] [CrossRef]
- Nicholson, D.W.; Thornberry, N.A. Life and death decisions. Science 2003, 299, 214–215. [Google Scholar] [CrossRef]
- Li, H.; Zhu, H.; Xu, C.J.; Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998, 94, 491–501. [Google Scholar] [CrossRef]
- Gross, A.; Yin, X.M.; Wang, K.; Wei, M.C.; Jocleil, J.; Milliman, C.; Erdjument-Bromage, H.; Tempst, P.; Korsmeyer, S.J. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factorR1/Fas death. J. Biol. Chem. 1999, 274, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Bouvard, V.; Zaitchouk, T.; Vacher, M.; Duthu, A.; Canivet, M.; ChoisyRossi, C.; Nieruchalski, M.; May, E. Tissue and cell-specific expression of the p53-target genes: Bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. Oncogene 2000, 19, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.; Macdonald, K.; Chan, S.W.; Luzio, J.P.; Simari, R.; Weissberg, P. Cell surface trafficking of Fas: A rapid mechanism of p53-mediated apoptosis. Science 1998, 282, 290–293. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Wen, S.Y.; Deng, C.M. Proteomic analysis reveals that odoroside A triggers G2/M arrest and apoptosis in colorectal carcinoma through ROS-p53 pathway. Proteomics 2019, 19, e1900092. [Google Scholar] [CrossRef]
- Green, B.D.; Jabbour, A.M.; Sandow, J.J.; Riffkin, C.D.; Masouras, D.; Daunt, C.P.; Salmanidis, M.; Brumatti, G.; Hemmings, B.A.; Guthridge, M.A.; et al. Akt1 is the principal Akt isoform regulating apoptosis in limiting cytokine concentrations. Cell Death Differ. 2013, 20, 1341–1349. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, Z.; Disante, G.; Wright, J.; Wang, M.; Li, Y.; Zhao, Q.; Ren, T.; Ju, X.; Gutman, E.; et al. miR-17/20 sensitization of breast cancer cells to chemotherapy-induced apoptosis requires Akt1. Oncotarget 2014, 5, 1083–1090. [Google Scholar] [CrossRef]
- Weng, L.; Brown, J.; Eng, C. PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and -independent pathways. Hum. Mol. Genet. 2001, 10, 237–242. [Google Scholar] [CrossRef]
- Chen, Y.; Azad, M.B.; Gibson, S.B. Superoxide is the major reactiveoxygen species regulating autophagy. Cell Death Differ. 2009, 16, 1040–1052. [Google Scholar] [CrossRef]
- Wang, X.D.; Li, C.Y.; Jiang, M.M.; Li, D.; Wen, P.; Song, X.; Chen, J.D.; Guo, L.X.; Hu, X.P.; Li, G.Q.; et al. Induction of apoptosis in human leukemia cells through an intrinsic pathway by cathachunine, a unique alkaloid isolated from Catharanthus roseus. Phytomedicine 2016, 23, 641–653. [Google Scholar] [CrossRef]
- Huang, Z. The chemical biology of apoptosis. Exploring protein-protein interactions and the life and death of cells with small molecules. Chem. Biol. 2002, 9, 1059–1072. [Google Scholar] [CrossRef]
- Farghadani, R.; Naidu, R. The Role of Apoptosis as a Double-Edge Sword in Cancer. In Regulation and Dysfunction of Apoptosis; Tutar, Y., Ed.; IntechOpen: London, UK, 2021; Chapter 1. [Google Scholar] [CrossRef]
- Morana, O.; Wood, W.; Gregory, C.D. The Apoptosis Paradox in Cancer. Int. J. Mol. Sci. 2022, 23, 1328. [Google Scholar] [CrossRef] [PubMed]
- Hensley, P.; Mishra, M.; Kyprianou, N. Targeting caspases in cancer therapeutics. Biol. Chem. 2013, 394, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Boice, A.; Bouchier-Hayes, L. Targeting apoptotic caspases in cancer. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118688. [Google Scholar] [CrossRef] [PubMed]
Genes | Primer Sequences | PCR Product Length (bp) |
---|---|---|
BAX | F: GGAGCTGCAGAGGATGATTG R: GGCCTTGAGCACCAGTTT | 151 |
BCL2 | F: GTGGATGACTGAGTACCTGAAC R: GAGACAGCCAGGAGAAATCAA | 125 |
CASP3 | F: GAGCCATGGTGAAGAAGGAATA R: TCAATGCCACAGTCCAGTTC | 162 |
CASP7 | F: CGAAACGGAACAGACAAAGATG R: TTAAGAGGATGCAGGCGAAG | 169 |
CASP8 | F: GCCCAAACTTCACAGCATTAG R: GTGGTCCATGAGTTGGTAGATT | 160 |
CASP9 | F: CGACCTGACTGCCAAGAAA R: CATCCATCTGTGCCGTAGAC | 153 |
CYCS | F: GGAGAGGATACACTGATGGAGTA R: GTCTGCCCTTTCTTCCTTCTT | 102 |
P53 | F: GAGATGTTCCGAGAGCTGAATG R: TTTATGGCGGAGGTAGACT | 129 |
FAS | F: GTGATGAAGGACATGGCTTAGA R: GTGTGCATTCCTTGATGATTCC | 156 |
FADD | F: TGACCGAGCTCAAGTTCCTATG R: CCAGGTCGTTCTGCTCCAG | 108 |
ACTB | F: TGGCTGGGGTGTTGAAGGTCT R: AGCACGGCATCGTCACCAACT | 179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çelik, F.S.; Şengül, G.F.; Altveş, S.; Eroğlu Güneş, C. Evaluation of the Apoptotic, Prooxidative and Therapeutic Effects of Odoroside A on Lung Cancer: An In Vitro Study Extended with In Silico Analyses of Human Lung Cancer Datasets. Life 2025, 15, 445. https://doi.org/10.3390/life15030445
Çelik FS, Şengül GF, Altveş S, Eroğlu Güneş C. Evaluation of the Apoptotic, Prooxidative and Therapeutic Effects of Odoroside A on Lung Cancer: An In Vitro Study Extended with In Silico Analyses of Human Lung Cancer Datasets. Life. 2025; 15(3):445. https://doi.org/10.3390/life15030445
Chicago/Turabian StyleÇelik, Fatma Seçer, Göksemin Fatma Şengül, Safaa Altveş, and Canan Eroğlu Güneş. 2025. "Evaluation of the Apoptotic, Prooxidative and Therapeutic Effects of Odoroside A on Lung Cancer: An In Vitro Study Extended with In Silico Analyses of Human Lung Cancer Datasets" Life 15, no. 3: 445. https://doi.org/10.3390/life15030445
APA StyleÇelik, F. S., Şengül, G. F., Altveş, S., & Eroğlu Güneş, C. (2025). Evaluation of the Apoptotic, Prooxidative and Therapeutic Effects of Odoroside A on Lung Cancer: An In Vitro Study Extended with In Silico Analyses of Human Lung Cancer Datasets. Life, 15(3), 445. https://doi.org/10.3390/life15030445