Optimized Design of Low-Carbon Mix Ratio for Non-Dominated Sorting Genetic Algorithm II Concrete Based on Genetic Algorithm-Improved Back Propagation
Abstract
:1. Introduction
2. Theoretical Foundation
2.1. BP Fundamentals
2.2. GA-BP Theory
2.3. NSGA-II Arithmetic
2.4. Multi-Objective Optimization Model Building
2.5. Algorithmic Implementation
- Objective Function Development: Construct the objective functions for intensity, cost, and carbon emissions.
- Variable Limits Definition: Establish the upper and lower bounds for output and input variables according to the specifications.
- Optimization Execution: Execute the optimization using the NSGA-II program, which requires setting various parameters, including maximum number of iterations, population size, degree of crowding, and mutation probability.
- Non-Dominated Sorting: Perform non-dominated sorting to classify solutions based on dominance.
- Crowding Distance Calculation: Compute the crowding distance for each solution to ensure diversity.
- Solution Sorting and Output: Sort the solutions and generate the Pareto optimal solution set.
3. Concrete Strength Prediction Study
3.1. Sample Statistics
3.2. Data Normalization
3.3. Evaluation Indicators
4. Predictive Modeling Results and Analysis
4.1. Different Model Fits
4.2. Comparison of Model Evaluation Indicators
4.3. Analysis of Projected Results
5. Genetic Algorithm to Optimize Concrete Ratio
5.1. Establishment of the Objective Function
- The 28d compressive strength function of concrete based on GA-BP
- 2.
- Construction of cost and carbon emission function
5.2. Establishment of the Scope of Constraints
5.3. Three-Objective Optimization and Analysis of Elite Genetic Algorithm Based on GA-BP
- 1.
- GA-BP-based elite genetic algorithm for three-objective optimization
- 2.
- Optimal Solution Verification
6. Conclusions
- The concrete mix ratio is used as the input parameter, with the 28-day compressive strength as the output value. Using 200 datasets for training both the standard BP and GA-BP models, the simulation results indicate that the GA-optimized BP neural network provides superior prediction performance. Specifically, the average absolute error of the GA-BP network decreased by 35.45%, the mean square error by 54.76%, the root mean square error by 32.74%, and the average absolute percentage error by 37.97% compared to the standard BP network.
- To reduce calculation complexity and enhance comprehensiveness, the carbon emissions generated during the concrete preparation process are considered. Using the carbon emission factor method, carbon emissions are modeled as a function of the mix ratio. Additionally, an objective function combining the mix ratio, total cost, and 28-day compressive strength is constructed, with constraints determined by relevant specifications and data. Optimized using the NSGA-II algorithm, the lowest total cost mix ratio for C50 concrete is found to be 331.3 kg/m3 of cement, 639.4 kg/m3 of sand, 1039 kg/m3 of crushed stone, 56 kg/m3 of fly ash, 153 kg/m3 of water, and 0.632 kg/m3 of water-reducing agent.
- Comparing the measured indexes with the optimized values reveals that the relative errors between the measured and actual values for concrete’s 28-day compressive strength, material cost, and carbon emissions are 2.1%, 0.6%, and 2.9%, respectively. This indicates that the NSGA-II optimization algorithm combined with the GA-BP model achieves high accuracy and intelligence in optimizing concrete proportions, making the research results a valuable reference for existing projects.
- Compared to commercial concrete of the same strength class, the concrete designed using this method not only meets the required strength but also offers superior economic and environmental benefits. Specifically, its carbon emissions are significantly reduced, achieving a 15.9% reduction compared to commercial concrete.
- This study applies artificial intelligence to the optimization of low-carbon concrete mix proportions, and the research approach and methodology are presented in a systematic manner. However, there are some limitations: the dataset used is relatively small due to time constraints, but it can be expanded to improve the model’s accuracy in the future. Additionally, since the low-carbon optimization of mix ratios is only at the initial stage of energy saving and carbon reduction in the construction field, further research can explore integrated low-carbon optimization from materials to structures.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qaidi, S.; Atrushi, D.S.; Mohammed, A.S.; Ahmed, H.U.; Faraj, R.H.; Emad, W.; Tayeh, B.; Najm, H.M. Ultra-high-performance geopolymer concrete: A review. Constr. Build. Mater. 2022, 346, 128495. [Google Scholar] [CrossRef]
- Jacobs, A.D.; Hitch, M. Experimental mineral carbonation: Approaches to accelerate CO2 sequestration in mine waste materials. Int. J. Surf. Min. Reclam. Environ. 2011, 25, 321–331. [Google Scholar] [CrossRef]
- Li, J.; Ni, W.; Wang, X.; Zhu, S.; Wei, X.; Jiang, F.; Zeng, H.Q.; Hitch, M. Mechanical activation of medium basicity steel slag under dry condition for carbonation curing. J. Build. Eng. 2022, 50, 104123. [Google Scholar] [CrossRef]
- Xi, C.; Cao, S.J. Challenges and Future Development Paths of Low Carbon Building Design: A Review. Buildings 2022, 12, 163. [Google Scholar] [CrossRef]
- Chau, C.K.; Leung, T.M.; Ng, W.Y. Corrigendum to “A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings”. Appl. Energy 2015, 143, 395–413. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Yazdani, M.; Boskabadi, A.; Dolatsara, H.A.; Golilarz, N.A. A Novel Machine Learning Approach Combined with Optimization Models for Eco-Efficiency Evaluation. Appl. Sci. 2020, 10, 5210. [Google Scholar] [CrossRef]
- Chen, G.; Zheng, D.; Chen, Y. Development of high performance geopolymer concrete with waste rubber and recycle steel fiber: A study on compressive behavior, carbon emissions and economical performance. Constr. Build. Mater. 2023, 393, 131988. [Google Scholar] [CrossRef]
- Shamsabadi, E.A.; Roshan, N.; Hadigheh, S.A.; Nehdi, M.; Khodabakhshian, A.; Ghalehnovi, M. Machine learning-based compressive strength modeling of concrete incorporating waste marble powder. Constr. Build. Mater. 2022, 324, 126592. [Google Scholar] [CrossRef]
- Kang, M.C.; Yoo, D.Y.; Gupta, R. Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete. Constr. Build. Mater. 2021, 266, 121117. [Google Scholar] [CrossRef]
- Wang, S.; Xia, P.; Chen, K.; Gong, F.; Wang, H.; Wang, Q.; Zhao, Y.; Jin, W. Prediction and optimization model of sustainable concrete properties using machine learning, deep learning and swarm intelligence: A review. J. Build. Eng. 2023, 80, 108065. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Liu, C.; Zheng, J. Prediction of Rubber Fiber Concrete Strength Using Extreme Learning Machine. Front. Mater. 2020, 7, 582635. [Google Scholar] [CrossRef]
- Hussain, F.; Khan, S.A.; Khushnood, R.A.; Hamza, A.; Rehman, F. Machine learning-based predictive modeling of sustainable lightweight aggregate concrete. Sustainability 2022, 15, 641. [Google Scholar] [CrossRef]
- Siddique, R.; Aggarwal, P.; Aggarwal, Y. Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv. Eng. Softw. 2011, 42, 780–786. [Google Scholar] [CrossRef]
- Zhang, W.; Lee, D.; Lee, J.; Lee, C. Residual strength of concrete subjected to fatigue based on machine learning technique. Struct. Concr. 2022, 23, 2274–2287. [Google Scholar] [CrossRef]
- Al-Shamiri, A.K.; Yuan, T.F.; Kim, A.J.H. Non-Tuned Machine Learning Approach for Predicting the Compressive Strength of High-Performance Concrete. Materials 2020, 13, 1023. [Google Scholar] [CrossRef] [PubMed]
- Mahjoob, M.; Fazeli, S.S.; Milanlouei, S.; Tavassoli, L.S.; Mirmozaffari, M. A Modified Adaptive Genetic Algorithm for Multi-product Multi-period Inventory Routing Problem. Sustainable Operations and Computers 2022, 3, 1–9. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Shadkam, E.; Khalili, S.M.; Kabirifar, K.; Yazdani, R.; Gashteroodkhani, T. A novel artificial intelligent approach: Comparison of machine learning tools and algorithms based on optimization DEA Malmquist productivity index for eco-efficiency evaluation. Int. J. Energy Sect. Manag. 2021, 15, 523–550. [Google Scholar] [CrossRef]
- Jin, L.; Duan, J.; Fan, T.; Jiao, P.; Dong, T.; Wu, Q. Using GA–BP Coupling Algorithm to Predict the High-performance Concrete Mechanical Property. KSCE J. Civ. Eng. 2023, 27, 684–697. [Google Scholar] [CrossRef]
- Arbaoui, A.; Ouahabi, A.; Jacques, S.; Hamiane, M. Concrete Cracks Detection and Monitoring Using Deep Learning-Based Multiresolution Analysis. Electronics 2021, 10, 1772. [Google Scholar] [CrossRef]
- Ahcene, A.; Ouahabi, A.; Jacques, S.; Hamiane, M. Wavelet-based multiresolution analysis coupled with deep learning to efficiently monitor cracks in concrete. Frat. Integrità Strutt. 2021, 15, 33–47. [Google Scholar] [CrossRef]
- Islam, N.; Kashem, A.; Das, P.; Ali, M.N.; Paul, S. Prediction of high-performance concrete compressive strength using deep learning techniques. Asian J. Civ. Eng. 2024, 25, 327–341. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Ni, W.; Zhu, S.; Mao, S.; Jiang, F.; Zeng, H.; Sun, X.; Huang, B.; Hitch, M. Orthogonal test design for the optimization of preparation of steel slag-based carbonated building materials with ultramafic tailings as fine aggregates. Minerals 2022, 12, 246. [Google Scholar] [CrossRef]
- Gong, Y.; Song, J.; Lin, S.; Tan, G. Design Optimization of Rubber-Basalt Fiber- Modified Concrete Mix Ratios Based on a Response Surface Method. Appl. Sci. 2020, 10, 6753. [Google Scholar] [CrossRef]
- Wang, X.Y. Optimal mix design of low-CO2 blended concrete with limestone powder. Constr. Build. Mater. 2020, 263, 121006. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Behnood, A. Estimating the optimal mix design of silica fume concrete using biogeography-based programming. Cem. Concr. Compos. 2019, 96, 95–105. [Google Scholar] [CrossRef]
- Chen, B.; Wang, L.; Feng, Z.; Liu, Y.; Wu, X.; Qin, Y.; Xia, L. Optimization of high-performance concrete mix ratio design using machine learning. Eng. Appl. Artif. Intell. 2023, 122, 106047. [Google Scholar] [CrossRef]
- Xia, J.; Cao, C.; Jiang, Z.; Ren, Q.; Zhang, Y.; Wang, J.; Leng, F. Design and Preparation of White High-Strength Concrete with Ground Limestone Powder by Means of Response Surface Methodology. Materials 2022, 15, 3359. [Google Scholar] [CrossRef]
- Chen, H.; Deng, T.; Du, T.; Chen, B.; Skibniewski, M.J.; Zhang, L. An RF and LSSVM–NSGA-II method for the multi-objective optimization of high-performance concrete durability. Cem. Concr. Compos. 2022, 129, 104446. [Google Scholar] [CrossRef]
- Hejazi, S.M.; Zandieh, M.; Mirmozaffari, M. A multi-objective medical process mining model using event log and causal matrix. Healthc. Anal. 2023, 3, 100188. [Google Scholar] [CrossRef]
- Ren, H.; Qian, Z.; Lin, B.; Huang, Q.; Crispino, M.; Ketabdari, M. Effect of recycled concrete aggregate features on adhesion properties of asphalt mortar-aggregate interface. Constr. Build. Mater. 2022, 353, 129097. [Google Scholar] [CrossRef]
- Chen, R.; Song, J.; Xu, M.; Wang, X.; Yin, Z.; Liu, T.; Luo, N. Prediction of the corrosion depth of oil well cement corroded by carbon dioxide using GA–BP neural network. Constr. Build. Mater. 2023, 394, 132127. [Google Scholar] [CrossRef]
- Zou, M.; Xue, L.; Gai, H.; Dang, Z.; Wang, S.; Xu, P. Identification of the shear parameters for lunar regolith based on a GA-BP neural network. J. Terramechanics. 2020, 89, 21–29. [Google Scholar] [CrossRef]
- Khan, K.; Ahmad, W.; Amin, M.N.; Ahmad, A. A systematic review of the research development on the application of machine learning for concrete. Materials 2022, 15, 4512. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, X.; Li, H.; He, Y.; Zhang, Z.; Huang, J. Mixture optimization of cementitious materials using machine learning and metaheuristic algorithms: State of the art and future prospects. Materials 2022, 15, 7830. [Google Scholar] [CrossRef] [PubMed]
- Hilloulin, B.; Van Quan, T. Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials. J. Build. Eng. 2022, 49, 104086. [Google Scholar] [CrossRef]
- Liu, G.; Chen, B.; Wang, Y.; Zheng, Z.; He, G. Optimization of concrete mixture on the basis of artificial neural network and Monte-Carlo techniques. J. Hydroelectr. Eng. 2003, 4. [Google Scholar] [CrossRef]
- Yuan, F.; Hu, Y.; Zhang, L.; Li, T.; Wu, X.; Liu, Q. Study on Multi-objective Mix Proportion Optimization of Early-age Impermeability of Concrete Based on LLSVM and NSGA-II. Constr. Technol. 2020, 49, 83–88. [Google Scholar]
- Ma, C.G. Mix Proportion Optimization of Ordinary Pumping Concrete; Ningxia University: Yinchuan, China, 2014. [Google Scholar]
- Song, H.; Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Maślak, M.; Czarnecki, S.; Aslam, F. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr. Build. Mater. 2021, 308, 125021. [Google Scholar] [CrossRef]
- Yeh, I.C. Optimization of concrete mix proportioning using a flattened simplex–centroid mixture design and neural networks. Eng. Comput. 2009, 25, 179–190. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, R. Reducing building embodied emissions in the design phase: A comparative study on structural alternatives. J. Clean. Prod. 2020, 243, 118656. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y. Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques. Environ. Sci. Pollut. Res. Int. 2022, 29, 89198–89209. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, X.; Wang, L.; Chen, B. Multi-objective Mix Proportion Optimization of Frost Resistance of Concrete based on LSSVM and GA. J. Shenyang Jianzhu Univ. (Nat. Sci.) 2021, 37, 393–401. [Google Scholar]
- GB/T 51366-2019; Standard for Building Carbon Emission Calculation. China Architecture & Building Press: Beijing, China, 2019.
- Zhang, Y. Integrated Life Cycle Environmental Impact Assessment of Fly Ash Concrete; Beijing Jiaotong University: Beijing, China, 2016. [Google Scholar]
- Wu, X.; Wang, L.; Chen, H.; Feng, Z.B.; Qin, Y.; Xu, W. Multi-Objective Optimization of High-Performance Concrete Durability Mix Ratio Based on RRF-NSGA-II. Mater. Rep. 2022, 36, 115–121. [Google Scholar]
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture & Building Press: Beijing, China, 2019.
No. | W/B | CC kg/m3 | S kg/m3 | G kg/m3 | FA kg/m3 | W kg/m3 | WR | fce MPa | Cost CNY | CE kg CO2e/m3 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.63 | 201 | 752 | 1276 | 61 | 165.06 | 1.18 | 16.8 | 349 | 153 |
2 | 0.68 | 186 | 800 | 1241 | 56 | 164.56 | 1.18 | 12.8 | 344 | 142 |
3 | 0.58 | 218 | 703 | 1307 | 66 | 164.72 | 1.18 | 19 | 355 | 165 |
198 | 0.57 | 238 | 752 | 1128 | 122 | 205 | 7.9 | 33.2 | 405 | 180 |
199 | 0.57 | 204 | 752 | 1128 | 163 | 163 | 8.1 | 31.9 | 406 | 156 |
200 | 0.57 | 170 | 752 | 1128 | 204 | 204 | 8.2 | 32.5 | 407 | 131 |
Type | Sample Size | Min | Max | AVG | SD | Median |
---|---|---|---|---|---|---|
W/B | 200 | 0.27 | 0.7 | 0.50714 | 0.9637 | 0.51 |
CC | 144 | 592 | 327.092 | 103.952 | 312.85 | |
S | 388 | 901.8 | 736.1065 | 113.478 | 768.5 | |
G | 801 | 1555 | 1034.956 | 143.619 | 1014 | |
FA | 0 | 204 | 54.554 | 55.58 | 54 | |
W | 82.8 | 293.304 | 189.076 | 37.103 | 186.59 | |
WR | 0 | 28.2 | 4.83 | 5.002 | 3 | |
fce | 9.55 | 79.99 | 36.84 | 12.5387 | 35.98 |
Type | R | MAE | MSE | RMSE | MAPE |
---|---|---|---|---|---|
BP | 0.80719 | 5.6252 | 42.2318 | 6.4986 | 16.159% |
GA-BP | 0.88471 | 3.6312 | 19.1067 | 4.3711 | 10.0244% |
W/B | CC kg/m3 | S kg/m3 | G kg/m3 | FA kg/m3 | W kg/m3 | WR | fce MPa | ||
---|---|---|---|---|---|---|---|---|---|
Measured Value | Predicted Value | ||||||||
BP | GA-BP | ||||||||
0.57 | 238 | 752 | 1128 | 122 | 205.2 | 7.9 | 33.2 | 40.1 | 33.2 |
0.57 | 204 | 752 | 1128 | 163 | 209.19 | 8.1 | 31.9 | 37.8 | 33.8 |
0.57 | 170 | 752 | 1128 | 204 | 213.18 | 8.2 | 32.5 | 36.1 | 32.4 |
0.57 | 136 | 752 | 1128 | 245 | 217.17 | 8.4 | 35.4 | 34.8 | 32.3 |
0.5 | 340 | 846 | 1034 | 0 | 170 | 0.5 | 31.9 | 34.1 | 33.4 |
0.5 | 238 | 846 | 1034 | 122 | 180 | 0.52 | 32.8 | 43.1 | 28.8 |
0.5 | 204 | 846 | 1034 | 163 | 183.5 | 0.5 | 33.7 | 41.2 | 31.5 |
0.5 | 170 | 846 | 1034 | 204 | 187 | 0.49 | 35.2 | 42.4 | 31.5 |
0.5 | 136 | 846 | 1034 | 245 | 190.5 | 0.49 | 36.8 | 44.5 | 31.4 |
0.62 | 340 | 940 | 940 | 0 | 210.8 | 7.5 | 37.4 | 47.2 | 31.1 |
Type of Building Material | Prices (CNY/kg) | EFi |
---|---|---|
X1 | 0.442 | 735 kg CO2e/t |
X2 | 0.136 | 2.51 kg CO2e/t |
X3 | 0.102 | 2.18 kg CO2e/t |
X4 | 0.369 | 8.77kg CO2e/t |
X5 | 0.002 | 0.168 kg CO2e/t |
X6 | 4.75 | 0.0285 kg CO2e/kg |
NO. | X1 kg/m3 | X2 kg/m3 | X3 kg/m3 | X4 kg/m3 | X5 kg/m3 | X6 | fce MPa | Cost CNY | CE kg CO2e/m3 |
---|---|---|---|---|---|---|---|---|---|
1 | 331.3 | 639.4 | 1039 | 56 | 153 | 0.632 | 42.7 | 363.3 | 243.9 |
2 | 445 | 816.1 | 1113 | 71 | 154 | 6.27 | 68 | 447.7 | 327.8 |
39 | 337.6 | 635.2 | 1103 | 88 | 154 | 7.442 | 65.6 | 431.5 | 270.8 |
40 | 331.3 | 639.4 | 1039 | 56 | 154 | 1.095 | 43.6 | 365.5 | 244.0 |
Material Consumption/m3 | fce/MPa | Cost/CNY | CE/kg CO2e | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Measured Value | Predicted Value | RE | Measured Value | Predicted Value | RE | Measured Value | Predicted Value | RE | ||
X1/Kg | 331.3 | 52.6 | 51.5 | 2.1% | 387.82 | 385.5 | 0.6% | 282.45 | 274.37 | 2.9% |
X2/Kg | 639.4 | |||||||||
X3/Kg | 1039 | |||||||||
X4/Kg | 56 | |||||||||
X5/Kg | 153 | |||||||||
X6/kg | 0.632 |
Chemical Composition | MgO | Al2O3 | SiO2 | SO3 | CaO | Fe2O3 | Loss |
---|---|---|---|---|---|---|---|
Mass fraction | 1.4 | 4.96 | 18.76 | 1.43 | 57.56 | 33.352 | --- |
Type | X1 kg | X2 kg | X3 kg | X4 kg | X5 kg | X6 kg | Cost CNY | CE kg CO2e | fce MPa |
---|---|---|---|---|---|---|---|---|---|
This scheme | 331.3 | 639.4 | 1039 | 56 | 153 | 0.632 | 387.82 | 282.45 | 52.6 |
C50 | 451 | 574.8 | 1193.8 | 0 | 180.4 | 3.38 | 418.07 | 335.66 | 57.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Wen, B.; Niu, D.; Li, A.; Guo, B. Optimized Design of Low-Carbon Mix Ratio for Non-Dominated Sorting Genetic Algorithm II Concrete Based on Genetic Algorithm-Improved Back Propagation. Materials 2024, 17, 4077. https://doi.org/10.3390/ma17164077
Zhang F, Wen B, Niu D, Li A, Guo B. Optimized Design of Low-Carbon Mix Ratio for Non-Dominated Sorting Genetic Algorithm II Concrete Based on Genetic Algorithm-Improved Back Propagation. Materials. 2024; 17(16):4077. https://doi.org/10.3390/ma17164077
Chicago/Turabian StyleZhang, Fan, Bo Wen, Ditao Niu, Anbang Li, and Bingbing Guo. 2024. "Optimized Design of Low-Carbon Mix Ratio for Non-Dominated Sorting Genetic Algorithm II Concrete Based on Genetic Algorithm-Improved Back Propagation" Materials 17, no. 16: 4077. https://doi.org/10.3390/ma17164077
APA StyleZhang, F., Wen, B., Niu, D., Li, A., & Guo, B. (2024). Optimized Design of Low-Carbon Mix Ratio for Non-Dominated Sorting Genetic Algorithm II Concrete Based on Genetic Algorithm-Improved Back Propagation. Materials, 17(16), 4077. https://doi.org/10.3390/ma17164077