Ordered Mesoporous Silica Prepared with Biodegradable Gemini Surfactants as Templates for Environmental Applications
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis
2.2. Characterization
2.3. Metal Ion Sorption Experiments
3. Results and Discussion
3.1. Infrared Spectroscopy
3.2. Nitrogen Sorption Isotherms
3.3. Scanning Electron Microscopy
3.4. Transmission Electron Microscopy
3.5. Small-Angle X-Ray Scattering
3.6. Ultra-Small-Angle Neutron Scattering
3.7. Adsorption Isotherm of Pb(II)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ALOthman, Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Fernández de Luis, R.F.; Goscianska, J.; Demessence, A.; Ettlinger, R.; Wuttke, S. Metal–Organic Frameworks for Water Desalination. Adv. Funct. Mater. 2024, 34, 2304790. [Google Scholar] [CrossRef]
- Davletbaeva, I.M.; Sazonov, O.O. Macromolecular Architecture in the Synthesis of Micro- and Mesoporous Polymers. Polymers 2024, 16, 3267. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Van Der Voort, P.; Mathieu, M.; Mees, F.; Vansant, E.F. Synthesis of High-Quality MCM-48 and MCM-41 by Means of the GEMINI Surfactant Method. J. Phys. Chem. B 1998, 102, 8847–8851. [Google Scholar] [CrossRef]
- Zana, R. Dimeric (gemini) surfactants: Effect of the spacer group on the association behavior in aqueous solution. J. Colloid Interface Sci. 2002, 248, 203–220. [Google Scholar] [CrossRef]
- Carraro, P.M.; Nope, E.; Sathicq, Á.G.; Romanelli, G.P.; Eimer, G.A. Effect of Hierarchical Architecture of Nickel Modified Mesoporous Catalysts on the Knoevenagel Condensation Reaction. ChemistrySelect 2024, 9, e202402552. [Google Scholar] [CrossRef]
- Barczak, M.; Pietras-Ożga, D.; Seliem, M.K.; de Falco, G.; Giannakoudakis, D.A.; Triantafyllidis, K. Mesoporous Silicas Obtained by Time-Controlled Co-Condensation: A Strategy for Tuning Structure and Sorption Properties. Nanomaterials 2023, 13, 2065. [Google Scholar] [CrossRef] [PubMed]
- Bhadani, A.; Tani, M.; Endo, T.; Sakai, K.; Abe, M.; Sakai, H. New ester based gemini surfactants: The effect of different cationic headgroups on micellization properties and viscosity of aqueous micellar solution. Phys. Chem. Chem. Phys. 2015, 17, 19474–19483. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Bai, Y.; Li, Q.; Wang, J. Preparation and Adsorption Properties of MCM-41 with Novel Gemini Ionic Liquid Surfactants as Template. Materials 2022, 15, 2780. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, L.; Han, X.; Liu, H.; Hu, Y. The Complex Morphologies of Ti-MCM-41 Templated by Gemini Surfactant. Mater. Res. Bull. 2007, 42, 102–112. [Google Scholar] [CrossRef]
- Chen, Q.; Han, L.; Gao, C.; Che, S. Synthesis of monodispersed mesoporous silica spheres (MMSSs) with controlled particle size using gemini surfactant. Micropor. Mesopor. Mater. 2010, 128, 203–212. [Google Scholar] [CrossRef]
- Romero, F.J.; Jiménez, C.; Huc, I.; Oda, R. Room temperature synthesis of ordered porous silicas templated by symmetric and dissymmetric gemini surfactants [CnH2n+1N(CH3)2(CH2)2(CH3)2NCmH2m+1]Br2. Micropor. Mesopor. Mater. 2004, 69, 43–48. [Google Scholar] [CrossRef]
- Li, M.; Zhang, C.; Yang, X.-L.; Xu, H.-B. Controllable Synthesis of Hollow Mesoporous Silica Nanoparticles Templated by Kinetic Self-Assembly Using a Gemini Surfactant. RSC Adv. 2013, 3, 16304–16307. [Google Scholar] [CrossRef]
- Li, M.; Zhang, C.; Yang, X. Gemini Surfactants Templated Mesoporous Silica Microparticles: From Solid to Hollow Mesoporous Spheres. Chinese J. Chem. 2017, 35, 1706–1710. [Google Scholar] [CrossRef]
- Pisárčik, M.; Polakovičová, M.; Markuliak, M.; Lukáč, M.; Devínsky, F. Self-Assembly Properties of Cationic Gemini Surfactants with Biodegradable Groups in the Spacer. Molecules 2019, 24, 1481. [Google Scholar] [CrossRef] [PubMed]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Strunz, P.; Saroun, J.; Mikula, P.; Lukas, P.; Eichhorn, F. Double-Bent-Crystal Small-Angle Neutron Scattering Setting and its Applications. J. Appl. Cryst. 1997, 30, 844–848. [Google Scholar] [CrossRef]
- Šaroun, J. Evaluation of double-crystal SANS data influenced by multiple scattering. J. Appl. Cryst. 2000, 33, 824–828. [Google Scholar] [CrossRef]
- Matusoiu, F.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Svera, P.; Ianasi, C. Molybdate Recovery by Adsorption onto Silica Matrix and Iron Oxide Based Composites. Gels 2022, 8, 125. [Google Scholar] [CrossRef]
- Yismaw, S.; Wenzel, M.; Attallah, A.G.; Zaleski, R.; Matysik, J.; Poppitz, D.; Gläser, R.; Ebbinghaus, S.G.; Enke, D. Core-shell structured MCM-48-type silica-polymer hybrid material synthesis and characterization. J. Nanopart. Res. 2023, 25, 21. [Google Scholar] [CrossRef]
- Wang, G.; Otuonye, A.N.; Blair, E.A.; Denton, K.; Tao, Z.; Asefa, T. Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study. J. Solid State Chem. 2009, 182, 1649–1660. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Almásy, L.; Putz, A.-M.; Tian, Q.; Kopitsa, G.P.; Khamova, T.V.; Barabás, R.; Rigó, M.; Bóta, A.; Wacha, A.; Mirica, M.; et al. Hybrid Mesoporous Silica with Controlled Drug Release. J. Serb. Chem. Soc. 2019, 84, 1027–1039. [Google Scholar] [CrossRef]
- Lenza, R.F.S.; Vasconcelos, W.L. Preparation of Silica by Sol-Gel Method Using Formamide. Mat. Res. 2001, 4, 175–179. [Google Scholar] [CrossRef]
- Latypova, A.R.; Lebedev, M.D.; Tarasyuk, I.A.; Sidorov, A.I.; Rumyantsev, E.V.; Vashurin, A.S.; Marfin, Y.S. Sol-Gel Synthesis of Organically Modified Silica Particles as Efficient Palladium Catalyst Supports to Perform Hydrogenation Process. Catalysts 2021, 11, 1175. [Google Scholar] [CrossRef]
- Courtney, T.D.; Chang, C.-C.; Gorte, R.J.; Lobo, R.F.; Fan, W.; Nikolakis, V. Effect of water treatment on Sn-BEA zeolite: Origin of 960 cm−1 FTIR peak. Micropor. Mesopor. Mater. 2015, 210, 69–76. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Thommes, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Mustafa, N.N.N. Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel-Halsey-Hill (FHH) model. J. Colloid Interf. Sci. 2006, 301, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Conolly, J.; Singh, M.; Buckley, C.E. Determination of size and ordering of pores in mesoporous silica using small angle neutron scattering. Physica B 2004, 350, 224–226. [Google Scholar] [CrossRef]
- Goworek, J.; Kierys, A.; Gac, W.; Borówka, A.; Kusak, R. Thermal Degradation of CTAB in As-Synthesized MCM-41. J. Therm. Anal. Calorim. 2009, 96, 375–382. [Google Scholar] [CrossRef]
- Putz, A.-M.; Cecilia, S.; Ianăşi, C.; Dudás, Z.; Székely, K.N.; Plocek, J.; Sfârloaga, P.; Sacarescu, L.; Almásy, L. Pore ordering in mesoporous matrices induced by different directing agents. J. Porous Mater. 2015, 22, 321–331. [Google Scholar] [CrossRef]
- Zienkiewicz-Strzalka, M.; Pikus, S.; Skibinska, M.; Blachnio, M.; Derylo-Marczewska, A. The structure of ordered mesoporous materials synthesized from aluminum phyllosilicate clay (Bentonite). Molecules 2023, 28, 2561. [Google Scholar] [CrossRef] [PubMed]
- Borówka, A.; Skrzypiec, K. Effects of temperature on the structure of mesoporous silica materials templated with cationic surfactants in a nonhydrothermal short-term synthesis route. J. Solid State Chem. 2021, 299, 122183. [Google Scholar] [CrossRef]
- Putz, A.-M.; Ciopec, M.; Negrea, A.; Grad, O.; Ianăşi, C.; Ivankov, O.I.; Milanovic, M.; Stijepovic, I.; Almásy, L. Comparison of Structure and Adsorption Properties of Mesoporous Silica Functionalized with Aminopropyl Groups by the Co-Condensation and the Post Grafting Methods. Materials 2021, 14, 628. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Cui, K.; Jin, S. Temperature-driven structural evolution during preparation of MCM-41 mesoporous silica. Materials 2024, 17, 1711. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm models for adsorption of heavy metals from water—A review. Chemosphere 2022, 307, 135545. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef] [PubMed]
- Putz, A.-M.; Ivankov, O.I.; Kuklin, A.I.; Ryukhtin, V.; Ianăşi, C.; Ciopec, M.; Negrea, A.; Trif, L.; Horváth, Z.E.; Almásy, L. Ordered Mesoporous Silica Prepared in Different Solvent Conditions: Application for Cu(II) and Pb(II) Adsorption. Gels 2022, 8, 443. [Google Scholar] [CrossRef] [PubMed]
- Du, P.D.; Hieu, N.T.; To, T.C.; Bach, L.G.; Tinh, M.X.; Mau, T.X.; Khieu, D.Q. Aminopropyl functionalized MCM-41: Synthesis and application for adsorption of Pb(II) and Cd(II). Adv. Mater. Sci. Eng. 2019, 2019, 8573451. [Google Scholar] [CrossRef]
- Heidari, A.; Younesi, H.; Mehraban, Z. Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem. Eng. J. 2009, 153, 70–79. [Google Scholar] [CrossRef]
- Malhis, A.A.; Arar, S.H.; Fayyad, M.K.; Hodali, H.A. Amino- and thiol-modified microporous silicalite-1 and mesoporous MCM-48 materials as potential effective adsorbents for Pb(II) in polluted aquatic systems. Adsorpt. Sci. Technol. 2018, 36, 270–286. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, D.; Zhao, Y.; Gong, B.; Guo, Y.; Huang, W. Synthesis of chitosan-functionalized MCM-41-A and its performance in Pb(II) removal from synthetic water. J. Taiwan Inst. Chem. Eng. 2017, 71, 537–545. [Google Scholar] [CrossRef]
- Liao, Q.; Ma, F.; Fu, Y.; Feng, W.; Lu, Y. Bi-functionalized MCM-41 for heavy metal ions removal: Synthesis, enhanced performance, and mechanism study. J. Porous Mater. 2024, 31, 1895–1904. [Google Scholar] [CrossRef]
- Wu, S.; Li, F.; Xu, R.; Wei, S.; Li, G. Synthesis of thiol-functionalized MCM-41 mesoporous silicas and its application in Cu(II), Pb(II), Ag(I), and Cr(III) removal. J. Nanoparticle Res. 2010, 12, 2111–2124. [Google Scholar] [CrossRef]
Band Assignments | S-ex-e (Solvent-Extracted) ν [cm−1] | S-ex-540 (Calcined) ν [cm−1] |
---|---|---|
Free silanol groups and molecular water [21] | 3735, 3610 | 3465 |
Methylene asymmetric stretching [22] | 2932 | |
Methylene symmetric stretching [22] | 2861 | |
Molecular water and the SiO2 network [24] | 1650 | 1624 |
Methylene C–H bending [23,24] | 1477 | |
Asymmetric Si–O–Si stretching [25] | 1075 | 1086 |
Si–OH stretching [26,27,28] | 957 | |
Symmetric Si–O–Si stretching [25,26] | 809 | 791 |
Si–O–Si bending [21,25] | 460 | 460 |
Sample | Surface Area, m2/g | Micropore Surface Area, m2/g | BJH ads, nm | BJH des, nm | DFT Pore Size, nm | Total Pore Volume, cm3/g | Micropore Volume, cm3/g | FHH (ads) Df |
---|---|---|---|---|---|---|---|---|
S-e2-e | 169 | 3.43 | 3.17 | 5.28 | 0.32 | 1.67 | ||
S-e3-e | 11 | 12.52 | 3.33 | 11.28 | 0.07 | 1.42 | ||
S-e4-e | 137 | 3.43 | 3.09 | 5.29 | 0.24 | 1.75 | ||
S-e6-e | 67 | 3.43 | 3.97 | 8.46 | 0.17 | 1.68 | ||
S-e7-e | 169 | 3.47 | 3.34 | 5.29 | 0.35 | 1.58 | ||
S-e8-e | 11 | 6.66 | 7.59 | 10.89 | 0.16 | 0.87 | ||
S-e2-540 | 1214 | 706 | 3.04 | 3.96 | 2.82 | 0.63 | 0.24 | 2.67 |
S-e3-540 | 1331 | 779 | 3.39 | 3.95 | 2.82 | 0.65 | 0.26 | 2.70 |
S-e4-540 | 1309 | 711 | 3.10 | 3.40 | 3.06 | 0.66 | 0.24 | 2.69 |
S-e6-540 | 1268 | 708 | 3.06 | 3.37 | 2.31 | 0.67 | 0.24 | 2.66 |
S-e7-540 | 1195 | 683 | 3.46 | 3.96 | 2.82 | 0.62 | 0.24 | 2.68 |
S-e8-540 | 1201 | 621 | 3.05 | 3.96 | 2.82 | 0.69 | 0.20 | 2.61 |
Sample | (10) Peak Position [nm−1] | d [nm] | Domain Size [nm] | Reduction in Domain Size upon Calcination | Diameter and HWHM by SEM [nm] | Diameter and HWHM by USANS [nm] |
---|---|---|---|---|---|---|
S-e2-100 | 2.02 | 3.11 | 45.2 | 615.9, 270 | 713, 31 | |
S-e2-540 | 2.12 | 2.97 | 30.1 | 0.61 | 604.5, 321 | |
S-e3-100 | 2.03 | 3.09 | 41.0 | 555.3, 210 | ||
S-e3-540 | 2.14 | 2.93 | 26.5 | 0.62 | ||
S-e4-100 | 2.02 | 3.11 | 42.4 | 669.1, 255 | ||
S-e4-540 | 2.12 | 2.96 | 32.0 | 0.73 | 655.9, 248 | |
S-e6-100 | 2.03 | 3.09 | 40.1 | 569.3, 233 | ||
S-e6-540 | 2.13 | 2.95 | 30.2 | 0.73 | ||
S-e7-100 | 2.03 | 3.10 | 40.3 | 513.8, 135 | 685, 21 | |
S-e7-540 | 2.12 | 2.96 | 29.6 | 0.72 | 547.5, 173 | |
S-e8-100 | 2.03 | 3.09 | 36.7 | 530.7, 188 | 581, 20 | |
S-e8-540 | 2.13 | 2.95 | 31.2 | 0.82 |
Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|
KL [L mg−1] | Qm [mg g−1] | R2 | n | KF [mg g−1] | R2 |
0.0102 | 113.852 | 0.882 | 1.3512 | 1.671 | 0.992 |
Adsorbent | Synthesis Method | Pb(II) Adsorption Capacity [mg/g] | Reference |
---|---|---|---|
MCM-41 | MCM-41 from TEOS and diester gemini surfactant in alkaline media; template removal by calcination | 113.85 | The present work |
MCM-41 | MCM-41 from TEOS and CTAB in alkaline media; template removal by calcination | 18.8 | [41] |
NH2-MCM-41 | MCM-41 prepared from TEOS, APTES, and CTAB in alkaline media by co-condensation; template removal by solvent extraction | 64.2 | [42] |
NH2-MCM-41 | MCM-41 prepared from TEOS and CTAB in alkaline media; post-synthesis functionalization with APTES | 57.7 | [43] |
NH2-MCM-48 | MCM-48 prepared from TEOS and CTAB in alkaline media; post-synthesis functionalization with APTES | 75.2 | [44] |
SH-MCM-48 | MCM-48 prepared from TEOS and CTAB in alkaline media; post-synthesis functionalization with MPTMS | 31.2 | [44] |
Chitosan-MCM-41 | MCM-41 prepared from Na silicate and CTAB; subsequent grafting with chitosan | 90.91 | [45] |
Bifunctionalized NH2-SH-MCM-41 | MCM-41 prepared from TEOS and CTAB in alkaline media; subsequent post-grafting by hydrolyzed APTES and MPTMS | 55.56 | [46] |
SH-MCM-41 | MCM-41 prepared from TEOS, MPTMS, and CTAB in alkaline media by co-condensation; template removal by solvent extraction | 66.04 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurbonov, S.; Pisárčik, M.; Lukáč, M.; Czigány, Z.; Kovács, Z.; Tolnai, I.; Kriechbaum, M.; Ryukhtin, V.; Petrenko, V.; Avdeev, M.V.; et al. Ordered Mesoporous Silica Prepared with Biodegradable Gemini Surfactants as Templates for Environmental Applications. Materials 2025, 18, 773. https://doi.org/10.3390/ma18040773
Kurbonov S, Pisárčik M, Lukáč M, Czigány Z, Kovács Z, Tolnai I, Kriechbaum M, Ryukhtin V, Petrenko V, Avdeev MV, et al. Ordered Mesoporous Silica Prepared with Biodegradable Gemini Surfactants as Templates for Environmental Applications. Materials. 2025; 18(4):773. https://doi.org/10.3390/ma18040773
Chicago/Turabian StyleKurbonov, Sarvarjon, Martin Pisárčik, Miloš Lukáč, Zsolt Czigány, Zoltán Kovács, István Tolnai, Manfred Kriechbaum, Vasyl Ryukhtin, Viktor Petrenko, Mikhail V. Avdeev, and et al. 2025. "Ordered Mesoporous Silica Prepared with Biodegradable Gemini Surfactants as Templates for Environmental Applications" Materials 18, no. 4: 773. https://doi.org/10.3390/ma18040773
APA StyleKurbonov, S., Pisárčik, M., Lukáč, M., Czigány, Z., Kovács, Z., Tolnai, I., Kriechbaum, M., Ryukhtin, V., Petrenko, V., Avdeev, M. V., Tian, Q., Lacrămă, A.-M., & Almásy, L. (2025). Ordered Mesoporous Silica Prepared with Biodegradable Gemini Surfactants as Templates for Environmental Applications. Materials, 18(4), 773. https://doi.org/10.3390/ma18040773