Effect of Cross-Section on Low-Temperature Fracture Toughness of Marine Engineering Steel Thick Plate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanical Properties
3.2. Microstructure
3.3. Impact Properties
3.4. Impact Fracture Morphology and Microstructure in the Vicinity of Cracks
4. Discussion
4.1. Effect of Microstructure and Carbides on Low-Temperature Fracture Toughness
4.2. Effect of a High-Angle Grain Boundary on the Fracture Toughness of Test Steel
4.3. Crack Initiation and Propagation
5. Conclusions
- After quenching and tempering, the marine engineering steel thick plates exhibit pronounced microstructural differences across various positions due to the cross-section effect. The surface microstructure predominantly consists of tempered martensite, whereas the microstructure at the quarter-thickness region is a mixture of tempered martensite and tempered bainite. The center microstructure primarily consists of granular bainite. The fracture toughness of the center is markedly lower than that of the surface and quarter-thickness regions. The impact energies measured at different locations are as follows: 205 J for the surface, 215 J for the quarter-thickness region, and 100 J for the center.
- Both the density of HAGBs and carbide size after tempering have a significant impact on the fracture toughness of the test steel. Larger carbides tend to cause stress concentration, which can initiate cracks, whereas smaller carbides can release stress during crack propagation, thereby enhancing fracture toughness. In the quarter-thickness region, the higher density of HAGBs plays a crucial role in deflecting cracks during propagation, thereby dissipating energy and enhancing the fracture toughness of the steel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.W. Research progress of high strength low alloy steel (HSLA). Mater. Prog. China 2016, 35, 141–151. [Google Scholar]
- Tao, P.; Yu, H.; Fan, Y.-F.; Fu, Y. Effects of cooling method after intercritical heat treatment on microstructural characteristics and mechanical properties of as-cast high-strength low-alloy steel. Mater. Des. 2014, 54, 914–923. [Google Scholar] [CrossRef]
- Wei, Y.; Gaosheng, L.; Qingwu, C. Effect of a novel gradient temperature rolling process on deformation, microstructure and mechanical properties of ultra-heavy plate. Mater. Process. Technol. 2015, 217, 317–326. [Google Scholar] [CrossRef]
- Zhang, J.J. Medium Plate Production; Metallurgical Industry Press: Beijing, China, 2008; p. 2005l. [Google Scholar]
- Feng, M.Y.; Wang, B.; Sun, X.W.; Wang, Y.X. Causes and solutions of internal cracks in continuous casting billet. Metall. Eng. 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, L.Q.; Hu, F.; Yin, C.C.; Chen, T.S. Effect of multi-scale cross-section structure on strength and toughness of quenched and tempered marine steel. Steel 2023, 58, 147–158. [Google Scholar]
- Morito, S.; Huang, X.; Furuhara, T.; Maki, T.; Hansen, N. The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 2006, 54, 5323–5331. [Google Scholar] [CrossRef]
- Zhao, J.-X.; Zhong, R.; Lu, G.-Y.; Xia, D.-X.; Cong, J.-H.; Shang, C.-J. Exploring variations in toughness contributions across different types of high-angle grain boundaries in bainitic steels. Mater. Lett. 2025, 379, 137632. [Google Scholar] [CrossRef]
- Zhu, C.; Gao, X.; Hao, J.; Zhu, C.; Li, T.; Feng, G.; Liu, T. Control of microstructure and mechanical properties of low-carbon bainitic weathering bridge steel with ultrahigh toughness at ultra-low temperatures. Constr. Build. Mater. 2025, 466, 140299. [Google Scholar] [CrossRef]
- Cheng, X.; Gao, G.; Fu, C.; Gui, X.; Bai, B.; Feng, C. Mechanistic understanding of banded microstructure and its effect on anisotropy of toughness in low carbon-low alloy steel. Mater. Sci. Eng. A 2025, 919, 147507. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Barik, R.K.; Ghosh, A.; Patra, S.; Das, A.; Mitra, R.; Chakrabarti, D. Relative influence of microsegregation and structural unit size on the strength-impact toughness properties of an armor grade steel. Mater. Sci. Eng. A 2024, 901, 146501. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Zhang, W.N.; Wang, P.J.; Mao, Q.J.; Liu, Z.-Y. Crystallography of transformation products with different cooling rates in low-carbon alloy steel and its effect on low-temperature toughness uniformity of heavy plates. J. Mater. Res. Technol. 2024, 28, 2077–2085. [Google Scholar] [CrossRef]
- Hwang, B.; Lee, C.G.; Kim, S.J. Low-temperature toughening mechanism in thermomechanically processed high-strength low-alloy steels. Metall. Mater. Trans. A 2011, 42, 717–728. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, H.L.; Xu, B.; Jiang, H.Y.; Sun, M.Y.; Li, D.Z. Sensitivity of the Impact Toughness and Microstructure of 15CrNi3MoV Steel Under Different Quenching Rates. Acta Met. Sin. (Engl. Lett.) 2023, 36, 1735–1748. [Google Scholar] [CrossRef]
- Wang, K.; Hu, F.; Zhou, S.B.; Zhou, W.; Hu, C.-Y.; Yershov, S.; Wu, K.-M. Microstructural evolution and ultra-high impact toughness of austempered lamellar bainitic steel far below Ms temperature. J. Mater. Res. Technol. 2023, 24, 5449–5462. [Google Scholar] [CrossRef]
- Long, S.; Liang, Y.; Jiang, Y.; Liang, Y.; Yang, M.; Yi, Y.L. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel. Mater. Sci. Eng. A 2016, 676, 38–47. [Google Scholar] [CrossRef]
- Celada-Casero, C.; Sietsma, J.; Santofimia, M.J. The role of the austenite grain size in the martensitic transformation in low carbon steels. Mater. Des. 2019, 167, 107625. [Google Scholar] [CrossRef]
- Ding, L.; Wang, H.; Zeng, Z.; Qin, B.H.; Vladyslav, K.; Chen, L.J.; Zhang, Y.P. Grain misorientation induced low-temperature impact toughness deterioration and its deformation mechanism of Ti6321 titanium alloy. Mater. Sci. Eng. A 2024, 914, 147095. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Hu, X.F.; Du, Y.B.; Jiang, H.C.; Pang, H.Y.; Rong, L.J. Sectional effect of Ni-Cr-Mo-B ultra-thick steel plates for offshore platforms. J. Metall. 2020, 56, 1227–1238. [Google Scholar] [CrossRef]
- Shang, X.; Zhao, J.; Li, X.; Misra, R.D.K.; Wang, X.; Xu, X.; Shang, C. The determining role of laminar heterostructures on the mechanical properties of low-density steels. Mater. Sci. Eng. A 2023, 881, 145340. [Google Scholar] [CrossRef]
- Xu, X.; Shi, J.; Zhao, Y. Experimental Study on Plastic Deformation of EH690 Steel with the V-Notch during Falling Weight Impact Based on DIC. Processes 2024, 12, 751. [Google Scholar] [CrossRef]
- Xu, N.; Liu, Y.; Kang, Y. Impact force curve feature and failure mode identification method of concrete-filled steel tube members under lateral impact. Constr. Build. Mater. 2024, 421, 135724. [Google Scholar] [CrossRef]
- Liu, D.; Cheng, B.; Chen, Y. Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa. Metall. Mater. Trans. A 2013, 44, 440–455. [Google Scholar] [CrossRef]
- Furuhara, T.; Kawata, H.; Morito, S.; Maki, T. Crystallography of upper bainite in Fe–Ni–C alloys. Mater. Sci. Eng. A 2006, 431, 228–236. [Google Scholar] [CrossRef]
- Dastur, P.; Slater, C.; Moore, T. Martensite size and morphology influence on strain distribution and micro-damage evolution in dual-phase steels; comparing segregation-neutralised and banded grades. Mater. Des. 2024, 246, 113340. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, P.; Li, D.; Li, Y.Y. The evolutions of microstructure and mechanical properties of 2.25 Cr-1Mo-0.25 V steel with different initial microstructures during tempering. Mater. Sci. Eng. A 2017, 699, 165–175. [Google Scholar] [CrossRef]
- Ai, Z.; Teng, H.; Ge, C.; Zhao, H.S.; Wang, B.; Dong, H. Influence of multilevel martensitic microstructures and carbide on the low-temperature toughness and fracture behavior of MnB steels. Mater. Sci. Eng. A 2025, 925, 147909. [Google Scholar] [CrossRef]
- Rajput, S.A.; Neog, P.S.; Das, S. Effect of tempering conditions on microstructure evolution and sliding wear behaviour of continuously cooled carbide-free bainitic steel. Tribol. Int. 2025, 204, 110519. [Google Scholar] [CrossRef]
- Fan, Y.; Gao, G.; Cheng, X.; Liu, M.; Zhang, F.; Gui, X. Influence of Tempering Temperature on Microstructure, Strength and Toughness of Air-Cooled Carbide-Free Bainite/Martensite Multiphase Steel. Metall. Mater. Trans. A 2024, 56, 600–617. [Google Scholar] [CrossRef]
- Zhou, S.B.; Zhang, L.Q.; Hu, F.; Yin, C.C.; Zhou, W.; Wu, K. Effect of core microstructure on fracture mechanism of ultra-thick high strength steel. J. Iron Steel Res. 2022, 34, 578–587. [Google Scholar]
- Lee, K.H.; Kim, M.C.; Yang, W.J.; Lee, B.-S. Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn–Mo–Ni low alloy steels. Mater. Sci. Eng. A 2013, 565, 158–164. [Google Scholar] [CrossRef]
- Puttick, K.E. Ductile fracture in metals. Philos. Mag. 1959, 4, 964–969. [Google Scholar] [CrossRef]
- Jia, T.; Zhou, Y.; Jia, X.; Wang, Z. Effects of microstructure on CVN impact toughness in thermomechanically processed high strength micro alloyed steel. Metall. Mater. Trans. A 2017, 48, 685–696. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Subramanian, S.V.; Shang, C.J. EBSD characterization of secondary microcracks in the heat affected zone of a X100 pipeline steel weld joint. Int. J. Fract. 2015, 193, 131–139. [Google Scholar] [CrossRef]
- Mao, G.; Cayron, C.; Cao, R.; Logé, R.; Chen, J. The relationship between low-temperature toughness and secondary crack in low-carbon bainitic weld metals. Mater. Charact. 2018, 145, 516–526. [Google Scholar] [CrossRef]
- Luo, Z.; Shen, J.; Hang, S.U.; Ding, Y.-H.; Yang, C.-F.; Zhu, X. Effect of substructure on toughness of lath martensite/bainite mixed structure in low-carbon steels. J. Iron Steel Res. Int. 2010, 17, 40–48. [Google Scholar] [CrossRef]
- Li, Y. Effect of Mo on HAZ Toughness of Girth Welded Joints of X80 Pipeline Steel; China University of Petroleum: Beijing, China, 2023. [Google Scholar] [CrossRef]
- Zheng, D.; Zhao, W.; Yu, X.; Su, Y.; Wei, Y.H. Effect of Martensite–Bainite Duplex Microstructure on Carbide Precipitation and Mechanical Properties of M50 Steel. Steel Res. Int. 2024, 96, 2400570. [Google Scholar] [CrossRef]
- Liu, J.Y.; Tian, Y.J.; Liu, M.; Gan, X.L.; Liu, S.; Xu, G. Effect of isothermal martensite and bainite transformation on microstructure and properties in a medium-carbon high-strength Q&P steel. J. Iron Steel Res. Int. 2024, 31, 3095–3108. [Google Scholar] [CrossRef]
- Sun, W.R.; Guo, S.R.; Tong, B.Y.; Lu, D.Z.; Hu, Z.L. Phenomenon and mechanism of nanocrystallization on impact fracture surface of deformed IN718 alloy. J. Mater. Res. 2003, 17, 122–126. [Google Scholar]
- Xu, C.G.; Yu, G. Discussion on the relationship between impact toughness and fracture toughness. Aeronaut. J. 1990, 04, 182–187. [Google Scholar]
- Yang, B.X.; Tian, X.; Xu, H. Fracture characteristics test of 10Cr rotor steel for 600 °C ultra-supercritical steam turbine. Therm. Power Gener. 2018, 47, 64–70. [Google Scholar] [CrossRef]
- Cui, D.; Wang, L.; Zhang, C. Dynamic splitting performance and energy dissipation of fiber-reinforced concrete under impact loading. Materials 2024, 17, 421. [Google Scholar] [CrossRef]
C | Mn | Si | S | P | Cr | Ti + V | Fe |
---|---|---|---|---|---|---|---|
0.115 | 1.51 | 0.32 | 0.003 | 0.006 | 0.51 | 0.02 | Bal |
Position | Tensile Strength [MPa] | Yield Strength [MPa] | Total Elongation [%] | Impact Absorbed Energy [J] | Average Value [J] |
---|---|---|---|---|---|
0T | 785 ± 5 | 718 ± 5 | 20.0 ± 0.4 | 221.5, 194.1, 199.3 | 204.9 ± 16.6 |
1/4T | 774 ± 8 | 697 ± 9 | 19.5 ± 0.1 | 204.0, 212.0, 230.2 | 215.4 ± 14.8 |
1/2T | 755 ± 5 | 673 ± 8 | 19.0 ± 0.3 | 106.3, 93.9, 96.4 | 98.8 ± 7.5 |
Position | Proportion of Grain Boundary [%] | KAM [°] | ||
---|---|---|---|---|
5~15 | 15~45 | 45~65 | ||
0T | 33.70 | 5.68 | 60.60 | 0.54 |
1/4T | 20.60 | 7.24 | 72.20 | 0.54 |
1/2T | 19.10 | 4.89 | 76.00 | 0.50 |
Sample | Proportion of Grain Boundary [%] | KAM [°] | ||
---|---|---|---|---|
5~15 | 15~45 | 45~65 | ||
0T | 32.4 | 39.2 | 28.4 | 0.89 |
1/4T | 32.8 | 23.7 | 43.4 | 0.95 |
1/2T | 35.9 | 30.5 | 33.5 | 1.02 |
Position | KIC [kJ/m2] | J-Integral [MPa·m1/2] |
---|---|---|
0T | 221.87 | 225.43 |
1/4T | 227.49 | 236.99 |
1/2T | 154.07 | 108.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, K.; Zhang, L.; Hu, C.; Hu, L.; Wu, K. Effect of Cross-Section on Low-Temperature Fracture Toughness of Marine Engineering Steel Thick Plate. Materials 2025, 18, 1015. https://doi.org/10.3390/ma18051015
Zheng K, Zhang L, Hu C, Hu L, Wu K. Effect of Cross-Section on Low-Temperature Fracture Toughness of Marine Engineering Steel Thick Plate. Materials. 2025; 18(5):1015. https://doi.org/10.3390/ma18051015
Chicago/Turabian StyleZheng, Kuan, Liqin Zhang, Chengyang Hu, Lei Hu, and Kaiming Wu. 2025. "Effect of Cross-Section on Low-Temperature Fracture Toughness of Marine Engineering Steel Thick Plate" Materials 18, no. 5: 1015. https://doi.org/10.3390/ma18051015
APA StyleZheng, K., Zhang, L., Hu, C., Hu, L., & Wu, K. (2025). Effect of Cross-Section on Low-Temperature Fracture Toughness of Marine Engineering Steel Thick Plate. Materials, 18(5), 1015. https://doi.org/10.3390/ma18051015