Combination of Individual Tests to Improve Diagnostic Accuracy in Chlamydia trachomatis Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sampling and Data Collection
2.3. Screening Methods
2.4. Rapid Immunochromatogaphic Test (RT) for Qualitative Detection of Chlamydia Antigen
2.5. Determination of the Serum Level of the Antibodies to the Chlamydial MOMP Antigen
2.6. Diagnostic Method
2.6.1. Real-Time Polymerase Chain Reaction (RT-PCR)
2.6.2. Diagnostic Criteria
2.7. Statistical Analysis
3. Results
3.1. Concordance Between RT-PCR Assay and Multi-Test Positivity Approach for Result Comparison (Obtained by a Combination of Tests—Two or More Tests Positive Approach)
3.2. Concordance Between RT-PCR Assay and Multi-Test Positivity Approach for Result Comparison—Any Test Positive Approach
3.3. Diagnostic Accuracy of the Tests
3.4. Diagnostic Accuracy of a Combination of Tests—“Two or More Tests Positive” Approach
3.5. Diagnostic Accuracy of a Combination of Tests—“Any Test Positive” Approach
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDC | Centers for Disease Prevention and Control |
DIF | direct immunofluorescence test |
MOMP | main outer membrane protein |
RT | rapid immunochromatographic test |
RT-PCR | real-time polymerase chain reaction |
ELISA | enzyme-linked immunosorbent assay |
ORA | overall agreement |
IgA and Ig- | antibodies (immunoglobulins) |
PPV | positive predictive value |
NPV | negative predictive value |
References
- Kreisel, K.M.; Spicknall, I.H.; Gargano, J.W.; Lewis, F.M.; Lewis, R.M.; Markowitz, L.E.; Roberts, H.; Satcher Johnson, A.; Song, R.; St Cyr, S.B.; et al. Sexually transmitted infections among US women and men: Prevalence and incidence estimates. Sex. Transm. Dis. 2021, 48, 208–214. [Google Scholar] [CrossRef] [PubMed]
- CDC. Sexually Transmitted Disease Surveillance; Department of Health and Human Services: Atlanta, GA, USA, 2021; pp. 21–41. [Google Scholar]
- European Centre for Disease Prevention Control. Introduction to the Annual Epidemiological Report. In Annual Epidemiological Report for 2020 [Internet]; ECDC: Solna, Sweden, 2020. [Google Scholar]
- European Centre for Disease Prevention Control. Chlamydia Control in Europe—A Survey of Member States Stockholm; ECDC: Solna, Sweden, 2014. [Google Scholar]
- Leichliter, J.S.; Haderxhanaj, L.T.; Obafemi, O.A. Increasing sexually transmitted infections among adolescents in the USA. Lancet Child Adolesc. Health 2021, 5, 609–611. [Google Scholar] [CrossRef]
- Redmond, S.M.; Alexander-Kisslig, K.; Woodhall, S.C.; van den Broek, I.V.; van Bergen, J.; Ward, H.; Uusküla, A.; Herrmann, B.; Andersen, B.; Götz, H.M.; et al. Genital chlamydia prevalence in Europe and non-European high income countries: Systematic review and meta-analysis. PLoS ONE 2015, 10, e0115753. [Google Scholar] [CrossRef] [PubMed]
- Lanjouw, E.; Ouburg, S.; de Vries, H.J.; Stary, A.; Radcliffe, K.; Unemo, M. European guidelines on the management of Chlamydia trachomatis infections. Int. J. STD AIDS 2015, 27, 333–348. [Google Scholar] [CrossRef]
- Pereira, V.C.; Silva, S.N.; Carvalho, V.K.S.; Zanghelini, F.; Barreto, J.O.M. Strategies for the implementation of clinical practice guidelines in public health: An overview of systematic reviews. Health Res. Policy Syst. 2022, 20, 13. [Google Scholar] [CrossRef]
- Piepert, J.F. Clinical practice. Genital chlamydial infections. N. Engl. J. Med. 2003, 349, 2424–2430. [Google Scholar] [CrossRef]
- Haggerty, C.L.; Gottlieb, S.L.; Taylor, B.D.; Low, N.; Xu, F.; Ness, R.B. Risk of sequelae after Chlamydia trachomatis genital infection in women. J. Infect. Dis. 2010, 15, 134–155. [Google Scholar] [CrossRef] [PubMed]
- Paavonen, J.; Eggert-Kruse, W. Chlamydia trachomatis impact on human reproduction. Hum. Reprod. Update 1999, 5, 433–447. [Google Scholar] [CrossRef]
- Stamm, W.E.; Guinan, M.E.; Johnoson, C.; Starcher, T.; Holmes, K.K.; Mc Cormack, W.M. Effect of treatment regimens for Neisseria gonorrhoeae on simultaneous infection with Chlamydia trachomatis. N. Engl. J. Med. 1984, 310, 545–549. [Google Scholar] [CrossRef]
- Rees, E. The treatment of pelvic inflammatory disease. Am. J. Obstet. Gynecol. 1980, 138, 10427. [Google Scholar] [CrossRef]
- Ripa, K.T.; Mardh, P.A. Cultivation of Chlamydia trachomatis in cycloheximide-treated mcCoy cells. J. Clin. Microbiol. 1977, 6, 328–331. [Google Scholar] [CrossRef] [PubMed]
- CDC. Screening Tests To Detect Chlamydia trachomatis and Neisseria gonorrhoeae infections Recommendations and Reports. MMWR 2002, 51, 15. [Google Scholar]
- Friedek, D.; Ekiel, A.; Martirosian, G. Chlamydia trachomatis: Etiopathogenesis and diagnosis of infection. Pregl. Epidemiol. 2005, 59, 723–730. [Google Scholar]
- Schachter, J. Point-of-care tests using enzyme detection to diagnose Chlamydia trachomatis infection do not work. But when they fail in clinical trials, they reappear under different names. Sex. Transm. Infect. 2016, 92, 406–407. [Google Scholar] [CrossRef]
- Abbai-Shaik, N.S.; Reddy, T.; Govender, S.; Ramiec, G. Poor Performance of the Chlamydia Rapid Test Device for the detection of Asymptomatic Infections in South African Men: A Pilot Study. J. Sex. Transm. Dis. 2016, 2016, 8695146. [Google Scholar] [CrossRef]
- Van Dommelen, L.; Van Tiel, F.H.; Ouburg, S.; Brouwers, E.E.H.G.; Terporten, P.H.W.; Savelkoul, P.H.M.; Morre, S.A.; Bruggeman, C.A.; Hoebe, C.J.P.A. Alarmingly poor performance in Chlamydia trachomatis point-of-care testing. Sex. Transm. Infect. 2010, 86, 355–359. [Google Scholar] [CrossRef]
- Van der Helm, J.J.; Sabajo, L.O.; Grunberg, A.W.; Morre, S.A.; Speksnijder, A.G.; de Vries, H.J. Point-of-care test for detection of urogenital Chlamydia in women shows low sensitivity. A performance evaluation study in two clinics in Suriname. PLoS ONE 2012, 7, e32122. [Google Scholar] [CrossRef]
- Hislop, J.; Quayyum, Z.; Flett, G.; Boachie, C.; Fraser, C.; Mowatt, G. Systematic review of the clinical effectiveness and cost-effectiveness of rapid point-of-care tests for the detection of genital Chlamydia infection in women and men Review. Health Technol. Assess 2010, 14, 1–97. [Google Scholar] [CrossRef]
- Skidmore, S. Poorly performing point-of-care tests for chlamydia: What can be done? Sex. Transm. Infect. 2010, 86, 330. [Google Scholar] [CrossRef]
- CDC. Recommendations for the Laboratory—Based Detection of Chlamydia trachomatis and Neisseria gonorrhoeae. Recomm. Rep. 2014, 63, 1–19. [Google Scholar]
- Puolakkainen, M. Laboratory diagnosis of persistent human chlamydial infection. Front. Cell Infect. Microbiol. 2013, 3, 99. [Google Scholar] [CrossRef]
- Gijsen, A.P.; Land, J.A.; Goossens, V.J.; Slobbe, M.E.; Bruggeman, C.A. Chlamydia antibody testing in screening for tubal factor subfertility: The significance of IgG antibody decline over time. Hum. Reprod. 2002, 17, 699–703. [Google Scholar] [CrossRef] [PubMed]
- den Hartog, J.E.; Morre’, S.A.; Land, J.A. Chlamydia trachomatis-associated tubal factor subfertility: Immunogenetic aspects and serological screening. Hum. Reprod. Update 2006, 12, 719–730. [Google Scholar] [CrossRef]
- Komoda, T. Kinetic study of antibodies (IgG, IgA) to Chlamydia trachomatis: Importance of IgA antibody in screening test for C. trachomatis infection by peptide-based enzyme immunosorbent assay. Jpn. J. Infect. Dis. 2007, 60, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Workowski, K.A.; Bachmann, L.H.; Chan, P.A.; Johnston, C.M.; Muzny, C.A.; Park, I.; Reno, H.; Zenilman, J.M.; Bolan, G.A. Sexually Transmitted Infections Treatment Guidelines. Recomm. Rep. 2021, 70, 1–187. [Google Scholar]
- Masek, B.J.; Arora, N.; Quinn, N.; Aumakhan, B.; Holden, J.; Hardick, A.; Agreda, P.; Barnes, M.; Gaydos, C.A. Performance of three nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae by use of self-collected vaginal swabs obtained via an Internet-based screening program. J. Clin. Microbiol. 2009, 47, 1663–1667. [Google Scholar] [CrossRef]
- Knox, J.; Tabrizi, S.N.; Miller, P.; Petoumenos, K.; Law, M.; Chen, S.; Garland, S.M. Evaluation of self-collected samples in contrast to practitioner-collected samples for detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis by polymerase chain reaction among women living in remote areas. Sex. Transm. Dis. 2002, 29, 647–654. [Google Scholar] [CrossRef]
- Dize, L.; Barnes, P., Jr.; Barnes, M.; Hsieh, Y.-H.; Marsiglia, V.; Duncan, D.; Hardick, J.; Gaydos, C.A. Performance of self-collected penile-meatal swabs compared to clinician-collected urethral swabs for the detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and Mycoplasma genitalium by nucleic acid amplification assays. Diagn. Microbiol. Infect. Dis. 2016, 86, 131–135. [Google Scholar] [CrossRef]
- Berry, L.; Stanley, B. Comparison of self-collected meatal swabs with urine specimens for the diagnosis of Chlamydia trachomatis and Neisseria gonorrhoeae in men. J. Med. Microbiol. 2017, 66, 134–136. [Google Scholar] [CrossRef]
- Nenoff, P.; Manos, A.; Ehrhard, I.; Krüger, C.; Paasch, U.; Helmbold, P.; Handrick, W. Non-viral sexually transmitted infections—Epidemiology, clinical manifestations, diagnostics and therapy: Part 2: Chlamydia and mycoplasma. Hautarzt 2017, 68, 50–58. [Google Scholar] [CrossRef]
- LJubin-Sternak, S.; Meštrovic, T. Chlamydia trachomatis and genital Mycoplasmas: Pathogens with an impaction human reproductive health. J. Pathog. 2014, 2014, 183167. [Google Scholar] [CrossRef]
- Morré, S.A.; Van Den Brule, A.J.; Rozendaal, L.; Boeke, A.J.P.; Voorhorst, F.J.; De Blok, S.; Meijer, C.J. The natural course of asymptomatic Chlamydia trachomatis infections: 45% clearance and no development of clinical Pid after one-year follow-up. Int. J. STD AIDS 2002, 13, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Chernesky, M.A. The laboratory diagnosis of Chlamydia trachomatis infections. Can. J. Infect. Dis. Med. Microbiol. 2005, 16, 39–44. [Google Scholar] [CrossRef]
- Elias, J.; Frosch, M.; Vogel, U. Neisseria. In Manual of Clinical Microbiology, 10th ed.; Versalovic, J., Carroll, K.C., Funke, G., Jorgensen, J.H., Landry, M.L., Warnock, D.W., Eds.; American Society of Microbiology: Washington, DC, USA, 2011; pp. 559–603. [Google Scholar]
- Davies, P.O.; Ridgway, G.L. The role of polymerase chain reaction and ligase chain reaction for the detection of Chlamydia trachomatis. Int. J. STD AIDS 1997, 8, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.H.; Nsuami, M.; Schachter, J.; Hook, E.W., 3rd; Ferrero, D.; Quinn, T.C.; Gaydos, C. Use of multiple nucleic acid amplification tests to define the infected-patient “gold standard” in clinical trials of new diagnostic tests for Chlamydia trachomatis infections. J. Clin. Microbiol. 2004, 42, 4749–4758. [Google Scholar] [CrossRef] [PubMed]
- Hadgu, A.; Dendukuri, N.; Wang, L. Evaluation of screening tests for detecting Chlamydia trachomatis: Bias associated with the patient-infected-status algorithm. Epidemiology 2012, 23, 72–82. [Google Scholar] [CrossRef]
- Shrier, L.A.; Dean, D.; Klein, E.; Harter, K.; Rice, P.A. Limitations of screening tests for the detection of Chlamydia trachomatis in asymptomatic adolescent and young adult women. Am. J. Obstet. Gynecol. 2004, 190, 654–662. [Google Scholar] [CrossRef]
- Alonzo, T.A.; Pepe, M.S. Assessing the Accuracy of a New Diagnostic Test When a Gold Standard Does Not Exist; Technical Report 156; Department of Biostatistics, University of Washington: Seattle, WA, USA, 1998. [Google Scholar]
- Torrance-Rynard, V.; Walter, S. Effects of dependent errors in the assessment of diagnostic test performance. Stat. Med. 1997, 16, 2157–2175. [Google Scholar] [CrossRef]
- Todd, A.A.; Margaret, S.P. Using combination of reference tests to assess the accuracy of a new diagnostic test. Stat. Med. 1999, 18, 2987–3003. [Google Scholar]
- Jelena, T.P. Diagnostic Performance Andeconomic Aspects of Tests for the Detection of Chlamydia-e trachomatis. Ph.D. Thesis, Faculty of Medical Sciences Kragujevac, University of Kragujevac, Kragujevac, Serbia, 2019. [Google Scholar]
Statistic | Formula |
---|---|
Sensitivity | |
Specificity | |
Positive likelihood ratio | |
Negative likelihood ratio | |
Disease prevalence | |
Positive predictive value | |
Negative predictive value | |
Youden’s index | (sensitivity + specificity − 100) |
Youden’s index exp | (sensitivity + specificity + PPV + NPV − 200) |
Accuracy |
RT-PCR | DIF + IgA | Ʃ | DIF + IgG | Ʃ | DIF + RT | Ʃ | DIF + RT + IgA | Ʃ | DIF + RT + IgG | Ʃ | DIF + IgA + IgG | Ʃ | DIF + RT + IgA+ IgG | Ʃ | RT + IgA | Ʃ | RT + IgG | Ʃ | RT + IgA + IgG | Ʃ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos | Neg | Pos | NegHer | Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | |||||||||||
Pos. | 2 | 7 | 9 | 5 | 4 | 9 | 3 | 6 | 9 | 1 | 8 | 9 | 3 | 6 | 9 | 2 | 7 | 9 | 1 | 8 | 9 | 1 | 8 | 9 | 3 | 6 | 9 | 1 | 8 | 9 |
Neg. | 6 | 186 | 192 | 14 | 178 | 192 | 0 | 192 | 192 | 0 | 192 | 192 | 0 | 192 | 192 | 2 | 190 | 192 | 0 | 192 | 192 | 0 | 192 | 192 | 0 | 192 | 192 | 0 | 192 | 192 |
Ʃ | 8 | 193 | 201 | 19 | 182 | 201 | 3 | 198 | 201 | 1 | 200 | 201 | 3 | 198 | 201 | 4 | 197 | 201 | 1 | 200 | 201 | 1 | 200 | 201 | 3 | 198 | 201 | 1 | 200 | 201 |
ORA | 0.935 | 0.910 | 0.97 | 0.96 | 0.970 | 0.955 | 0.960 | 0.960 | 0.970 | 0.960 | ||||||||||||||||||||
Kappa | 0.2148 | 0.3156 | 0.4885 | 0.1928 | 0.4885 | 0.2881 | 0.1928 | 0.1928 | 0.4885 | 0.4885 | ||||||||||||||||||||
χ2 | 0.116; p = 0.733 | 11.6; p = 0.001 | 4.19; p = 0.41 | 7.3; p = 0.007 | 4.19; p = 0.041 | 2.91; p = 0.088 | 7.44; p = 0.006 | 7.44; p = 0.006 | 4.19; p = 0.41 | 7.44; p = 0.006 |
RT-PCR | DIF/IgA | Ʃ | DIF/IgG | Ʃ | DIF/RT | Ʃ | DIF/RT/IgA | Ʃ | DIF/RT/IgG | Ʃ | DIF/IgA + IgG | Ʃ | DIF/RT/IgA/IgG | Ʃ | RT/IgA | Ʃ | RT/IgG | Ʃ | RT/IgA/IgG | Ʃ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | Pos | Neg | |||||||||||
Pos. | 9 | 0 | 9 | 8 | 1 | 9 | 7 | 2 | 9 | 9 | 0 | 9 | 8 | 1 | 9 | 9 | 0 | 9 | 9 | 0 | 9 | 6 | 3 | 9 | 6 | 3 | 9 | 7 | 2 | 9 |
Neg. | 60 | 132 | 192 | 68 | 124 | 192 | 54 | 138 | 192 | 60 | 132 | 192 | 68 | 124 | 192 | 65 | 127 | 192 | 69 | 123 | 192 | 11 | 181 | 192 | 27 | 165 | 192 | 33 | 159 | 192 |
Ʃ | 69 | 132 | 201 | 76 | 125 | 201 | 61 | 140 | 201 | 69 | 132 | 201 | 76 | 125 | 201 | 74 | 127 | 201 | 78 | 123 | 201 | 17 | 184 | 201 | 33 | 168 | 201 | 40 | 161 | 201 |
ORA | 0.701 | 0.657 | 0.721 | 0.701 | 0.657 | 0.677 | 0.657 | 0.930 | 0.851 | 0.826 | ||||||||||||||||||||
Kappa | 0.1646 | 0.1176 | 0.1323 | 0.1646 | 0.1176 | 0.1489 | 0.1377 | 0.4280 | 0.2317 | 0.2294 | ||||||||||||||||||||
χ2 | 419; p < 0.001 | 522; p < 0.001 | 315; p < 0.001 | 419; p < 0.001 | 522; p < 0.001 | 522; p < 0.001 | 554; p < 0.001 | 7.44; p = 0.006 | 67; p < 0.001 | 112; p < 0.001 |
Statistics | DIF + IgA | DIF + IgG | DIF + RT | DIF + RT + IgA | DIF + RT + IgG | DIF + IgA + IgG | DIF + RT + IgA + IgG | RT + IgA | RT + IgG | RT + Ig A + IgG |
---|---|---|---|---|---|---|---|---|---|---|
Sensitivity | 22.2% | 55.6% | 33.3% | 11.1% | 33.3% | 22.2% | 11.1% | 11.1% | 33.3% | 11.1% |
Specifics | 96.9% | 92.7% | 100.0% | 100.0% | 100.0% | 98.9% | 100.0% | 100.0% | 100.0% | 100.0% |
Probability positive ratio | 7.1 | 7.6 | / | / | / | 21.3 | / | / | / | / |
Probability negative ratio | 0.8 | 0.5 | 0.7 | 0.9 | 0.7 | 0.8 | 0.9 | 0.9 | 0.7 | 0.9 |
Disease prevalence | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% |
Positive predictive value | 25.0% | 26.3% | 100.0% | 100.0% | 100.0% | 50.0% | 100.0% | 100.0% | 100.0% | 100.0% |
Negative predictive value | 96.4% | 97.8% | 97.0% | 96.0% | 97.0% | 96.5% | 96.0% | 96.0% | 96.7% | 96.0% |
Youden index | 19.1% | 48.3% | 33.3% | 11.0% | 33.3% | 21.2% | 11.1% | 11.1% | 33.3% | 11.1% |
Expanded Youden index | 40.5% | 72.4% | 130.3% | 107.0% | 130.3% | 67.7% | 107.1% | 107.1% | 130.0% | 107.1% |
Diagnostic accuracy | 93.5% | 91.0% | 97.0% | 96.0% | 97.0% | 95.5% | 96.0% | 96.0% | 97.0% | 96.0% |
Statistics | DIF/IgA | DIF/IgG | DIF/RT | DIF/RT/IgA | DIF/RT/IgG | DIF/IgA/IgG | DIF/RT/IgA/IgG | RT/IgA | RT/IgG | RT/IgA/IgG |
---|---|---|---|---|---|---|---|---|---|---|
Sensitivity | 100.0% | 88.9% | 77.8% | 100.0% | 88.9% | 100.0% | 100.0% | 66.7% | 66.7% | 77.8% |
Specifics | 68.8% | 64.6% | 71.9% | 68.8% | 64.6% | 66.2% | 64.1% | 94.3% | 85.9% | 82.8% |
Probability positive ratio | 3.2 | 2.5 | 2.8 | 3.2 | 2.5 | 3.0 | 2.8 | 11.6 | 4.7 | 4.5 |
Probability negative ratio | 0 | 0.2 | 0.3 | 0 | 0.2 | 0 | 0 | 0.4 | 0.4 | 0.3 |
Disease prevalence | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% | 4.5% |
Positive predictive value | 13.0% | 10.5% | 11.5% | 13.0% | 10.5% | 12.2% | 11.5% | 35.3% | 18.2% | 17.5% |
Negative predictive value | 100.0% | 99.2% | 98.6% | 100.0% | 99.2% | 100.0% | 100.0% | 98.4% | 98.2% | 98.8% |
Youden index | 68.8% | 53.5% | 49.7% | 68.8% | 53.5% | 66.1% | 64.1% | 60.9% | 52.6% | 60.6% |
Expanded Youden index | 81.8% | 63.2% | 59.7% | 81.8% | 63.2% | 78.3% | 75.6% | 94.6% | 69.0% | 76.9% |
Diagnostic accuracy | 70.2% | 65.7% | 72.1% | 70.2% | 65.7% | 67.7% | 65.7% | 93.0% | 85.1% | 82.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tošić-Pajić, J.; Sazdanović, P.; Nikolov, A.; Milovanović, D.R.; Ninković, V.; Čukić, J.; Subotić, S.; Šorak, M.; Baskić, D. Combination of Individual Tests to Improve Diagnostic Accuracy in Chlamydia trachomatis Detection. Medicina 2025, 61, 714. https://doi.org/10.3390/medicina61040714
Tošić-Pajić J, Sazdanović P, Nikolov A, Milovanović DR, Ninković V, Čukić J, Subotić S, Šorak M, Baskić D. Combination of Individual Tests to Improve Diagnostic Accuracy in Chlamydia trachomatis Detection. Medicina. 2025; 61(4):714. https://doi.org/10.3390/medicina61040714
Chicago/Turabian StyleTošić-Pajić, Jelena, Predrag Sazdanović, Aleksandar Nikolov, Dragan R. Milovanović, Violeta Ninković, Jelena Čukić, Slobodan Subotić, Marija Šorak, and Dejan Baskić. 2025. "Combination of Individual Tests to Improve Diagnostic Accuracy in Chlamydia trachomatis Detection" Medicina 61, no. 4: 714. https://doi.org/10.3390/medicina61040714
APA StyleTošić-Pajić, J., Sazdanović, P., Nikolov, A., Milovanović, D. R., Ninković, V., Čukić, J., Subotić, S., Šorak, M., & Baskić, D. (2025). Combination of Individual Tests to Improve Diagnostic Accuracy in Chlamydia trachomatis Detection. Medicina, 61(4), 714. https://doi.org/10.3390/medicina61040714