Comparison of Optic Nerve Sheath Diameter Measurements in Coronary Artery Bypass Grafting Surgery with Pulsatile and Non-Pulsatile Flow
Abstract
1. Introduction
2. Materials and Methods
2.1. Cardio Pulmonary Bypass Technique in Pulsatile and Non-Pulsatile Flow
2.2. Optic Nerve Sheath Diameter Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASA | American Society of Anesthesiologist |
BMI | Body Mass Index |
CA | Carotis Arter |
CABG | Coronary Artery Bypass Grafting |
CPB | Cardiopulmonary Bypass |
CSF | Cerebro Spinal Fluid |
CT | Cranial Tomography |
IBM | International Business Machines |
ICP | Intracranial Pressure |
ICU | Intensive Care Unit |
MAP | Mean Arterial Pressure |
MV | Mechanical Ventilation |
NIRS | Near-Infrared Spectroscopy |
NPF | Non-Pulsatile Flow |
ONSD | Optic Nerve Sheath Diameter |
PF | Pulsatile Flow |
SD | Standard Deviation |
SPSS | Statistical Package for the Social Sciences |
TEVAR | Thoracic Endovascular Aortic Repair |
USG | Ultrasonography |
VJI | Veno Jugilaris Interna |
References
- Tovedal, T.; Thelin, S.; Lennmyr, F. Cerebral oxygen saturation during pulsatile and non-pulsatile cardiopulmonary bypass in patients with carotid stenosis. Perfusion 2016, 31, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Bayram, H.; Erer, D.; Iriz, E.; Zor, M.H.; Gülbahar, O.; Özdoğan, M. Comparison of the effects of pulsatile cardiopulmonary bypass, non-pulsatile cardiopulmonary bypass and off-pump coronary artery bypass grafting on the inflammatory response and S-100 beta protein. Perfusion 2012, 27, 56–64. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, M.P.; Fleming, J.C.; Badhwar, A.; Guo, L.R. Pulsatile Versus Nonpulsatile Flow During Cardiopulmonary Bypass: Microcirculatory and Systemic Effects. Ann. Thorac. Surg. 2012, 94, 2046–2053. [Google Scholar] [CrossRef]
- Greaves, D.; Psaltis, P.J.; Ross, T.J.; Davis, D.; Smith, A.E.; Boord, M.S.; Keage, H.A.D. Cognitive outcomes following coronary artery bypass grafting: A systematic review and meta-analysis of 91,829 patients. Int. J. Cardiol. 2019, 289, 43–49. [Google Scholar] [CrossRef]
- Vu, E.L.; Brown, C.H., 4th; Brady, K.M.; Hogue, C.W. Monitoring of cerebral blood flow autoregulation: Physiologic basis, measurement, and clinical implications. Br. J. Anaesth. 2024, 132, 1260–1273. [Google Scholar] [CrossRef]
- Robba, C.; Pozzebon, S.; Moro, B.; Vincent, J.L.; Creteur, J.; Taccone, F.S. Multimodal non-invasive assessment of intracranial hypertension: An observational study. Crit. Care 2020, 24, 379. [Google Scholar] [CrossRef]
- Berhanu, D.; Ferreira, J.C.; Pinto, L.A.; de Sousa, A.A.; Neto, L.L.; Ferreira, J.T. The role of optic nerve sheath ultrasonography in increased intracranial pressure: A systematic review and meta-analysis. J. Neurol. Sci. 2023, 454, 120853. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Song, Y.; Nayaz, B.M.S.; Shi, W.; Zhao, Y.; Liu, Y.; Wu, S.; Li, Z.; Sun, Y.; Zhao, Y.; et al. Optic Nerve Sheath Diameter Sonography for the Diagnosis of Intracranial Hypertension in Traumatic Brain Injury: A Systematic Review and Meta-Analysis. World Neurosurg. 2024, 182, 136–143. [Google Scholar] [CrossRef]
- Lamy, A.; Devereaux, P.J.; Prabhakaran, D.; Taggart, D.P.; Hu, S.; Paolasso, E.; Straka, Z.; Piegas, L.S.; Akar, A.R.; Jain, A.R.; et al. Off-Pump or On-Pump Coronary-Artery Bypass Grafting at 1 Year. N. Engl. J. Med. 2013, 368, 1179–1188. [Google Scholar] [CrossRef]
- Farid, S.; Povey, H.; Anderson, S.; Nashef, S.A.M.; Abu-Omar, Y. The effect of pulsatile cardiopulmonary bypass on the need for haemofiltration in patients with renal dysfunction undergoing cardiac surgery. Perfusion 2016, 31, 477–481. [Google Scholar] [CrossRef]
- Coulson, T.G.; McPhilimey, E.; Falter, F.; Abu-Omar, Y.; Klein, A.A. The association between pulsatile cardiopulmonary bypass and acute kidney injury after cardiac surgery: A before-and-after study. J. Cardiothorac. Vasc. Anesth. 2020, 34, 108–113. [Google Scholar] [CrossRef]
- Engels, G.E.; Dodonov, M.; Rakhorst, G.; van Oeveren, W.; Milano, A.D.; Gu, Y.J.; Faggian, G. The effect of pulsatile cardiopulmonary bypass on lung function in elderly patients. Int. J. Artif. Organs 2014, 37, 679–687. [Google Scholar] [CrossRef]
- Lim, C.H.; Nam, M.J.; Lee, J.S.; Kim, H.J.; Kim, J.Y.; Shin, H.W.; Lee, H.W.; Sun, K. A meta-analysis of pulmonary function with pulsatile perfusion in cardiac surgery. Artif. Organs 2015, 39, 110–117. [Google Scholar] [CrossRef]
- Öztürk, S.; Sacar, M.; Baltalarlı, A.; Öztürk, İ. Effect of the type of cardiopulmonary bypass pump flow on postoperative cognitive function in patients undergoing isolated coronary artery surgery. Anatol. J. Cardiol. 2016, 16, 875–880. [Google Scholar] [CrossRef]
- Aykut, K.; Albayrak, G.; Güzeloğlu, M.; Hazan, E.; Tüfekçi, M.; Erdoğan, İ. Pulsatile versus nonpulsatile flow to reduce cognitive decline after coronary artery bypass surgery: A randomized prospective clinical trial. J. Cardiovasc. Dis. Res. 2013, 4, 127–129. [Google Scholar] [CrossRef]
- Hoefeijzers, M.P.; ter Horst, L.H.; Koning, N.; Vonk, A.B.; Boer, C.; Elbers, P.W.G. The pulsatile perfusion debate in cardiac surgery: Answers from the microcirculation? J. Cardiothorac. Vasc. Anesth. 2015, 29, 761–767. [Google Scholar] [CrossRef]
- Abramov, D.; Tamariz, M.; Serrick, C.I.; Sharp, E.; Noel, D.; Harwood, S.; Christakis, G.T.; Goldman, B.S. The influence of cardiopulmonary bypass flow characteristics on the clinical outcome of 1820 coronary bypass patients. Can. J. Cardiol. 2003, 19, 237–243. [Google Scholar]
- Grubhofer, G.; Mares, P.; Rajek, A.; Müllner, T.; Haisjackl, M.; Dworschak, M.; Lassnigg, A. Pulsatility does not change cerebral oxygenation during cardiopulmonary bypass. Acta Anaesthesiol. Scand. 2000, 44, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Ertl, M.; Schierling, W.; Kasprzak, P.; Schömig, B.; Brückl, C.; Schlachetzki, F.; Pfister, K. Optic Nerve Sheath Diameter Measurement to Identify High-Risk Patients for Spinal Ischemia after Endovascular Thoracoabdominal Aortic Aneurysm Repair. J. Neuroimaging 2015, 25, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Cardim, D.; Griesdale, D.E.; Ainslie, P.N.; Robba, C.; Calviello, L.; Czosnyka, M.; Smielewski, P.; Sekhon, M.S. A comparison of non-invasive versus invasive measures of intracranial pressure in hypoxic ischaemic brain injury after cardiac arrest. Resuscitation 2019, 137, 221–228. [Google Scholar] [CrossRef]
- Taşkın, Ö.; Demir, U. Extracorporeal Circulation and Optic Nerve Ultrasound: A Pilot Study. Medicina 2023, 23, 445. [Google Scholar] [CrossRef]
- Ciozda, W.; Kedan, I.; Kehl, D.W.; Zimmer, R.; Khandwalla, R.; Kimchi, A. The efficacy of sonographic measurement of inferior vena cava diameter as an estimate of central venous pressure. Cardiovasc. Ultrasound 2016, 20, 33. [Google Scholar] [CrossRef]
- Thanakitcharu, P.; Charoenwut, M.; Siriwiwatanakul, N. Inferior vena cava diameter and collapsibility index: A practical non-invasive evaluation of intravascular fluid volume in critically-ill patients. J. Med. Assoc. Thai. 2013, 96, 14–22. [Google Scholar]
- Chen, H.; Wang, X.T.; Ding, X.; Zhang, H.M.; Zhao, H.; Chao, Y.G.; He, W.; Liu, D.W.; Chinese Critical Ultrasound Study Group (CCUSG). The correlation between optic nerve sheath diameter and volume status in patients after cardiac surgery. Zhonghua Nei Ke Za Zhi 2016, 55, 779–783. [Google Scholar] [CrossRef]
- Robba, C.; Cardim, D.; Tajsic, T.; Pietersen, J.; Bulman, M.; Donnelly, J.; Lavinio, A.; Gupta, A.; Menon, D.K.; Hutchinson, P.J.A. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: A prospective observational study. PLoS Med. 2017, 14, e1002356. [Google Scholar] [CrossRef]
- Soldatos, K.; Karakitsos, D.; Chatzimichail, K.; Papathanasiou, M.; Gouliamos, A.; Karabinis, A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit. Care 2008, 12, R67. [Google Scholar] [CrossRef]
- Dubourg, J.; Javouhey, E.; Geeraerts, T.; Messerer, M.; Kassai, B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: A systematic review and meta-analysis. Intensive Care Med. 2011, 37, 1059–1068. [Google Scholar] [CrossRef]
Group NP (n = 30) | Group P (n = 30) | p Value | |
---|---|---|---|
Preoperative data | |||
Gender, M/F | 20/10 | 19/11 | 0.791 |
Age, y | 62.6 ± 6.4 | 62.4 ± 6.3 | 0.591 |
BMI, kg/m2 | 27.1± 3.0 | 26.3 ± 4.2 | 0.424 |
ASA Score (II/III/IV) | 8/18/4 | 7/19/4 | 0.975 |
VJI sinistra/dextra diameter, mm | 11.2 ± 1.6/10.7 ± 1.7 | 11.2 ± 1.5/10.5 ± 1.7 | 0.499/0.627 |
CA sinistra/dextra diameter, mm | 7.3 ± 1.2/7.4 ± 1.1 | 7.3 ± 1.1/7.2 ± 1.2 | 0.700/0.942 |
Ejection fraction, % | 50.2 ± 3.5 | 48.3 ± 2.7 | 0.008 * |
Intraoperative data | |||
Number grafts, n | 2.6 ± 0.4 | 2.5 ± 0.5 | 0.605 |
Anesthesia duration, min | 149 ± 21.2 | 147.2 ± 18.2 | 0.777 |
Surgery duration, min | 118 ± 15.8 | 120 ± 17.2 | 0.864 |
MV Duration, h | 5.9 ± 0.7 | 5.8 ± 0.7 | 0.665 |
ICU stay duration, h | 19.9 ± 2 | 20 ± 2 | 0.777 |
SpO2, % | 97.7 ± 1.8 | 97.7 ± 1.9 | 0.502 |
MAP, mmHg | 68.8 ± 6.1 | 66.6 ± 9.5 | 0.067 |
rScO2 right/left, % | 65.5 ± 6.4/65.9 ± 7.7 | 63.8 ± 6.1/631 ± 7.7 | 0.573/0.378 |
Total inotrop dosage, µg/min | 3.2 ± 4.1 | 6.2 ± 5.1 | 0.008 * |
Hematocrit | 29.5 ± 4.4 | 28.4 ± 4.4 | 0.728 |
Lactate, mmol/L | 1.7 ± 0.4 | 1.7 ± 0.5 | 0.818 |
Cross clamp duration, min | 56.8 ± 15.5 | 57.0 ± 14.6 | 0.965 |
Pump duration, min | 94.8 ± 21.0 | 96.6 ± 16.2 | 0.534 |
Pump liquid balance, ml | 813.6 ± 421 | 1000 ± 577 | 0.206 |
Blood products given, ml | 492.0 ± 276 | 685.3 ± 407 | 0.079 |
Group | Right Eye ONSD, mm | Left Eye ONSD, mm | ||||||
---|---|---|---|---|---|---|---|---|
Tpreop | Tpostop | p | r | Tpreop | Tpostop | p | r | |
Group NP | 4.9 ± 0.9 | 5.2 ± 0.1 | <0.001 | 0.610 ++ | 5.1 ± 1.0 | 5.2 ± 1.1 | <0.001 | 0.386 |
Group P | 4.8 ± 0.8 | 5.3 ± 0.8 | <0.001 | 0.584 ++ | 4.8 ± 0.7 | 5.3 ± 0.9 | <0.001 | 0.736 ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazancıoğlu, L.; Batçık, Ş. Comparison of Optic Nerve Sheath Diameter Measurements in Coronary Artery Bypass Grafting Surgery with Pulsatile and Non-Pulsatile Flow. Medicina 2025, 61, 870. https://doi.org/10.3390/medicina61050870
Kazancıoğlu L, Batçık Ş. Comparison of Optic Nerve Sheath Diameter Measurements in Coronary Artery Bypass Grafting Surgery with Pulsatile and Non-Pulsatile Flow. Medicina. 2025; 61(5):870. https://doi.org/10.3390/medicina61050870
Chicago/Turabian StyleKazancıoğlu, Leyla, and Şule Batçık. 2025. "Comparison of Optic Nerve Sheath Diameter Measurements in Coronary Artery Bypass Grafting Surgery with Pulsatile and Non-Pulsatile Flow" Medicina 61, no. 5: 870. https://doi.org/10.3390/medicina61050870
APA StyleKazancıoğlu, L., & Batçık, Ş. (2025). Comparison of Optic Nerve Sheath Diameter Measurements in Coronary Artery Bypass Grafting Surgery with Pulsatile and Non-Pulsatile Flow. Medicina, 61(5), 870. https://doi.org/10.3390/medicina61050870