Intraperitoneal Treatment of Cambinol, a Synthetic SIRT1 and SIRT2 Inhibitory Compound, Exacerbates Brucella abortus 544 Burden in the Spleens of Institute of Cancer Research Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Cell Viability
2.3. Determination of Direct Bactericidal Effect
2.4. Adhesion, Internalization and Intracellular Killing Assay
2.5. Nitric Oxide Assay
2.6. B. Abortus Infection In Vivo
2.7. Cytokine Analysis
2.8. Statistical Analysis
3. Results
3.1. Effects of Cambinol Treatment in RAW264.7 Cell Viability and B. abortus Growth
3.2. Effects of Cambinol Treatment During B. abortus Infection in RAW264.7 Cells
3.3. Effects of Cambinol Treatment During B. abortus Infection in Mice
3.4. Effects of Cambinol Treatment in the Serum Cytokine Level in Mice
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qureshi, K.A.; Parvez, A.; Fahmy, N.A.; Hady, B.H.A.; Kumar, S.; Ganguly, A.; Atiya, A.; Elhassan, G.O.; Alfadly, S.O.; Parkkila, S.; et al. Brucellosis: Epidemiology, pathogenesis, diagnosis and treatment-a comprehensive review. Ann. Med. 2023, 55, 2295398. [Google Scholar] [CrossRef] [PubMed]
- Najim, M.A.; Almutawif, Y.A.; Eid, H.M.A.; Yousuf, A.M.; Alahmadi, H.A.; Alharbi, M.E.; Aljabri, Z.O.; Makhdoom, H.M.; Yoniss, M.S.; El-Rahim, I.H.A.A.; et al. Seroprevalence of brucellosis among high-risk individuals in Madinah, Saudi Arabia. Vet World 2024, 17, 1661–1666. [Google Scholar] [CrossRef] [PubMed]
- Franc, K.A.; Krecek, R.C.; Häsler, B.N.; Arenas-Gamboa, A.M. Brucellosis remains a neglected disease in the developing world: A call for interdisciplinary action. BMC Public Health 2018, 18, 125. [Google Scholar] [CrossRef] [PubMed]
- Khoshnood, S.; Pakzad, R.; Koupaei, M.; Shirani, M.; Araghi, A.; Irani, G.M.; Moradi, M.; Pakzad, I.; Sadeghifard, N.; Heidary, M. Prevalence, diagnosis, and manifestations of brucellosis: A systematic review and meta-analysis. Front. Vet. Sci. 2022, 9, 976215. [Google Scholar] [CrossRef] [PubMed]
- Pinn-Woodcock, T.; Frye, E.; Guarino, C.; Franklin-Guild, R.; Newman, A.P.; Bennett, J.; Goodrich, E.L. A one-health review on brucellosis in the United States. J. Am. Vet. Med. Assoc. 2023, 261, 451–462. [Google Scholar] [CrossRef]
- Khan, M.Z.; Zahoor, M. An Overview of brucellosis in cattle and humans, and its serological and molecular diagnosis in control strategies. Trop. Med. Infect. Dis. 2018, 3, 65. [Google Scholar] [CrossRef]
- Bonfini, B.; Chiarenza, G.; Paci, V.; Sacchini, F.; Salini, R.; Vesco, G.; Villari, S.; Zilli, K.; Tittarelli, M. Cross-reactivity in serological tests for brucellosis: A comparison of immune response of Escherichia coli O157:H7 and Yersinia enterocolitica O:9 vs Brucella spp. Vet. Ital. 2018, 54, 107–114. [Google Scholar]
- Shi, B.C.; Li, X.Y.; Li, B.; Zheng, N.X.; Li, M.; Liu, Y.; Li, C.H.; Yan, F.; He, W.; Zhao, L.Y.; et al. Construction and evaluation of the Brucella double gene knock-out vaccine strain MB6 Δbp26ΔwboA (RM6). Zoonoses 2022, 2, 29. [Google Scholar] [CrossRef]
- Vives-Soto, M.; Puerta-Garcia, A.; Rodriguez-Sanchez, E.; Pereira, J.L.; Solera, J. What risk do Brucella vaccines pose to humans? A systematic review of the scientific literature on occupational exposure. PLoS Negl. Trop. Dis. 2024, 18, e0011889. [Google Scholar] [CrossRef]
- Di Bonaventura, G.; Angeletti, S.; Ianni, A.; Petitti, T.; Gherardi, G. Microbiological laboratory diagnosis of human brucellosis: An overview. Pathogens 2021, 10, 1623. [Google Scholar] [CrossRef]
- Ma, H.R.; Xu, H.J.; Wang, X.; Bu, Z.Y.; Yao, T.; Zheng, Z.R.; Sun, Y.; Ji, X.; Liu, J. Molecular characterization and antimicrobial susceptibility of human Brucella in Northeast China. Front. Microbiol. 2023, 14, 1137932. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Garcia-Peterson, L.M.; Mack, N.J.; Ahmad, N. The role of sirtuins in antioxidant and redox signaling. Antioxid. Redox Signal. 2018, 28, 643–661. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, J.H.; Lee, H.Y.; Min, K.J. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019, 52, 24–34. [Google Scholar] [CrossRef]
- Wu, Q.J.; Zhang, T.N.; Chen, H.H.; Yu, X.F.; Lv, J.L.; Liu, Y.Y.; Liu, Y.S.; Zheng, G.; Zhao, J.Q.; Wei, Y.F.; et al. The sirtuin family in health and disease. Signal Transduct. Target. Ther. 2022, 7, 402. [Google Scholar] [PubMed]
- Picard, F.; Kurtev, M.; Chung, N.; Topark-Ngarm, A.; Senawong, T.; De Oliveira, R.M.; Leid, M.; McBurney, M.W.; Guarente, L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 2004, 429, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Jing, E.; Gesta, S.; Kahn, C.R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007, 6, 105–114. [Google Scholar] [CrossRef]
- Giordano, D.; Scafuri, B.; De Masi, L.; Capasso, L.; Maresca, V.; Altucci, L.; Nebbioso, A.; Facchiano, A.; Bontempo, P. Sirtuin inhibitor cambinol induces cell differentiation and differently interferes with SIRT1 and 2 at the substrate binding site. Biomedicines 2023, 11, 1624. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, D.; Li, F.; Tian, L.; Li, C.; Li, L.; Lin, R.; Wang, S. Downregulation of Sirt1 by antisense oligonucleotides induces apoptosis and enhances radiation sensitization in A549 lung cancer cells. Lung Cancer 2007, 58, 21–29. [Google Scholar] [CrossRef]
- Hiratsuka, M.; Inoue, T.; Toda, T.; Kimura, N.; Shirayoshi, Y.; Kamitani, H.; Watanabe, T.; Ohama, E.; Candice, G.T.; Kurimasa, A.; et al. Proteomics-based identification of differentially expressed genes in human gliomas: Down-regulation of SIRT2 gene. Biochem. Biophys. Res. Commun. 2003, 309, 558–566. [Google Scholar] [CrossRef]
- Kim, J.K.; Silwal, P.; Jo, E.K. Sirtuin 1 in host defense during infection. Cells 2022, 11, 2921. [Google Scholar] [CrossRef]
- Heltweg, B.; Gatbonton, T.; Schuler, A.D.; Posakony, J.; Li, H.; Goehle, S.; Kollipara, R.; Depinho, R.A.; Gu, Y.; Simon, J.A.; et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 2006, 66, 4368–4377. [Google Scholar] [CrossRef] [PubMed]
- Ciarlo, E.; Heinonen, T.; Théroude, C.; Herderschee, J.; Mombelli, M.; Lugrin, J.; Pfefferlé, M.; Tyrrell, B.; Lensch, S.; Acha-Orbea, H.; et al. Sirtuin 2 deficiency increases bacterial phagocytosis by macrophages and protects from chronic staphylococcal infection. Front. Immunol. 2017, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Manjula, R.; Anuja, K.; Alcain, F.J. SIRT1 and SIRT2 activity control in neurodegenerative diseases. Front. Pharmacol. 2021, 11, 585821. [Google Scholar] [CrossRef] [PubMed]
- Bialer, M.G.; Sycz, G.; González, F.M.; Ferrero, M.C.; Baldi, P.C.; Zorreguieta, A. Adhesins of Brucella: Their roles in the interaction with the host. Pathogens 2020, 9, 942. [Google Scholar] [CrossRef]
- Lugrin, J.; Ciarlo, E.; Santos, A.; Grandmaison, G.; dos Santos, I.; Roy, D.L.; Roger, T. The sirtuin inhibitor cambinol impairs MAPK signaling, inhibits inflammatory and innate immune responses and protects from septic shock. Biochim. Biophys. Acta 2013, 1833, 1498–1510. [Google Scholar] [CrossRef]
- de Figueiredo, P.; Ficht, T.A.; Rice-Ficht, A.; Rossetti, C.A.; Adams, L.G. Pathogenesis and immunobiology of brucellosis: Review of Brucella-host interactions. Am. J. Pathol. 2015, 185, 1505–1517. [Google Scholar] [CrossRef]
- Portmann, S.; Fahrner, R.; Lechleiter, A.; Keogh, A.; Overney, S.; Laemmle, A.; Mikami, K.; Montani, M.; Tschan, M.P.; Candinas, D.; et al. Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo. Mol. Cancer Ther. 2013, 12, 499–508. [Google Scholar] [CrossRef]
- Reyes, A.W.B.; Kim, H.; Huy, T.X.N.; Nguyen, T.T.; Min, W.; Lee, H.J.; Hur, J.; Lee, J.H.; Kim, S. Protective effects against Brucella abortus 544 infection in a murine macrophage cell line and in a mouse model via treatment with Sirtuin 1 activators resveratrol, piceatannol and ginsenoside Rg3. J. Microbiol. Biotechnol. 2023, 33, 441–448. [Google Scholar] [CrossRef]
- Dadar, M.; Tiwari, R.; Sharun, K.; Dhama, K. Importance of brucellosis control programs of livestock on the improvement of one health. Vet. Q. 2021, 41, 137–151. [Google Scholar] [CrossRef]
- Tulu, D. Bovine brucellosis: Epidemiology, public health implications, and status of brucellosis in Ethiopia. Vet. Med. 2022, 13, 21–30. [Google Scholar] [CrossRef]
- Giambartolomei, G.H.; Delpino, M.V. Immunopathogenesis of hepatic brucellosis. Front. Cell Infect. Microbiol. 2019, 9, 423. [Google Scholar] [CrossRef]
- González-Espinoza, G.; Arce-Gorvel, V.; Mémet, S.; Gorvel, J.P. Brucella: Reservoirs and niches in animals and humans. Pathogens 2021, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Lopez, P.; Guaimas, F.; Czibener, C.; Ugalde, J.E. A genomic island in Brucella involved in the adhesion to host cells: Identification of a new adhesin and a translocation factor. Cell Microbiol. 2020, 22, e13245. [Google Scholar] [CrossRef] [PubMed]
- Baldi, P.C.; Giambartolomei, G.H. Pathogenesis and pathobiology of zoonotic brucellosis in humans. Rev. Sci. Tech. 2013, 32, 117–125. [Google Scholar] [CrossRef]
- Guo, X.; Zeng, H.; Li, M.; Xiao, Y.; Gu, G.; Song, Z.; Shuai, X.; Guo, J.; Huang, Q.; Zhou, B.; et al. The mechanism of chronic intracellular infection with Brucella spp. Front. Cell Infect. Microbiol. 2023, 13, 1129172. [Google Scholar] [CrossRef] [PubMed]
- Lacey, C.A.; Chambers, C.A.; Mitchell, W.J.; Skyberg, J.A. IFN-γ-dependent nitric oxide suppresses Brucella-induced arthritis by inhibition of inflammasome activation. J. Leukoc. Biol. 2019, 106, 27–34. [Google Scholar] [CrossRef]
- Ritchie, J.A.; Rupper, A.; Cardelli, J.A.; Bellaire, B.H. Host interferon-γ inducible protein contributes to Brucella survival. Front. Cell Infect. Microbiol. 2012, 2, 55. [Google Scholar] [CrossRef]
- Joshi, L.; Ponnana, M.; Sivangala, R.; Chelluri, L.K.; Nallari, P.; Penmetsa, S.; Valluri, V.; Gaddam, S. Evaluation of TNF-α, IL-10 and IL-6 cytokine production and their correlation with genotype variants amongst tuberculosis patients and their household contacts. PLoS ONE 2015, 10, e0137727. [Google Scholar] [CrossRef]
- Kazemi, S.; Vaisi-Raygani, A.; Keramat, F.; Saidijam, M.; Soltanian, A.R.; Alahgholi-Hajibehzad, M.; Hashemi, S.H.; Alikhani, M.Y. Evaluation of the relationship between IL-12, IL-13 and TNF-α gene polymorphisms with the susceptibility to brucellosis: A case control study. BMC Infect. Dis. 2019, 19, 1036. [Google Scholar] [CrossRef]
- Guimarães, E.S.; Martins, J.M.; Gomes, M.T.R.; Cerqueira, D.M.; Oliveira, S.C. Lack of interleukin-6 affects IFN-γ and TNF-α production and early in vivo control of Brucella abortus infection. Pathogens 2020, 9, 1040. [Google Scholar] [CrossRef]
- Tong, X.; Zeng, H.; Gu, P.; Wang, K.; Zhang, H.; Lin, X. Monocyte chemoattractant protein-1 promotes the proliferation, migration and differentiation potential of fibroblast-like synoviocytes via the PI3K/P38 cellular signaling pathway. Mol. Med. Rep. 2020, 21, 1623–1632. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 2021, 101, 107598. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Gu, X.; Wang, D.; Wang, Z. Brucella infection and Toll-like receptors. Front. Cell Infect. Microbiol. 2024, 14, 1342684. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ma, C.; Sun, H.; Yang, S.; Yu, F.; Li, X.; Wang, L. Serum levels of seven general cytokines in acute brucellosis before and after treatment. Infect. Drug Resist. 2021, 14, 5501–5510. [Google Scholar] [CrossRef] [PubMed]
- Xavier, M.N.; Winter, M.G.; Spees, A.M.; Nguyen, K.; Atluri, V.L.; Silva, T.M.; Bäumler, A.J.; Müller, W.; Santos, R.L.; Tsolis, R.M. CD4+ T cell-derived IL-10 promotes Brucella abortus persistence via modulation of macrophage function. PLoS Pathog. 2013, 9, e1003454. [Google Scholar] [CrossRef]
- Hop, H.T.; Reyes, A.W.B.; Huy, T.X.N.; Arayan, L.T.; Min, W.; Lee, H.J.; Rhee, M.H.; Chang, H.H.; Kim, S. Interleukin 10 suppresses lysosome-mediated killing of Brucella abortus in cultured macrophages. J. Biol. Chem. 2018, 293, 3134–3144. [Google Scholar] [CrossRef]
- Couper, K.N.; Blount, D.G.; Riley, E.M. IL-10: The master regulator of immunity to infection. J. Immunol. 2008, 180, 5771–5777. [Google Scholar] [CrossRef]
- Peñaloza, H.F.; Noguera, L.P.; Riedel, C.A.; Bueno, S.M. Expanding the current knowledge about the role of interleukin-10 to major concerning bacteria. Front. Microbiol. 2018, 9, 2047. [Google Scholar] [CrossRef]
- Kang, M.J.; Jang, A.R.; Park, J.Y.; Ahn, J.H.; Lee, T.S.; Kim, D.Y.; Lee, M.S.; Hwang, S.; Jeong, Y.J.; Park, J.H. IL-10 protects mice from the lung infection of Acinetobacter baumannii and contributes to bacterial clearance by regulating STAT3-mediated MARCO expression in macrophages. Front. Immunol. 2020, 11, 270. [Google Scholar] [CrossRef]
- Athanassakis, I.; Iconomidou, B. Cytokine production in the serum and spleen of mice from day 6 to 14 of gestation: Cytokines/placenta/spleen/serum. Dev. Immunol. 1996, 4, 247–255. [Google Scholar]
- Hajra, D.; Rajmani, R.S.; Chaudhary, A.D.; Gupta, S.K.; Chakravortty, D. Salmonella-induced SIRT1 and SIRT3 are crucial for maintaining the metabolic switch in bacteria and host for successful pathogenesis. eLife 2024, 13, RP93125. [Google Scholar]
- Cheng, C.Y.; Gutierrez, N.M.; Marzuki, M.B.; Lu, X.; Foreman, T.W.; Paleja, B.; Lee, B.; Balachander, A.; Chen, J.; Tsenova, L.; et al. Host sirtuin 1 regulates mycobacterial immunopathogenesis and represents a therapeutic target against tuberculosis. Sci. Immunol. 2017, 2, eaaj1789. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes, A.W.B.; Huy, T.X.N.; Nguyen, T.T.; Salad, S.A.; Aguilar, C.N.T.; Min, W.; Lee, H.J.; Kim, S. Intraperitoneal Treatment of Cambinol, a Synthetic SIRT1 and SIRT2 Inhibitory Compound, Exacerbates Brucella abortus 544 Burden in the Spleens of Institute of Cancer Research Mice. Microorganisms 2024, 12, 2533. https://doi.org/10.3390/microorganisms12122533
Reyes AWB, Huy TXN, Nguyen TT, Salad SA, Aguilar CNT, Min W, Lee HJ, Kim S. Intraperitoneal Treatment of Cambinol, a Synthetic SIRT1 and SIRT2 Inhibitory Compound, Exacerbates Brucella abortus 544 Burden in the Spleens of Institute of Cancer Research Mice. Microorganisms. 2024; 12(12):2533. https://doi.org/10.3390/microorganisms12122533
Chicago/Turabian StyleReyes, Alisha Wehdnesday Bernardo, Tran Xuan Ngoc Huy, Trang Thi Nguyen, Said Abdi Salad, Ched Nicole Turbela Aguilar, Wongi Min, Hu Jang Lee, and Suk Kim. 2024. "Intraperitoneal Treatment of Cambinol, a Synthetic SIRT1 and SIRT2 Inhibitory Compound, Exacerbates Brucella abortus 544 Burden in the Spleens of Institute of Cancer Research Mice" Microorganisms 12, no. 12: 2533. https://doi.org/10.3390/microorganisms12122533
APA StyleReyes, A. W. B., Huy, T. X. N., Nguyen, T. T., Salad, S. A., Aguilar, C. N. T., Min, W., Lee, H. J., & Kim, S. (2024). Intraperitoneal Treatment of Cambinol, a Synthetic SIRT1 and SIRT2 Inhibitory Compound, Exacerbates Brucella abortus 544 Burden in the Spleens of Institute of Cancer Research Mice. Microorganisms, 12(12), 2533. https://doi.org/10.3390/microorganisms12122533