In Silico Characterization of Sirtuins in Acetic Acid Bacteria Reveals a Novel Phylogenetically Distinctive Group
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sirtuins Are Present in Some Genera of Acetic Acid Bacteria
2.2. Structure of Sirtuins in Acetic Acid Bacteria
2.3. Function and Mechanisms of Sirtuins in Acetic Acid Bacteria
2.3.1. Sirtuins with SIR2 Domain
2.3.2. Sirtuins with SIR2_2 Domain
2.3.3. Sirtuins with PRK00481 Domain
2.4. Classification of Acetic Acid Bacteria’s Sirtuins
3. Materials and Methods
3.1. Analysis Using NCBI BLAST
3.2. Statistical Analysis with Jamovi
3.3. Protein Modeling with AlphaFold
3.4. Analysis Using UniProt BLAST
3.5. Sequence Alignment and Phylogenetic Analysis Using ClustalW and MEGA11
3.6. Identifying Sequence Motifs with MEME Suite
3.7. Sequence Alignment and Similarity Scoring in Python
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Chen, W. SIRT1 (Sirtuin (Silent Mating Type Information Regulation 2 Homolog) 1 (S. Cerevisiae)). Atlas Genet. Cytogenet. Oncol. Haematol. 2017, 20, 26. [Google Scholar] [CrossRef]
- Morris, B.J. Sirtuins in Aging. In Encyclopedia of Gerontology and Population Aging; Gu, D., Dupre, M.E., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Frye, R.A. Phylogenetic Classification of Prokaryotic and Eukaryotic Sir2-like Proteins. Biochem. Biophys. Res. Commun. 2000, 273, 793–798. [Google Scholar] [CrossRef]
- Michan, S.; Sinclair, D. Sirtuins in Mammals: Insights into Their Biological Function. Biochem. J. 2007, 404, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rack, J.G.M.; Morra, R.; Barkauskaite, E.; Kraehenbuehl, R.; Ariza, A.; Qu, Y.; Ortmayer, M.; Leidecker, O.; Cameron, D.R.; Matic, I.; et al. Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens. Mol. Cell 2015, 59, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Sharma, A.; Mahur, P.; Muthukumaran, J.; Singh, A.K.; Jain, M. Shedding Light on Structure, Function and Regulation of Human Sirtuins: A Comprehensive Review. 3 Biotech 2023, 13, 29. [Google Scholar] [CrossRef]
- Gallego-Jara, J.; Ortega, Á.; Lozano Terol, G.; Sola Martínez, R.A.; Cánovas Díaz, M.; de Diego Puente, T. Bacterial Sirtuins Overview: An Open Niche to Explore. Front. Microbiol. 2021, 12, 744416. [Google Scholar] [CrossRef]
- Wang, C.H.; Wei, Y.H. Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and Type 2 Diabetes. Int. J. Mol. Sci. 2020, 21, 5266. [Google Scholar] [CrossRef]
- Munteanu, C.; Onose, G.; Poștaru, M.; Turnea, M.; Rotariu, M.; Galaction, A.I. Hydrogen Sulfide and Gut Microbiota: Their Synergistic Role in Modulating Sirtuin Activity and Potential Therapeutic Implications for Neurodegenerative Diseases. Pharmaceuticals 2024, 17, 1480. [Google Scholar] [CrossRef]
- Adler, P.; Frey, L.J.; Berger, A.; Bolten, C.J.; Hansen, C.E.; Wittmann, C. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions. Appl. Environ. Microbiol. 2014, 80, 4702–4716. [Google Scholar] [CrossRef]
- König, H.; Fröhlich, J. Lactic Acid Bacteria. In Biology of Microorganisms on Grapes, in Must and in Wine; König, H., Unden, G., Fröhlich, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Han, C.; Xia, K.; Yang, J.; Zhang, H.; DeLisa, M.P.; Liang, X. Investigation of Lipid Profile in Acetobacter Pasteurianus Ab3 against Acetic Acid Stress during Vinegar Production. Extremophiles 2020, 24, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Yang, Y.; Guo, Z.; Dai, S.; Jiang, M.; Zhu, Y.; Wang, Y.; Yu, Z.; Wang, K.; Rong, C.; et al. A Review on the Interaction of Acetic Acid Bacteria and Microbes in Food Fermentation: A Microbial Ecology Perspective. Foods 2024, 13, 2534. [Google Scholar] [CrossRef] [PubMed]
- Kersters, K.; Lisdiyanti, P.; Komagata, K.; Swings, J. The Family Acetobacteraceae: The Genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In The Prokaryotes; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Yamada, Y. Systematics of Acetic Acid Bacteria. In Acetic Acid Bacteria: Ecology and Physiology; Springer: Tokyo, Japan, 2016. [Google Scholar] [CrossRef]
- Guzman, J.; Vilcinskas, A. Genome Analysis Suggests the Bacterial Family Acetobacteraceae Is a Source of Undiscovered Specialized Metabolites. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2022, 115, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Yukphan, P. Genera and Species in Acetic Acid Bacteria. Int. J. Food Microbiol. 2008, 125, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Yukphan, P.; Malimas, T.; Muramatsu, Y.; Takahashi, M.; Kaneyasu, M.; Potacharoen, W.; Tanasupawat, S.; Nakagawa, Y.; Hamana, K.; Tahara, Y.; et al. Ameyamaea Chiangmaiensis Gen. Nov., Sp. Nov., an Acetic Acid Bacterium in the α-Proteobacteria. Biosci. Biotechnol. Biochem. 2009, 73, 2156–2162. [Google Scholar] [CrossRef]
- Lisdiyanti, P.; Kawasaki, H.; Widyastuti, Y.; Saono, S.; Seki, T.; Yamada, Y.; Uchimura, T.; Komagata, K. Kozakia Baliensis Gen. Nov., Sp. Nov., a Novel Acetic Acid Bacterium in the α-Proteobacteria. Int. J. Syst. Evol. Microbiol. 2002, 52, 813–818. [Google Scholar] [CrossRef]
- Vu, H.T.L.; Yukphan, P.; Chaipitakchonlatarn, W.; Malimas, T.; Muramatsu, Y.; Bui, U.T.T.; Tanasupawat, S.; Duong, K.C.; Nakagawa, Y.; Pham, H.T.; et al. Nguyenibacter Vanlangensis Gen. Nov., Sp. Nov., an Unusual Acetic Acid Bacterium in the α-Proteobacteria. J. Gen. Appl. Microbiol. 2013, 59, 153–166. [Google Scholar] [CrossRef]
- Barbitoff, Y.A.; Ushakov, M.O.; Lazareva, T.E.; Nasykhova, Y.A.; Glotov, A.S.; Predeus, A.V. Bioinformatics of Germline Variant Discovery for Rare Disease Diagnostics: Current Approaches and Remaining Challenges. Brief. Bioinform. 2024, 25, bbad508. [Google Scholar] [CrossRef]
- Ma, X.; Shao, Y.; Tian, L.; Flasch, D.A.; Mulder, H.L.; Edmonson, M.N.; Liu, Y.; Chen, X.; Newman, S.; Nakitandwe, J.; et al. Analysis of Error Profiles in Deep Next-Generation Sequencing Data. Genome Biol. 2019, 20, 50. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- North, B.J.; Verdin, E. Sirtuins: Sir2-Related NAD-Dependent Protein Deacetylases. Genome Biol. 2004, 5, 224. [Google Scholar] [CrossRef] [PubMed]
- AlphaFold Server. Available online: https://alphafoldserver.com/ (accessed on 4 December 2024).
- SIR2 Family Protein, NCBI Arch.ID 1222. Available online: https://www.ncbi.nlm.nih.gov/Structure/sparcle/archview.html?archid=1222 (accessed on 4 December 2024).
- SIR2 Family NAD-Dependent Protein Deacylase, NCBI Arch.ID 10594375. Available online: https://www.ncbi.nlm.nih.gov/Structure/sparcle/archview.html?archid=10594375#seqrarch (accessed on 4 December 2024).
- NAD-Dependent Deacylase, NCBI Arch.ID 10011453. Available online: https://www.ncbi.nlm.nih.gov/Structure/sparcle/archview.html?archid=10011453 (accessed on 4 December 2024).
- Teixeira, C.S.S.; Cerqueira, N.M.F.S.A.; Gomes, P.; Sousa, S.F. A Molecular Perspective on Sirtuin Activity. Int. J. Mol. Sci. 2020, 21, 8609. [Google Scholar] [CrossRef]
- Ying, W. NAD+/NADH and NADP+/NADPH in Cellular Functions and Cell Death: Regulation and Biological Consequences. Antioxid. Redox Signal. 2008, 10, 179–206. [Google Scholar] [CrossRef] [PubMed]
- Haigis, M.C.; Sinclair, D.A. Mammalian Sirtuins: Biological Insights and Disease Relevance. Annu. Rev. Pathol. Mech. Dis. 2010, 5, 253–295. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, Y.; Hong, H. Classification of Acetic Acid Bacteria and Their Acid Resistant Mechanism. AMB Express 2021, 11, 29. [Google Scholar] [CrossRef]
- KEGG ENZYME: 2.3.1.286. Available online: https://www.genome.jp/dbget-bin/www_bget?ec:2.3.1.286 (accessed on 4 December 2024).
- Sauve, A.A.; Wolberger, C.; Schramm, V.L.; Boeke, J.D. The Biochemistry of Sirtuins. Annu. Rev. Biochem. 2006, 75, 435–465. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Xie, Y.; Peng, H.; Li, T.; Zou, X.; Yue, F.; Guo, J.; Rong, L. Advancements in NMN Biotherapy and Research Updates in the Field of Digestive System Diseases. J. Transl. Med. 2024, 22, 805. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Bao, P.; Ling, X.; Qiu, Z.; Zhang, B.; Hao, T. In Vitro Digestion under Simulated Saliva, Gastric and Small Intestinal Conditions and Fermentation of Nicotinamide Mononucleotide, and Its Effects on the Gut Microbiota. Food Res. Int. 2024, 177, 113779. [Google Scholar] [CrossRef]
- Cao, T.; Ni, R.; Ding, W.; Ji, X.; Fan, G.C.; Zhang, Z.; Peng, T. Nicotinamide Mononucleotide as a Therapeutic Agent to Alleviate Multi-Organ Failure in Sepsis. J. Transl. Med. 2023, 21, 883. [Google Scholar] [CrossRef]
- KEGG PATHWAY: Nicotinate and Nicotinamide Metabolism—Reference Pathway. Available online: https://www.genome.jp/pathway/map00760+2.3.1.286 (accessed on 5 December 2024).
- KEGG T07040: JGUZn3_02650. Available online: https://www.genome.jp/dbget-bin/www_bget?ebla:JGUZn3_02650 (accessed on 4 December 2024).
- Yamamoto, H.; Schoonjans, K.; Auwerx, J. Sirtuin Functions in Health and Disease. Mol. Endocrinol. 2007, 21, 1745–1755. [Google Scholar] [CrossRef]
- Bailey, T.L.; Elkan, C. Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers. In Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology, ISMB, Stanford, CA, USA, 15–17 August 1994. [Google Scholar]
- Home—Protein Family Models—NCBI. Available online: https://www.ncbi.nlm.nih.gov/protfam (accessed on 4 December 2024).
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Wootton, J.C.; Gertz, E.M.; Agarwala, R.; Morgulis, A.; Schäffer, A.A.; Yu, Y.K. Protein Database Searches Using Compositionally Adjusted Substitution Matrices. FEBS J. 2005, 272, 5101–5109. [Google Scholar] [CrossRef]
- Parte, A.C.; Carbasse, J.S.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) Moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef]
- Jamovi—Open Statistical Software for the Desktop and Cloud. Available online: https://www.jamovi.org/ (accessed on 4 December 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Ripley, B. Feed-Forward Neural Networks and Multinomial Log-Linear Models [R Package Nnet Version 7.3-19]. CRAN: Contrib. Packages. 2023. Available online: https://cran.r-project.org/web/packages/nnet/index.html (accessed on 4 December 2024).
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Le, S.Q.; Gascuel, O. An Improved General Amino Acid Replacement Matrix. Mol. Biol. Evol. 2008, 25, 1307–1320. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Biopython. Available online: https://biopython.org/ (accessed on 29 December 2024).
Genus | Sirtuins Present (+)/Absent (−) |
---|---|
Acetobacter | + |
Acidomonas | − |
Ameyamaea | + |
Aristophania | − |
Asaia | + |
Bombella | − |
Brytella | − |
Commensalibacter | + |
Endobacter | + |
Entomobacter | + |
Gluconacetobacter | + |
Gluconobacter | + |
Granulibacter | − |
Komagataeibacter | + |
Kozakia | + |
Neoasaia | − |
Neokomagataea | − |
Nguyenibacter | + |
Novacetimonas | + |
Oecophyllibacter | − |
Saccharibacter | − |
Sorlinia | − |
Swaminathania | − |
Swingsia | − |
Tanticharoenia | − |
Genus | Type of Protein Family Model | ||
---|---|---|---|
SIR2 | SIR2_2 | PRK00481 | |
Acetobacter | + | + | + |
Ameyamaea | + | ||
Asaia | + | ||
Commensalibacter | + | ||
Endobacter | + | ||
Entomobacter | + | ||
Gluconacetobacter | + | + | |
Gluconobacter | + | ||
Komagataeibacter | + | + | |
Kozakia | + | ||
Nguyenibacter | + | ||
Novacetimonas | + | + | + |
Sirtuin Domain | Genus | ipTM | pTM | NAD+ | Zn2+ ion |
---|---|---|---|---|---|
SIR2 | Acetobacter | 0.96 | 0.93 | + | + |
Asaia | 0.96 | 0.94 | + | + | |
Gluconacetobacter | 0.95 | 0.93 | + | +/− | |
Gluconobacter | 0.97 | 0.86 | + | − | |
Kozakia | 0.85 | 0.77 | +/− | − | |
Novacetimonas | 0.96 | 0.86 | + | − | |
SIR2_2 | Acetobacter | 0.94 | 0.65 | +/− | − |
Komagataeibacter | 0.95 | 0.66 | + | − | |
Novacetimonas | 0.93 | 0.75 | + | − | |
PRK00481 | Acetobacter | 0.92 | 0.92 | + | + |
Ameyamaea | 0.92 | 0.93 | + | + | |
Commensalibacter | 0.90 | 0.91 | + | + | |
Endobacter | 0.88 | 0.91 | + | + | |
Entomobacter | 0.89 | 0.90 | + | + | |
Gluconacetobacter | 0.93 | 0.92 | + | + | |
Komagataeibacter | 0.87 | 0.91 | + | + | |
Nguyenibacter | 0.81 | 0.80 | + | + | |
Novacetimonas | 0.89 | 0.90 | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jugović, I.; Trček, J. In Silico Characterization of Sirtuins in Acetic Acid Bacteria Reveals a Novel Phylogenetically Distinctive Group. Molecules 2025, 30, 635. https://doi.org/10.3390/molecules30030635
Jugović I, Trček J. In Silico Characterization of Sirtuins in Acetic Acid Bacteria Reveals a Novel Phylogenetically Distinctive Group. Molecules. 2025; 30(3):635. https://doi.org/10.3390/molecules30030635
Chicago/Turabian StyleJugović, Igor, and Janja Trček. 2025. "In Silico Characterization of Sirtuins in Acetic Acid Bacteria Reveals a Novel Phylogenetically Distinctive Group" Molecules 30, no. 3: 635. https://doi.org/10.3390/molecules30030635
APA StyleJugović, I., & Trček, J. (2025). In Silico Characterization of Sirtuins in Acetic Acid Bacteria Reveals a Novel Phylogenetically Distinctive Group. Molecules, 30(3), 635. https://doi.org/10.3390/molecules30030635