Authentic Aroma and Compound-Specific Isotope Ratios (δ13C, δ2H) Profiles of Vanilla Pods (V. planifolia and V. tahitensis)
Abstract
:1. Introduction
2. Results
2.1. GC-MS/MS Analysis
2.2. UHPLC-HRMS Analysis
2.3. Method Validation of GC-IRMS Analysis of Ethyl Vanillin
2.3.1. Between-Run Precision
2.3.2. Within-Run Precision
2.3.3. Isotopic Fractionation During Solid Phase Extraction (SPE)
2.3.4. IRMS Analysis of Commercial Vanilla Extract Spiked with Ethyl Vanillin
2.4. GC-IRMS Analysis of Vanilla Pods
3. Discussion
3.1. GC-MS/MS Analysis
3.2. GC-IRMS Analysis of Vanillin and Ethyl Vanillin
3.3. GC-IRMS Analysis of Vanilla Extracts
4. Materials and Methods
4.1. Vanilla Samples
4.2. Chemicals and Materials
4.3. Commercial Vanilla Extract Preparation
4.4. In-House Vanilla Extract Preparation
4.5. GC-MS/MS Analysis
4.6. UHPLC-HRMS Analysis
4.7. GC-IRMS Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tai, A.; Sawano, T.; Yazama, F. Antioxidant Properties of Ethyl Vanillin in Vitro and in Vivo. Biosci. Biotechnol. Biochem. 2011, 75, 2346–2350. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.M.S.; Fromberg, A.; Frandsen, H.L. Authenticity and Traceability of Vanilla Flavors by Analysis of Stable Isotopes of Carbon and Hydrogen. J. Agric. Food Chem. 2014, 62, 10326–10331. [Google Scholar] [CrossRef] [PubMed]
- Geissler, K.; Grueler, M.; Schäfer, U.; Hans, J.; Geissler, T.; Meier, L.; Keppler, F.; Krammer, G. Vanilla authenticity control by DNA barcoding and isotope data aggregation. Flavour Fragr. J. 2017, 32, 228–237. [Google Scholar] [CrossRef]
- Belay, M.T.; Poole, C.F. Determination of vanillin and related flavor compounds in natural vanilla extracts and vanilla-flavored foods by thin-layer chromatography and automated multiple development. Chromatographia 1993, 37, 365–373. [Google Scholar] [CrossRef]
- Gerasimov, A.V.; Gornova, N.V.; Rudometova, N.V. Determination of vanillin and ethylvanillin in vanilla flavorings by planar (thin-layer) chromatography. J. Anal. Chem. 2003, 58, 677–684. [Google Scholar] [CrossRef]
- Hassan, S.; Araceli, P.; Denis, B.; de los Ángeles, V.; Mayra, N.; Delfino, R. Identification of volatile compounds in cured Mexican vanilla (Vanilla planifolia G. Jackson) beans using headspace solid-phase microextraction with gas chromatography-mass spectrometry. Fruits 2016, 71, 407–418. [Google Scholar] [CrossRef]
- Brunschwig, C.; Senger-Emonnot, P.; Aubanel, M.-L.; Pierrat, A.; George, G.; Rochard, S.; Raharivelomanana, P. Odor-active compounds of Tahitian vanilla flavor. Food Res. Int. 2012, 46, 148–157. [Google Scholar] [CrossRef]
- Busconi, M.; Lucini, L.; Soffritti, G.; Bernardi, J.; Bernardo, L.; Brunschwig, C.; Lepers-Andrzejeweski, S.; Raharivelomanana, P.; Fernandez, J.-A. Phenolic Profiling for Traceability of Vanilla × tahitensis. Front. Plant Sci. 2017, 8, 1746. [Google Scholar] [CrossRef]
- Takahashi, M.; Inai, Y.; Miyazawa, N.; Kurobayashi, Y.; Fujita, Y. Key Odorants in Cured Madagascar Vanilla Beans (Vanilla planiforia) of Differing Bean Quality. Biosci. Biotechnol. Biochem. 2013, 77, 606–611. [Google Scholar] [CrossRef]
- Sinha, A.K.; Sharma, U.K.; Sharma, N. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents. Int. J. Food Sci. Nutr. 2008, 59, 299–326. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, G.; Pichlmayer, F.; Schmid, E.R. Determination of the authenticity of vanilla extracts by stable-isotope ratio analysis and component analysis by HPLC. J. Agric. Food Chem. 1994, 42, 1722–1727. [Google Scholar] [CrossRef]
- Wilde, A.S.; Strucko, T.; Veje, C.R.; Mortensen, U.H.; Duedahl-Olesen, L. Authentication of vanillin ex glucose-A first study on the influence of the glucose-source on the 813C and 82H value. Food Control. 2022, 131, 108389. [Google Scholar] [CrossRef]
- Pilling, D. The Real Price of Madagascar’s Vanilla Boom. 2018. Available online: https://www.ft.com/content/02042190-65bc-11e8-90c2-9563a0613e56 (accessed on 31 October 2024).
- Krueger, D.A.; Krueger, H.W. Detection of fraudulent vanillin labeled with c-13 in the carbonyl carbon. J. Agric. Food Chem. 1985, 33, 323–325. [Google Scholar] [CrossRef]
- D’Arrigo, P.; Rossato, L.A.M.; Strini, A.; Serra, S. From Waste to Value: Recent Insights into Producing Vanillin from Lignin. Molecules 2024, 29, 442. [Google Scholar] [CrossRef] [PubMed]
- Ali, L.; Perfetti, G.; Diachenko, G. Rapid method for the determination of coumarin, vanillin, and ethyl vanillin in vanilla extract by reversed-phase liquid chromatography with ultraviolet detection. J. Aoac Int. 2008, 91, 383–386. [Google Scholar] [CrossRef]
- Jung, H.J.; Song, Y.S.; Kim, k.; Lim, C.J.; Park, E.H. Assessment of the Anti-angiogenic, Anti-inflammatory and Antinociceptive Properties of Ethyl Vanillin. Arch. Pharmacal Res. 2010, 33, 309–316. [Google Scholar] [CrossRef]
- Moreno-Ley, C.M.; Hernández-Martínez, D.M.; Osorio-Revilla, G.; Tapia-Ochoategui, A.P.; Dávila-Ortiz, G.; Gallardo-Velázquez, T. Prediction of coumarin and ethyl vanillin in pure vanilla extracts using MID-FTIR spectroscopy and chemometrics. Talanta 2019, 197, 264–269. [Google Scholar] [CrossRef]
- Pan, X.X.; Li, J.J.; Wang, M.G.; He, W.S.; Jia, C.S.; Zhang, X.M.; Feng, B.; Li, D.L.; Zeng, Z. Oxidative decarboxylation of mandelic acid derivative by recombinant Escherichia coli: A novel method of ethyl vanillin synthesis. Biotechnol. Lett. 2013, 35, 921–927. [Google Scholar] [CrossRef]
- Song, X.B.; Porter, M.E.; Whitaker, V.M.; Lee, S.H.; Wang, Y. Identification of ethyl vanillin in strawberry (Fragaria × ananassa) using a targeted metabolomics strategy: From artificial to natural. Food Chem. X 2023, 20, 100944. [Google Scholar] [CrossRef] [PubMed]
- De Jager, L.S.; Perfetti, G.A.; Diachenko, G.W. Determination of coumarin, vanillin, and ethyl vanillin in vanilla extract products: Liquid chromatography mass spectrometry method development and validation studies. J. Chromatogr. A 2007, 1145, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, C.C.; Bayona, A.H.; Sanchez, F.G. Derivative spectrophotometric determination of vanillin and para-hydroxybenzaldehyde in vanilla bean extracts. J. Agric. Food Chem. 1990, 38, 178–181. [Google Scholar] [CrossRef]
- Ainscough, E.W.; Brodie, A.M. The determination of vanillin in vanilla extract: An analytical-chemistry experiment. J. Chem. Educ. 1990, 67, 1070–1071. [Google Scholar] [CrossRef]
- Ni, Y.N.; Zhang, G.W.; Kokot, S. Simultaneous spectrophotometric determination of maltol, ethyl maltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks. Food Chem. 2005, 89, 465–473. [Google Scholar] [CrossRef]
- Jiménez-Carvelo, A.M.; Tonolini, M.; McAleer, O.; Cuadros-Rodríguez, L.; Granato, D.; Koidis, A. Multivariate approach for the authentication of vanilla using infrared and Raman spectroscopy. Food Res. Int. 2021, 141, 110196. [Google Scholar] [CrossRef]
- Coleman, W.M.; Dube, M.F. Headspace solid-phase microextraction analysis of artificial flavors. J. Sci. Food Agric. 2005, 85, 2645–2654. [Google Scholar] [CrossRef]
- De Jager, L.S.; Perfetti, G.A.; Diachenko, G.W. Comparison of headspace-SPME-GC-MS and LC-MS for the detection and quantification of coumarin, vanillin, and ethyl vanillin in vanilla extract products. Food Chem. 2008, 107, 1701–1709. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zeng, G.F.; Wei, X.Q.; Ding, B.; Huang, C.; Xu, B.J. Determination of Vanillin and Ethyl-Vanillin in Milk Powder by Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. Food Anal. Methods 2016, 9, 3360–3366. [Google Scholar] [CrossRef]
- Greule, M.; Tumino, L.D.; Kronewald, T.; Hener, U.; Schleucher, J.; Mosandl, A.; Keppler, F. Improved rapid authentication of vanillin using δ13C and δ2H values. Eur. Food Res. Technol. 2010, 231, 933–941. [Google Scholar] [CrossRef]
- Kaunzinger, A.; Juchelka, D.; Mosandl, A. Progress in the authenticity assessment of vanilla. 1. Initiation of authenticity profiles. J. Agric. Food Chem. 1997, 45, 1752–1757. [Google Scholar] [CrossRef]
- Perini, M.; Pianezze, S.; Strojnik, L.; Camin, F. C and H stable isotope ratio analysis using solid-phase microextraction and gas chromatography-isotope ratio mass spectrometry for vanillin authentication. J. Chromatogr. A 2019, 1595, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Wilde, A.S.; Hansen, A.M.S.; Fromberg, A.; Frandsen, H.L.; Smedsgaard, J. Determination of δ13C of vanillin in complex food matrices by HS-SPME-GC-C-IRMS. Flavour Fragr. J. 2020, 35, 387–393. [Google Scholar] [CrossRef]
- Wild, A.S.; Frandsen, H.L.; Fromberg, A.; Smedsgaard, J.; Greule, M. Isotopic characterization of vanillin ex glucose by GC-IRMS-New challenge for natural vanilla flavour authentication? Food Control. 2019, 106, 106735. [Google Scholar] [CrossRef]
- Schipilliti, L.; Bonaccorsi, I.L.; Mondello, L. Characterization of natural vanilla flavour in foodstuff by HS-SPME and GC-C-IRMS. Flavour Fragr. J. 2017, 32, 85–91. [Google Scholar] [CrossRef]
- John, T.V.; Jamin, E. Chemical investigation and authenticity of Indian vanilla beans. J. Agric. Food Chem. 2004, 52, 7644–7650. [Google Scholar] [CrossRef] [PubMed]
- Pironti, C.; Ricciardi, M.; Motta, O.; Camin, F.; Bontempo, L.; Proto, A. Application of 13C Quantitative NMR Spectroscopy to Isotopic Analyses for Vanillin Authentication Source. Foods 2021, 10, 2635. [Google Scholar] [CrossRef] [PubMed]
- Remaud, G.S.; Martin, Y.L.; Martin, G.G.; Martin, G.J. Detection of sophisticated adulterations of natural vanilla flavors and extracts: Application of the SNIF-NMR method to vanillin and p-hydroxybenzaldehyde. J. Agric. Food Chem. 1997, 45, 859–866. [Google Scholar] [CrossRef]
- Tenailleau, E.; Lancelin, P.; Robins, R.J.; Akoka, S. NMR approach to the quantification of nonstatistical 13C distribution in natural products: Vanillin. Anal. Chem. 2004, 76, 3818–3825. [Google Scholar] [CrossRef] [PubMed]
- Gassenmeier, K.; Binggeli, E.; Kirsch, T.; Otiv, S. Modulation of the 13C/12C ratio of vanillin from vanilla beans during curing. Flavour Fragr. J. 2013, 28, 25–29. [Google Scholar] [CrossRef]
- Shen, Y.; Han, C.; Liu, B.; Lin, Z.F.; Zhou, X.J.; Wang, C.J.; Zhu, Z.O. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry. J. Dairy Sci. 2014, 97, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, G.; Blochberger, K. Protocol for isolation of vanillin from ice cream and yoghurt to confirm the vanilla beans origin by 13C-EA-IRMS. Food Chem. 2009, 114, 1130–1134. [Google Scholar] [CrossRef]
- Bononi, M.; Quaglia, G.; Tateo, F. Easy Extraction Method to Evaluate δ13C Vanillin by Liquid Chromatography-Isotopic Ratio Mass Spectrometry in Chocolate Bars and Chocolate Snack Foods. J. Agric. Food Chem. 2015, 63, 4777–4781. [Google Scholar] [CrossRef]
- Van Leeuwen, K.A.; van Leeuwen, K.A.; Prenzler, P.D.; Ryan, D.; Paolini, M.; Camin, F. Differentiation of wood-derived vanillin from synthetic vanillin in distillates using gas chromatography/combustion/isotope ratio mass spectrometry for 13C analysis. Rapid Commun. Mass Spectrom. 2018, 32, 311–318. [Google Scholar] [CrossRef]
- Khatri, P.K.; Paolini, M.; Larcher, R.; Ziller, L.; Magdas, D.A.; Marincas, O.; Roncone, A.; Bontempo, L. Validation of gas chromatographic methods for lavender essential oil authentication based on volatile organic compounds and stable isotope ratios. Microchem. J. 2023, 186, 108343. [Google Scholar] [CrossRef]
- Krueger, D.A.; Krueger, H.W. Carbon isotopes in vanillin and the detection of falsified natural vanillin. J. Agric. Food Chem. 1983, 31, 1265–1268. [Google Scholar] [CrossRef]
- Bender, M.M.; Rouhani, I.; Vines, H.M.; Black, C.C., Jr. 13C/12C Ratio Changes in Crassulacean Acid Metabolism Plants. Plant Physiol. 1973, 52, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Song, J.H.; Heo, S.C.; Lee, J.H.; Jung, I.W.; Min, J.S. Discrimination of ginseng cultivation regions using light stable isotope analysis. Forensic Sci. Int. 2015, 255, 43–49. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, J.K.; Lee, J.H.; An, M.J.; Lee, K.J.; Park, S.K.; Kim, J.U.; Kim, M.J.; Kim, S.H. C/N/O/S stable isotopic and chemometric analyses for determining the geographical origin of Panax ginseng cultivated in Korea. J. Ginseng Res. 2018, 42, 485–495. [Google Scholar] [CrossRef]
- Salazar-Rojas, V.M.; Herrera-Cabrera, B.E.; Herrera-Cabrera, A.; Soto-Hernández, M.; Castillo-González, F.; Cobos-Peralta, M. Chemotypical variation in Vanilla planifolia Jack. (Orchidaceae) from the Puebla-Veracruz Totonacapan region. Genet. Resour. Crop Evol. 2012, 59, 875–887. [Google Scholar] [CrossRef]
- Hending, D.; Holderied, M.; McCabe, G.; Cotton, S. Effects of future climate change on the forests of Madagascar. Ecosphere 2022, 13, e4017. [Google Scholar] [CrossRef]
- Paolini, M.; Roncone, A.; Cucinotta, L.; Sciarrone, D.; Mondello, L.; Camin, F.; Moser, S.; Larcher, R.; Bontempo, L. Aromatic Characterisation of Moscato Giallo by GC-MS/MS and Validation of Stable Isotopic Ratio Analysis of the Major Volatile Compounds. Biomolecules 2024, 6, 710. [Google Scholar] [CrossRef] [PubMed]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A. Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection. J. Chromatogr. A 2012, 1226, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.T.; Liu, J.; Wan, P.; Liu, S.Y.; Wang, Q.Z.; Chen, D.W. Investigation of the effect of polar components in cream on the flavor of heated cream based on NMR and GC-MS methods. LWT-Food Sci. Technol. 2022, 155, 112940. [Google Scholar] [CrossRef]
- Petrozziello, M.; Bonello, F.; Asproudi, A.; Nardi, T.; Tsolakis, C.; Bosso, A.; Di Martino, V.; Fugaro, M.; Mazzei, R.A. Xylovolatile fingerprint of wines aged in barrels or with oak chips. OENO One 2020, 54, 513–522. [Google Scholar] [CrossRef]
- Boban, A.; Vrhovsek, U.; Carlin, S.; Mucalo, A.; Budić-Leto, I. A Targeted and an Untargeted Metabolomics Approach to the Volatile Aroma Profile of Young ’Marastina’ Wines. Metabolites 2022, 12, 1295. [Google Scholar] [CrossRef] [PubMed]
- Jagatić Korenika, A.-M.; Preiner, D.; Tomaz, I.; Jeromel, A. Volatile Profile Characterization of Croatian Commercial Sparkling Wines. Molecules 2020, 25, 4349. [Google Scholar] [CrossRef] [PubMed]
- Jean, F.I.; Garneau, F.X.; Collin, G.J.; Bouhajib, M.; Zamir, L.O. The Essential Oil and Glycosidically Bound Volatile Compounds of Taxus canadensis Marsh. J. Essent. Oil Res. 1993, 5, 7–11. [Google Scholar] [CrossRef]
- Bureau, S.M.; Baumes, R.L.; Razungles, A.J. Effects of vine or bunch shading on the glycosylated flavor precursors in grapes of Vitis vinifera L. Cv. Syrah. J. Agric. Food Chem. 2000, 48, 1290–1297. [Google Scholar] [CrossRef]
- Barnaba, C.; Dellacassa, E.; Nicolini, G.; Giacomelli, M.; Villegas, T.R.; Nardin, T.; Roberto Larcher, R. Targeted and untargeted high resolution mass approach for a putative profiling of glycosylated simple phenols in hybrid grapes. Food Res. Int. 2017, 98, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Coplen, T.B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef]
Ethyl Vanillin | Vanillin | |
---|---|---|
δ13C | 1.7% | 0.7% |
δ2H | 12% | 3% |
δ13C (‰) | δ2H (‰) | |||
---|---|---|---|---|
Ethyl Vanillin | Vanillin | Ethyl Vanillin | Vanillin | |
Mean | −21.8 | −28.5 | −121 | −174 |
SD | 0.5 | 0.2 | 5 | 4 |
RSD | 2.4% | 0.6% | 4% | 3% |
Elements | Compound | Parameter | Standard | SPE | Fractionation | Overall Errors |
---|---|---|---|---|---|---|
δ2H | Ethyl vanillin | Mean | −192‰ | −191‰ | 1‰ | 5‰ |
SD | 2‰ | 2‰ | ||||
RSD | 1% | 1% | ||||
Vanillin | Mean | −228‰ | −229‰ | −1‰ | 4‰ | |
SD | 2‰ | 1‰ | ||||
RSD | 1% | 0.5% | ||||
δ13C | Ethyl vanillin | Mean | −22.7‰ | −22.7‰ | 0.0‰ | 0.5‰ |
SD | 0.5‰ | 0.1‰ | ||||
RSD | 1.7% | 0.6% | ||||
Vanillin | Mean | −29.7‰ | −29.9‰ | −0.2‰ | 0.3‰ | |
SD | 0.5‰ | 0.3‰ | ||||
RSD | 1.8% | 1.2% |
Sample Name | Geographical Origin | Species | δ13C (‰) | δ2H (‰) |
---|---|---|---|---|
FP1 | French Polynesia | Tahitensis | −16.4 | −79 |
FP2 | French Polynesia | Tahitensis | −16.7 | −82 |
MAD1 | Madagascar | Planifolia | −19.8 | −73 |
MAD2 | Madagascar | Planifolia | −19.5 | −64 |
MAD3 | Madagascar | Planifolia | −19.1 | −80 |
MAD4 | Madagascar | Planifolia | −20.2 | −68 |
MEX | Mexico | Planifolia | −20.5 | −67 |
PNG | Papua New Guinea | Tahitensis | −16.6 | −99 |
RI1 | Réunion | Planifolia | −19.6 | −67 |
RI2 | Réunion | Planifolia | −20.2 | −63 |
Sample Number | Sample Name | Origin | Length (cm) | Species | Remarks |
---|---|---|---|---|---|
1 | FP1 | French Polynesia | 18 | Tahitensis | Gourmet quality |
2 | FP2 | French Polynesia | 18 | Tahitensis | Gourmet quality |
3 | MAD1 | Madagascar | 16 | Planifolia | High quality |
4 | MAD2 | Madagascar | 18 | Planifolia | Grade A (gourmet quality) |
5 | MAD3 | Madagascar | - | Planifolia | Glass tube (syrup sugar, pods 300 g/L, vanilla seeds) |
6 | MAD4 | Madagascar | 12 | Planifolia | Grade B |
7 | MEX | Mexico | 16 | Planifolia | Gourmet quality |
8 | PNG | Papua New Guinea | 16 | Tahitensis | High quality |
9 | RI1 | Réunion | 13 | Planifolia | Gourmet quality |
10 | RI2 | Réunion | 13 | Planifolia | Gourmet quality |
Chemicals | Producer | Purity/Notes |
---|---|---|
1-heptanol | Merck, Darmstadt, Germany | ≥99.5% |
ethyl-3-hydroxybutyrate | Merck, Darmstadt, Germany | ≥98.0% |
Isolute ENV+ solid phase extraction (SPE) cartridges | Biotage, Uppsala, Sweden | 1 g, 6 mL |
Methanol | Merck, Darmstadt, Germany | ≥99.9% |
dichloromethane | Merck, Darmstadt, Germany | ≥99.9% |
anhydrous sodium sulphate | Merck, Darmstadt, Germany | ≥99.0% |
Hexane | Honeywell, Seelze, Germany | ≥97.0% |
Ethanol | Honeywell, Seelze, Germany | ≥99.8% |
ethyl hexanoate | Merck, Darmstadt, Germany | ≥99.0% |
synthetic ethyl vanillin | Sigma-Aldrich, Steinheim, Germany | ≥98.0% |
synthetic vanillin | in-house standard | with known delta values |
vanillin ex lignin | in-house standard | with known delta values |
commercial vanilla extract | Irca s.r.l, Gallarate, Italy | - |
ethyl vanillin glucoside | Biosynth, Bratislava, Slovakia | - |
Milli-Q water | in-house material | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Khatri, P.K.; Paolini, M.; Nardin, T.; Roncone, A.; Larcher, R.; Ziller, L.; Bontempo, L. Authentic Aroma and Compound-Specific Isotope Ratios (δ13C, δ2H) Profiles of Vanilla Pods (V. planifolia and V. tahitensis). Molecules 2025, 30, 825. https://doi.org/10.3390/molecules30040825
Chen L, Khatri PK, Paolini M, Nardin T, Roncone A, Larcher R, Ziller L, Bontempo L. Authentic Aroma and Compound-Specific Isotope Ratios (δ13C, δ2H) Profiles of Vanilla Pods (V. planifolia and V. tahitensis). Molecules. 2025; 30(4):825. https://doi.org/10.3390/molecules30040825
Chicago/Turabian StyleChen, Long, Purna Kumar Khatri, Mauro Paolini, Tiziana Nardin, Alberto Roncone, Roberto Larcher, Luca Ziller, and Luana Bontempo. 2025. "Authentic Aroma and Compound-Specific Isotope Ratios (δ13C, δ2H) Profiles of Vanilla Pods (V. planifolia and V. tahitensis)" Molecules 30, no. 4: 825. https://doi.org/10.3390/molecules30040825
APA StyleChen, L., Khatri, P. K., Paolini, M., Nardin, T., Roncone, A., Larcher, R., Ziller, L., & Bontempo, L. (2025). Authentic Aroma and Compound-Specific Isotope Ratios (δ13C, δ2H) Profiles of Vanilla Pods (V. planifolia and V. tahitensis). Molecules, 30(4), 825. https://doi.org/10.3390/molecules30040825