Tailoring the Composition of HA/PEG Mixed Nano-Assemblies for Anticancer Drug Delivery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Critical Micellar Concentration (CMC)
2.2. Nano-Assembly Preparation and Characterization
2.3. Hemolysis Assay
2.4. Biological Validation Assay
3. Materials and Methods
3.1. Materials and General Procedures
3.2. Critical Micellar Concentration
3.3. Preparation of the Nano-Assemblies
3.4. Physicochemical Characterization of the Nano-Assemblies
3.5. In Vitro Release Study
3.6. X-Ray Powder Diffraction Measurements
3.7. Hemolysis Assay
3.8. Cell Lines
3.9. Nano-Assemblies Uptake
3.10. Cell Viability
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. J. Control Release 2021, 332, 312–336. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, B.; Biswas, S. Polymeric Micelles in Cancer Therapy: State of the Art. J. Control Release 2021, 332, 127–147. [Google Scholar] [CrossRef]
- Letchford, K.; Burt, H. A Review of the Formation and Classification of Amphiphilic Block Copolymer Nanoparticulate Structures: Micelles, Nanospheres, Nanocapsules and Polymersomes. Eur. J. Pharm. Biopharm. 2007, 65, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xiao, R.; Zeng, Z.; Xu, L.; Wang, J. Application of Poly(Ethylene Glycol)- Distearoylphosphatidylethanolamine (PEG-DSPE) Block Copolymers and Their Derivatives as Nanomaterials in Drug Delivery. Int. J. Nanomed. 2012, 7, 4185–4198. [Google Scholar]
- Che, J.; Okeke, C.I.; Hu, Z.-B.; Xu, J. DSPE-PEG: A Distinctive Component in Drug Delivery System. Curr. Pharm. Des. 2015, 21, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Graván, P.; Peña-Martín, J.; de Andrés, J.L.; Pedrosa, M.; Villegas-Montoya, M.; Galisteo-González, F.; Marchal, J.A.; Sánchez-Moreno, P. Exploring the Impact of Nanoparticle Stealth Coatings in Cancer Models: From PEGylation to Cell Membrane-Coating Nanotechnology. ACS Appl. Mater. Interfaces 2024, 16, 2058–2074. [Google Scholar] [CrossRef]
- Gaballa, S.A.; Shimizu, T.; Takata, H.; Ando, H.; Ibrahim, M.; Emam, S.E.; Amorim Matsuo, N.C.; Kim, Y.; Naguib, Y.W.; Mady, F.M.; et al. Impact of Anti-PEG IgM Induced via the Topical Application of a Cosmetic Product Containing PEG Derivatives on the Antitumor Effects of PEGylated Liposomal Antitumor Drug Formulations in Mice. Mol. Pharm. 2024, 21, 622–632. [Google Scholar] [CrossRef]
- Andreana, I.; Bincoletto, V.; Ricci, C.; Salaroglio, I.C.; Manzoli, M.; Zurletti, B.; Milone, J.; Rolando, B.; Del Favero, E.; Riganti, C.; et al. Smart Hyaluronated Micelles to Enhance a Gemcitabine Prodrug Efficacy. J. Drug Deliv. Sci. Technol. 2025, 104, 106518. [Google Scholar] [CrossRef]
- Vasi, A.-M.; Popa, M.I.; Butnaru, M.; Dodi, G.; Verestiuc, L. Chemical Functionalization of Hyaluronic Acid for Drug Delivery Applications. Mater. Sci. Eng. C 2014, 38, 177–185. [Google Scholar] [CrossRef]
- Bayer, I.S. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020, 25, 2649. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, D.; Xu, Y.; Zhu, Q. Hyaluronic Acid in Ocular Drug Delivery. Carbohydr. Polym. 2021, 264, 118006. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Fu, Y.; Gong, H.; Liu, H.; Li, W. Hyaluronic Acid and Cholecalciferol Conjugate Based Nanomicelles: Synthesis, Characterization, and Cytotoxicity against MCF-7 Breast Cancer Cells. Carbohydr. Res. 2022, 522, 108706. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Zhao, Y.; Xu, K.; He, Y.; Qin, M. Hyaluronic Acid Receptor-Mediated Nanomedicines and Targeted Therapy. Small Methods 2024, 8, 2400513. [Google Scholar] [CrossRef] [PubMed]
- Immordino, M.L.; Brusa, P.; Rocco, F.; Arpicco, S.; Ceruti, M.; Cattel, L. Preparation, Characterization, Cytotoxicity and Pharmacokinetics of Liposomes Containing Lipophilic Gemcitabine Prodrugs. J. Control Release 2004, 100, 331–346. [Google Scholar] [CrossRef]
- Sandoval, M.A.; Sloat, B.R.; Lansakara-P, D.S.P.; Kumar, A.; Rodriguez, B.L.; Kiguchi, K.; DiGiovanni, J.; Cui, Z. EGFR-Targeted Stearoyl Gemcitabine Nanoparticles Show Enhanced Anti-Tumor Activity. J. Control Release 2012, 157, 287–296. [Google Scholar] [CrossRef]
- Chiesa, E.; Greco, A.; Riva, F.; Dorati, R.; Conti, B.; Modena, T.; Genta, I. CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles. Pharmaceuticals 2022, 15, 103. [Google Scholar] [CrossRef] [PubMed]
- Arpicco, S.; Lerda, C.; Dalla Pozza, E.; Costanzo, C.; Tsapis, N.; Stella, B.; Donadelli, M.; Dando, I.; Fattal, E.; Cattel, L.; et al. Hyaluronic Acid-Coated Liposomes for Active Targeting of Gemcitabine. Eur. J. Pharm. Biopharm. 2013, 85, 373–380. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, B.-M.; Tran, T.T.M.; Chang, T.-C.; Al-Qaisi, T.S.; Roffler, S.R. Accelerated Clearance by Antibodies against Methoxy PEG Depends on Pegylation Architecture. J. Control Release 2023, 354, 354–367. [Google Scholar] [CrossRef]
- Huang, Y.; Osouli, A.; Pham, J.; Mancino, V.; O’Grady, C.; Khan, T.; Chaudhuri, B.; Pastor-Soler, N.M.; Hallows, K.R.; Chung, E.J. Investigation of Basolateral Targeting Micelles for Drug Delivery Applications in Polycystic Kidney Disease. Biomacromolecules 2024, 25, 2749–2761. [Google Scholar] [CrossRef]
- Rouser, G.; Fleischer, S.; Yamamoto, A. Two Dimensional Thin Layer Chromatographic Separation of Polar Lipids and Determination of Phospholipids by Phosphorus Analysis of Spots. Lipids 1970, 5, 494–496. [Google Scholar] [CrossRef]
- Bitter, T.; Muir, H.M. A Modified Uronic Acid Carbazole Reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Pino, P.d.; Pelaz, B.; Zhang, Q.; Maffre, P.; Nienhaus, G.U.; Parak, W.J. Protein Corona Formation around Nanoparticles—From the Past to the Future. Mater. Horiz. 2014, 1, 301–313. [Google Scholar] [CrossRef]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle Colloidal Stability in Cell Culture Media and Impact on Cellular Interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [PubMed]
- Mekseriwattana, W.; Srisuk, S.; Kriangsaksri, R.; Niamsiri, N.; Prapainop, K. The Impact of Serum Proteins and Surface Chemistry on Magnetic Nanoparticle Colloidal Stability and Cellular Uptake in Breast Cancer Cells. AAPS PharmSciTech 2019, 20, 55. [Google Scholar] [CrossRef]
- Glavas, L.; Olsén, P.; Odelius, K.; Albertsson, A.-C. Achieving Micelle Control through Core Crystallinity. Biomacromolecules 2013, 14, 4150–4156. [Google Scholar] [CrossRef]
- Gou, J.; Feng, S.; Xu, H.; Fang, G.; Chao, Y.; Zhang, Y.; Xu, H.; Tang, X. Decreased Core Crystallinity Facilitated Drug Loading in Polymeric Micelles without Affecting Their Biological Performances. Biomacromolecules 2015, 16, 2920–2929. [Google Scholar] [CrossRef]
- Sathishbabu, P.; Uthaiah, C.A.; Hani, U. Comprehensive Evaluation of EGFR and AKT Targeting Efficacy of Resveratrol Loaded PEGylated Liposomes for the Glioblastoma Management: In Silico, in Vitro BBB Permeation Studies. Bioorg Chem 2025, 154, 108077. [Google Scholar] [CrossRef]
- Pakdaman Goli, P.; Bikhof Torbati, M.; Parivar, K.; Akbarzadeh Khiavi, A.; Yousefi, M. Preparation and Evaluation of Gemcitabin and Cisplatin-Entrapped Folate-PEGylated Liposomes as Targeting Co-Drug Delivery System in Cancer Therapy. J. Drug Deliv. Sci. Technol. 2021, 65, 102756. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Xiang, F.; Huang, T.; Wang, Y.; Wu, J.; Zhou, Z. Crystallization, Rheological, and Mechanical Properties of PLLA/PEG Blend with Multiwalled Carbon Nanotubes. Polym. Adv. Technol. 2011, 22, 1959–1970. [Google Scholar] [CrossRef]
- Li, R.; Wu, Y.; Bai, Z.; Guo, J.; Chen, X. Effect of Molecular Weight of Polyethylene Glycol on Crystallization Behaviors, Thermal Properties and Tensile Performance of Polylactic Acid Stereocomplexes. RSC Adv. 2020, 10, 42120–42127. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, W.; Dai, X.; Katragadda, U.; McKinley, D.; Teng, Q.; Tan, C. Enhanced Tumor Delivery of Gemcitabine via PEG-DSPE/TPGS Mixed Micelles. Mol. Pharm. 2014, 11, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Saadat, E.; Amini, M.; Khoshayand, M.R.; Dinarvand, R.; Dorkoosh, F.A. Synthesis and Optimization of a Novel Polymeric Micelle Based on Hyaluronic Acid and Phospholipids for Delivery of Paclitaxel, in Vitro and in-Vivo Evaluation. Int. J. Pharm. 2014, 475, 163–173. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Chen, T.; Yang, Q.; Huang, T.; Fu, Y.; Gong, T.; Zhang, Z. Hyaluronic Acid-Modified Micelles Encapsulating Gem-C <inf>12</Inf> and HNK for Glioblastoma Multiforme Chemotherapy. Mol. Pharm. 2018, 15, 1203–1214. [Google Scholar] [CrossRef]
- Saadat, E.; Amini, M.; Dinarvand, R.; Dorkoosh, F.A. Polymeric Micelles Based on Hyaluronic Acid and Phospholipids: Design, Characterization, and Cytotoxicity. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Tempero, M.A.; Sigal, D.; Oh, D.-Y.; Fazio, N.; MacArulla, T.; Hitre, E.; Hammel, P.; Hendifar, A.E.; Bates, S.E.; et al. Randomized Phase III Trial of Pegvorhyaluronidase Alfa with Nab-Paclitaxel plus Gemcitabine for Patients with Hyaluronan-High Metastatic Pancreatic Adenocarcinoma. J. Clin. Oncol. 2020, 38, 3185–3194. [Google Scholar] [CrossRef]
- Jeannot, V.; Gauche, C.; Mazzaferro, S.; Couvet, M.; Vanwonterghem, L.; Henry, M.; Didier, C.; Vollaire, J.; Josserand, V.; Coll, J.-L.; et al. Anti-Tumor Efficacy of Hyaluronan-Based Nanoparticles for the Co-Delivery of Drugs in Lung Cancer. J. Control Release 2018, 275, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Vogus, D.R.; Evans, M.A.; Pusuluri, A.; Barajas, A.; Zhang, M.; Krishnan, V.; Nowak, M.; Menegatti, S.; Helgeson, M.E.; Squires, T.M.; et al. A Hyaluronic Acid Conjugate Engineered to Synergistically and Sequentially Deliver Gemcitabine and Doxorubicin to Treat Triple Negative Breast Cancer. J. Control Release 2017, 267, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Tosi, A.; Parisatto, B.; Gaffo, E.; Bortoluzzi, S.; Rosato, A. A Paclitaxel-Hyaluronan Conjugate (ONCOFID-P-BTM) in Patients with BCG-Unresponsive Carcinoma in Situ of the Bladder: A Dynamic Assessment of the Tumor Microenvironment. J. Exp. Clin. Cancer Res. 2024, 43, 109. [Google Scholar] [CrossRef]
- Song, Z.; Feng, R.; Sun, M.; Guo, C.; Gao, Y.; Li, L.; Zhai, G. Curcumin-Loaded PLGA-PEG-PLGA Triblock Copolymeric Micelles: Preparation, Pharmacokinetics and Distribution in Vivo. J. Colloid Interface Sci. 2011, 354, 116–123. [Google Scholar] [CrossRef]
- Karsten, E.; Breen, E.; McCracken, S.A.; Clarke, S.; Herbert, B.R. Red Blood Cells Exposed to Cancer Cells in Culture Have Altered Cytokine Profiles and Immune Function. Sci. Rep. 2020, 10, 7727. [Google Scholar] [CrossRef]
- Cano, M.E.; Lesur, D.; Bincoletto, V.; Gazzano, E.; Stella, B.; Riganti, C.; Arpicco, S.; Kovensky, J. Synthesis of Defined Oligohyaluronates-Decorated Liposomes and Interaction with Lung Cancer Cells. Carbohydr. Polym. 2020, 248, 116798. [Google Scholar] [CrossRef] [PubMed]
Sample | Mean Diameter (nm ± S.D.) | PDI | Zeta Potential (mV ± S.D.) | EE (% ± S.D.) | DL (% ± S.D.) |
---|---|---|---|---|---|
GemC18-PEG/HA1%-NA | 68 ± 10 | 0.272 | −27 ± 8 | 96 ± 3 | 18 ± 2 |
GemC18-PEG/HA10%-NA | 97 ± 10 | 0.290 | −30 ± 5 | 91 ± 9 | 13 ± 2 |
GemC18-PEG/HA20%-NA | 122 ± 24 | 0.304 | −27 ± 6 | 92 ± 8 | 8 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zurletti, B.; Andreana, I.; Salaroglio, I.C.; Bincoletto, V.; Manzoli, M.; Rolando, B.; Milla, P.; Riganti, C.; Stella, B.; Arpicco, S. Tailoring the Composition of HA/PEG Mixed Nano-Assemblies for Anticancer Drug Delivery. Molecules 2025, 30, 1349. https://doi.org/10.3390/molecules30061349
Zurletti B, Andreana I, Salaroglio IC, Bincoletto V, Manzoli M, Rolando B, Milla P, Riganti C, Stella B, Arpicco S. Tailoring the Composition of HA/PEG Mixed Nano-Assemblies for Anticancer Drug Delivery. Molecules. 2025; 30(6):1349. https://doi.org/10.3390/molecules30061349
Chicago/Turabian StyleZurletti, Beatrice, Ilaria Andreana, Iris Chiara Salaroglio, Valeria Bincoletto, Maela Manzoli, Barbara Rolando, Paola Milla, Chiara Riganti, Barbara Stella, and Silvia Arpicco. 2025. "Tailoring the Composition of HA/PEG Mixed Nano-Assemblies for Anticancer Drug Delivery" Molecules 30, no. 6: 1349. https://doi.org/10.3390/molecules30061349
APA StyleZurletti, B., Andreana, I., Salaroglio, I. C., Bincoletto, V., Manzoli, M., Rolando, B., Milla, P., Riganti, C., Stella, B., & Arpicco, S. (2025). Tailoring the Composition of HA/PEG Mixed Nano-Assemblies for Anticancer Drug Delivery. Molecules, 30(6), 1349. https://doi.org/10.3390/molecules30061349