Structural, Electronic, and Nonlinear Optical Characteristics of Europium-Doped Germanium Anion Nanocluster EuGen− (n = 7–20): A Theoretical Investigation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ground-State Structure and Evolution Pattern of EuGen− (n = 7–20) Nanoclusters
2.2. Predicted Photoelectron Spectroscopy of EuGen− (n = 7–20)
2.3. Magnetic Moments and Charge Transfer of EuGen− (n = 7–20)
2.4. Relative Stability of EuGen− (n = 7–20)
2.5. Nonlinear Optical Properties of EuGen− (n = 7–20)
2.6. Nonlinear Optical Properties of EuGe13− from TD-DFT
2.7. Density of States of EuGe13−
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Kassaoui, M.; Labrousse, J.; Loulidi, M.; Benyoussef, A.; Mounkachi, O. Ni/V-MgnHm nanoclusters: Recent advances toward improving the dehydrogenation thermodynamics for efficient hydrogen storage. Int. J. Hydrogen Energy 2024, 89, 272–278. [Google Scholar] [CrossRef]
- Boubkri, M.; El Kassaoui, M.; Razouk, A.; Balli, M. Computational investigation of NLi4-cluster decorated phosphorene for reversible hydrogen storage. Int. J. Hydrogen Energy 2024, 72, 1–8. [Google Scholar] [CrossRef]
- Pillarisetty, R. Academic and industry research progress in germanium nanodevices. Nature 2011, 479, 324–328. [Google Scholar] [CrossRef]
- Kilby, J.S.C. Turning potential into realities: The invention of the integrated circuit (Nobel lecture). Chem. Phys. Chem. 2001, 2, 482–489. [Google Scholar] [CrossRef]
- Abyar, F.; Bamdadi, F.; Behjatmanesh-Ardakani, R. Geometric, electronic and spectral properties of germanium and Eu-doped germanium clusters. Comput. Theor. Chem. 2022, 1214, 113783. [Google Scholar] [CrossRef]
- Trivedi, R.; Banerjee, A.; Bandyopadhyay, D. Insight into stabilities and magnetism of EuGen (n = 1–20) nanoclusters: An assessment of electronic aromaticity. J. Mater. Sci. 2022, 57, 19338–19355. [Google Scholar] [CrossRef]
- Jing, Q.; Ge, G.; Cao, H.; Huang, X.; Yan, H. Structural, electronic and magnetic properties of the GenEu (n = 1–13) clusters. Acta Phys. Chim. Sin. 2010, 26, 2510–2514. [Google Scholar]
- Politano, G.G. Optical properties of Graphene Nanoplatelets on amorphous Germanium substrates. Molecules 2024, 29, 4089. [Google Scholar] [CrossRef]
- Jena, P.; Sun, Q. Super atomic clusters: Design rules and potential for building blocks of materials. Chem. Rev. 2018, 118, 5755–5870. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Du, Q.; Zhou, S.; Kumar, V. Endohedrally doped cage clusters. Chem. Rev. 2020, 120, 9021–9163. [Google Scholar] [CrossRef]
- Zhao, L.J.; Xu, H.G.; Xu, X.L.; Zheng, W.J. Investigation of the structures and chemical bonding of Mn2Ge6− and Mn2Ge7− clusters via anion photoelectron spectroscopy and theoretical calculation. Inorg. Chem. 2023, 6, 2033–2039. [Google Scholar] [CrossRef] [PubMed]
- Atobe, J.; Koyasu, K.; Furuse, S.; Nakajima, A. Anion photoelectron spectroscopy of germanium and tin clusters containing a transition-or lanthanide-metal atom; MGen− (n = 8–20) and MSnn− (n = 15–17) (M = Sc–V, Y–Nb, and Lu–Ta). Phys. Chem. Chem. Phys. 2012, 14, 9403–9410. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Han, J.G. Geometries, stabilities, and vibrational properties of bimetallic Mo2-doped Gen (n = 9−15) clusters: A density functional investigation. J. Phys. Chem. A 2008, 112, 3224–3230. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jia, Z.Z.; Wang, R.Y.; Zhu, X.D.; Moro, R.; Ma, L. TMGe8–17− (TM = Ti, Zr, Hf, V, Nb, Ta) clusters: Group determined properties. Eur. Phys. J. Plus 2022, 137, 949. [Google Scholar] [CrossRef]
- Liang, X.; Li, X.; Gao, N.; Wu, X.; Zhao, Z.; Shi, R.; Su, Y.; Zhao, J. Theoretical prediction for growth behavior and electronic properties of monoanionic Ru2Gen− (n = 3–20) clusters. Inorg. Chim. Acta 2022, 542, 121141. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Lu, J.; Li, S.; Zhang, Y. Endohedral group-14 clusters Au@X12 (X = Ge, Sn, Pb) and their anions: A first-principles study. J. Mol. Liq. 2023, 376, 121477. [Google Scholar] [CrossRef]
- Lasmi, M.; Mahtout, S.; Rabilloud, F. Growth behavior and electronic and optical properties of IrGen (n = 1–20) clusters. J. Nanopart. Res. 2021, 23, 26. [Google Scholar] [CrossRef]
- Kumar, V.; Kawazoe, Y. Metal-encapsulated caged clusters of germanium with large gaps and different growth behavior than silicon. Phys. Rev. Lett. 2002, 88, 235504. [Google Scholar] [CrossRef]
- Han, J.G.; Hagelberg, F. Recent progress in the computational study of silicon and germanium clusters with transition metal impurities. J. Comput. Theor. Nanosci. 2009, 6, 257–269. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Cuong, N.T.; Lan, N.T.; Tung, N.T.; Nguyen, M.T.; Tam, N.M. First-row transition metal doped germanium clusters Ge16M: Some remarkable superhalogens. RSC Adv. 2022, 12, 13487–13499. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Kaur, P.; Sen, P. New insights into applicability of electron-counting rules in transition metal encapsulating Ge cage clusters. J. Phys. Chem. A 2010, 114, 12986–12991. [Google Scholar] [CrossRef] [PubMed]
- Borshch, N.A.; Pereslavtseva, N.S.; Kurganskii, S.I. Spatial structure and electron energy spectra of ScGen− (n = 6–16) clusters. Russ. J. Phys. Chem. B 2015, 9, 9–18. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Lin, L. Geometric evolution, electronic structure, and vibrational properties of ScGen− (n = 6–17) anion clusters: A DFT insight. Int. J. Quantum Chem. 2022, 122, e27002. [Google Scholar] [CrossRef]
- Tang, C.; Liu, M.; Zhu, W.; Deng, K. Probing the geometric, optical, and magnetic properties of 3d transition-metal endohedral Ge12M (M = Sc–Ni) clusters. Comput. Theor. Chem. 2011, 969, 56–60. [Google Scholar] [CrossRef]
- Li, A.; Li, H.; Li, Z.; Qin, L.; Mei, X.; Zhang, J.; Zhang, Y.; Zheng, H.; Jiang, K.; Wu, W.; et al. Structural evolution and electronic properties of the La-doped germanium clusters. Mol. Phys. 2024, 123, e2356191. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Li, H.; Mei, X.; Zeng, J.; Qin, L.; Zheng, H.; Zhang, Y.; Jiang, K.; Zhang, B.; et al. Aromatic and magnetic properties in a series of heavy rare earth-doped Ge6 cluster anions. J. Comput. Chem. 2024, 45, 1087–1097. [Google Scholar] [CrossRef]
- Qin, W.; Lu, W.C.; Xia, L.H.; Zhao, L.Z.; Zang, Q.J.; Wang, C.Z.; Ho, K.M. Structures and stability of metal-doped GenM (n = 9, 10) clusters. AIP Adv. 2015, 5, 067159. [Google Scholar] [CrossRef]
- Tai, T.B.; Nguyen, M.T. A stochastic search for the structures of small germanium clusters and their anions: Enhanced stability by spherical aromaticity of the Ge10 and Ge122− systems. J. Chem. Theory Comput. 2011, 7, 1119–1130. [Google Scholar] [CrossRef]
- Zhong, Q. Lone pair electrons with weak nuclear binding inducing sensitive nonlinear optical responses in phosphorus clusters. J. Phys. Chem. Lett. 2023, 14, 6361–6367. [Google Scholar] [CrossRef]
- Yin, R.; Hu, C.; Lei, B.; Pan, S.; Yang, Z. Lone pair effects on ternary infrared nonlinear optical materials. Phys. Chem. Chem. Phys. 2019, 21, 5142. [Google Scholar] [CrossRef]
- Li, X. Design of novel graphdiyne-based materials with large second-order nonlinear optical properties. J. Mater. Chem. C 2018, 6, 7576–7583. [Google Scholar] [CrossRef]
- Li, X.; Li, S. Investigations of electronic and nonlinear optical properties of single alkali metal adsorbed graphene, graphyne and graphdiyne systems by first-principles calculations. J. Mater. Chem. C 2019, 7, 1630–1640. [Google Scholar] [CrossRef]
- Xu, H.; Li, Z.; Wang, F.; Wu, D.; Harigaya, K.; Gu, F.L. What is the shape effect on the (hyper)polarizabilities? A comparison study on the Mobius, normal cyclacene, and linear nitrogen-substituted strip polyacenes. Chem. Phys. Lett. 2008, 454, 323–326. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, X.; Truhlar, D.G. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 2011, 128, 295–305. [Google Scholar] [CrossRef]
- Li, X.; Lu, J. Giant enhancement of electronic polarizability and the first hyperpolarizability of fluoride-decorated graphene versus graphyne and graphdiyne: Insights from ab initio calculations. Phys. Chem. Chem. Phys. 2019, 21, 13165–13175. [Google Scholar] [CrossRef]
- Oudar, J.L. Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J. Chem. Phys. 1977, 67, 446–457. [Google Scholar] [CrossRef]
- Kanis, D.R.; Ratner, M.A.; Marks, T.J. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 1994, 94, 195–242. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian~09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Zhang, J.; Dolg, M. ABCluster: The artificial bee colony algorithm for cluster global optimization. Phys. Chem. Chem. Phys. 2015, 17, 24173–24181. [Google Scholar] [CrossRef]
- Zhang, J.; Dolg, M. Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys. Chem. Chem. Phys. 2016, 18, 3003–3010. [Google Scholar] [CrossRef]
- Zhang, J.; Glezakou, V.A.; Rousseau, R.; Nguyen, M.T. NWPEsSe: An adaptive-learning global optimization algorithm for nanosized cluster systems. J. Chem. Theory Comput. 2020, 16, 3947–3958. [Google Scholar] [CrossRef]
- Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. J. Chem. Phys. 2003, 119, 12129–12137. [Google Scholar] [CrossRef]
- Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 1993, 80, 1431–1441. [Google Scholar] [CrossRef]
- Dolg, M.; Stoll, H.; Preuss, H. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta 1993, 85, 441–450. [Google Scholar] [CrossRef]
- Dolg, M.; Stoll, H.; Savin, A.; Preuss, H. Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta 1989, 75, 173–194. [Google Scholar] [CrossRef]
- Metz, B.; Stoll, H.; Dolg, M. Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO. J. Chem. Phys. 2000, 113, 2563–2569. [Google Scholar] [CrossRef]
- Peterson, K.A. Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. J. Chem. Phys. 2003, 119, 11099–11112. [Google Scholar] [CrossRef]
- Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys. 1989, 90, 1730–1734. [Google Scholar] [CrossRef]
- Schwabe, T.; Grimme, S. Towards chemical accuracy for the thermodynamics of large molecules: New hybrid density functionals including non-local correlation effects. Phys. Chem. Chem. Phys. 2006, 8, 4398–4401. [Google Scholar] [CrossRef]
- Wilson, A.K.; Woon, D.E.; Peterson, K.A.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J. Chem. Phys. 1999, 110, 7667–7676. [Google Scholar] [CrossRef]
- Tozer, D.J.; Handy, N.C. Improving virtual Kohn–Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. J. Chem. Phys. 1998, 109, 10180–10189. [Google Scholar] [CrossRef]
- Akola, J.; Manninen, M.; Häkkinen, H.; Landman, U.; Li, X.; Wang, L. Photoelectron spectra of aluminum cluster anions: Temperature effects and ab initio simulations. Phys. Rev. B 1999, 60, R11297. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo [18] carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467. [Google Scholar] [CrossRef]
- Runge, E.; Gross, E.K.U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Comput. Chem. 2024, 161, 082503. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wires Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Brandenburg, J.G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A revised low-cost variant of the B97-D density functional method. J. Chem. Phys. 2018, 148, 64104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, J.; Cheng, L. Structural stability and evolution of scandium-doped silicon clusters: Evolution of linked to encapsulated structures and its influence on the prediction of electron affinities for ScSin (n = 4–16) clusters. Inorg. Chem. 2018, 57, 12934–12940. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Dong, C.; Yang, Z. Structural evolution and electronic properties of cerium doped germanium anionic nanocluster CeGen− (n = 5–17): Theoretical investigation. Int. J. Quantum Chem. 2024, 124, e27315. [Google Scholar] [CrossRef]
Cluster | Charge (a.u.) | Electron Configuration | Magnetic Moment of Eu Atom | Molecule (μB) | ||||
---|---|---|---|---|---|---|---|---|
6s | 4f | 5d | 6p | Total | ||||
EuGe7− | 0.57 | [core]6s0.964f6.985d0.326p0.18 | 0.75 | 6.97 | 0.05 | 0.12 | 7.89 | 8 |
EuGe8− | 0.51 | [core]6s0.894f6.985d0.406p0.23 | 0.71 | 6.97 | 0.05 | 0.13 | 7.86 | 8 |
EuGe9− | 0.69 | [core]6s0.804f6.985d0.416p0.14 | 0.64 | 6.97 | 0.06 | 0.07 | 7.74 | 8 |
EuGe10− | 0.67 | [core]6s1.004f6.985d0.186p0.17 | 0.70 | 6.98 | 0.03 | 0.13 | 7.84 | 8 |
EuGe11− | 0.81 | [core]6s0.404f6.975d0.676p0.17 | 0.00 | 6.97 | 0.09 | 0.01 | 7.07 | 8 |
EuGe12− | 0.80 | [core]6s0.414f6.975d0.696p0.15 | 0.01 | 6.97 | 0.13 | 0.01 | 7.12 | 8 |
EuGe13− | 0.70 | [core]6s0.514f6.975d0.636p0.21 | 0.28 | 6.97 | 0.11 | 0.07 | 7.43 | 8 |
EuGe14− | 0.69 | [core]6s0.274f6.975d0.796p0.31 | 0.01 | 6.97 | 0.09 | 0.01 | 7.08 | 8 |
EuGe15− | 0.66 | [core]6s0.344f6.975d0.826p0.24 | 0.10 | 6.97 | 0.14 | 0.02 | 7.23 | 8 |
EuGe16− | 0.74 | [core]6s0.274f6.975d0.756p0.30 | 0.01 | 6.97 | 0.09 | 0.00 | 7.07 | 8 |
EuGe17− | 0.68 | [core]6s0.244f6.975d0.856p0.29 | 0.00 | 6.97 | 0.16 | 0.01 | 7.14 | 8 |
EuGe18− | 0.73 | [core]6s0.244f6.975d0.826p0.29 | 0.04 | 6.96 | 0.12 | 0.01 | 7.13 | 8 |
EuGe19− | 0.77 | [core]6s0.264f6.975d0.756p0.28 | 0.00 | 6.97 | 0.09 | 0.00 | 7.06 | 8 |
EuGe20− | 0.66 | [core]6s0.264f6.975d0.836p0.32 | 0.02 | 6.96 | 0.09 | 0.01 | 7.08 | 8 |
n. | μ0 | α0 | βprj | βtot | βxxx | βyyy | βzzz |
---|---|---|---|---|---|---|---|
7 | 1.37 | 454.46 | −2242.88 | 2281.64 | 1179.93 | 1952.85 | 0.00 |
8 | 0.91 | 488.37 | −3911.63 | 3911.63 | 0.00 | 0.00 | −3911.63 |
9 | 2.02 | 548.01 | 8681.47 | 8681.48 | 107.48 | 8680.81 | 0.00 |
10 | 1.40 | 553.61 | −10,775.99 | 10,801.04 | −6283.05 | −8785.54 | 0.00 |
11 | 3.94 | 527.99 | −20,833.66 | 20,895.13 | 17,745.60 | 10,984.98 | −1014.91 |
12 | 3.47 | 552.37 | −12,056.43 | 12,066.61 | 5700.40 | 10,634.59 | 118.72 |
13 | 3.34 | 803.99 | −726,411.06 | 747,032.61 | 373,853.70 | −630,754.60 | 142,967.70 |
14 | 2.27 | 630.10 | −2737.34 | 3113.67 | 1204.37 | 2871.31 | 0.00 |
15 | 3.48 | 680.11 | −96,087.04 | 96,087.04 | 0.00 | 0.00 | −96,087.04 |
16 | 2.98 | 682.23 | −2359.59 | 2551.03 | 2538.74 | −250.11 | 0.00 |
17 | 2.84 | 738.93 | −2682.55 | 2776.80 | 137.43 | −2771.25 | −109.35 |
18 | 2.47 | 750.25 | −2526.95 | 2557.41 | −1881.68 | −1731.94 | 0.00 |
19 | 2.70 | 788.58 | −2690.12 | 2736.34 | 2618.65 | 793.88 | 0.00 |
20 | 2.53 | 860.61 | −3405.02 | 3442.56 | −3111.18 | 1473.71 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, C.; Dong, X.; Li, C.; Dong, C.; Yang, Z.; Yang, J. Structural, Electronic, and Nonlinear Optical Characteristics of Europium-Doped Germanium Anion Nanocluster EuGen− (n = 7–20): A Theoretical Investigation. Molecules 2025, 30, 1377. https://doi.org/10.3390/molecules30061377
Hao C, Dong X, Li C, Dong C, Yang Z, Yang J. Structural, Electronic, and Nonlinear Optical Characteristics of Europium-Doped Germanium Anion Nanocluster EuGen− (n = 7–20): A Theoretical Investigation. Molecules. 2025; 30(6):1377. https://doi.org/10.3390/molecules30061377
Chicago/Turabian StyleHao, Chenliang, Xueyan Dong, Chunli Li, Caixia Dong, Zhaofeng Yang, and Jucai Yang. 2025. "Structural, Electronic, and Nonlinear Optical Characteristics of Europium-Doped Germanium Anion Nanocluster EuGen− (n = 7–20): A Theoretical Investigation" Molecules 30, no. 6: 1377. https://doi.org/10.3390/molecules30061377
APA StyleHao, C., Dong, X., Li, C., Dong, C., Yang, Z., & Yang, J. (2025). Structural, Electronic, and Nonlinear Optical Characteristics of Europium-Doped Germanium Anion Nanocluster EuGen− (n = 7–20): A Theoretical Investigation. Molecules, 30(6), 1377. https://doi.org/10.3390/molecules30061377