Analysis Strategy for Identifying the O-Linked Glycan Profile and O-glycosylation Sites on Recombinant Human Follicle Stimulating Hormone-C-terminal Peptide (rhFSH-CTP)
Abstract
1. Introduction
2. Results and Discussion
2.1. Determination of O-Glycan Profiles of FSH-CTP by HILIC-FLD-MS and MS/MS
2.2. Determination of O-Glycosylation Sites Localization by HCD
2.3. Localizing O-Glycosylation Sites by EThcD
3. Materials and Methods
3.1. O-Linked Glycan Liberation and Labeling
3.2. O-GalNAc Glycopeptide Truncation
3.3. Glycan Profiling by UPLC-HILIC-FLR-MS and MS/MS
3.4. LC-MS/MS Analysis with HCD
3.5. LC-MS/MS with EThcD
3.6. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohtsubo, K.; Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Schjoldager, K.T.; Narimatsu, Y.; Joshi, H.J.; Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 2020, 21, 729–749. [Google Scholar] [CrossRef] [PubMed]
- Dalziel, M.; Crispin, M.; Scanlan, C.N.; Zitzmann, N.; Dwek, R.A. Emerging principles for the therapeutic exploitation of glycosylation. Science 2014, 343, 1235681. [Google Scholar] [CrossRef] [PubMed]
- Reusch, D.; Tejada, M.L. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 2015, 25, 1325–1334. [Google Scholar] [CrossRef]
- Eshghi, S.T.; Yang, W.; Hu, Y.; Shah, P.; Sun, S.; Li, X.; Zhang, H. Classification of Tandem Mass Spectra for Identification of N- and O-Linked Glycopeptides. Sci. Rep. 2016, 6, 37189. [Google Scholar] [CrossRef]
- Marino, K.; Bones, J.; Kattla, J.J.; Rudd, P.M. A systematic approach to protein glycosylation analysis: A path through the maze. Nat. Chem. Biol. 2010, 6, 713–723. [Google Scholar] [CrossRef]
- Brockhausen, I.; Wandall, H.H.; Ten Hagen, K.G.; Stanley, P. Chapter 10 O-GalNAc Glycans. In Essentials of Glycobiology, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022. [Google Scholar]
- Tarentino, A.L.; Gómez, C.M.; Plummer, T.H., Jr. Deglycosylation of asparagine linked glycans by peptide: N-glycosidase F. Biochemistry 1985, 24, 4665–4671. [Google Scholar] [CrossRef]
- Fujita, K.; Oura, F.; Nagamine, N.; Katayama, T.; Hiratake, J.; Sakata, K.; Kumagai, H.; Yamamoto, K. Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum. J. Biol. Chem. 2005, 280, 37415–37422. [Google Scholar] [CrossRef]
- Koutsioulis, D.; Landry, D.; Guthrie, E.P. Novel endo-alpha-N-acetylgalactosaminidases with broader substrate specificity. Glycobiology 2008, 18, 799–805. [Google Scholar] [CrossRef]
- Ruhaak, L.R.; Zauner, G.; Huhn, C.; Bruggink, C.; Deelder, A.M.; Wuhrer, M. Glycan labeling strategies and their use in identification and quantification. Anal. Bioanal. Chem. 2010, 397, 3457–3481. [Google Scholar] [CrossRef]
- Suttapitugsakul, S.; Sun, F.; Wu, R. Recent Advances in Glycoproteomic Analysis by Mass Spectrometry. Anal. Chem. 2020, 92, 267–291. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lu, Y.; Han, J.; Jin, W.; Li, L.; Zhang, Y.; Song, X.; Huang, L.; Wang, Z. Simultaneous Release and Labeling of O- and N-Glycans Allowing for Rapid Glycomic Analysis by Online LC-UV-ESI-MS/MS. J. Proteome Res. 2018, 17, 2345–2357. [Google Scholar] [CrossRef] [PubMed]
- SriHariRaju, M.V.; Koppolu, T.; Shantha Raju, K. Decoding of O-Linked Glycosylation by Mass Spectrometry. Biochemistry 2017, 56, 1218–1226. [Google Scholar]
- Carlson, D.M. Structures and Immunochemical Properties of Oligosaccharides Isolated from Pig Submaxillary Mucins. J. Biol. Chem. 1968, 243, 616–626. [Google Scholar] [CrossRef]
- Goso, Y. Malonic Acid Suppresses Mucin-Type O-glycan Degradation During Hydrazine Treatment of Glycoproteins. Anal. Biochem. 2016, 496, 35–42. [Google Scholar] [CrossRef]
- Mechref, Y.; Hu, Y.; Desantos-Garcia, J.L.; Hussein, A.; Tang, H. Quantitative Glycomics Strategies. Mol. Cell. Proteom. 2013, 12, 874–884. [Google Scholar] [CrossRef]
- Zhou, S.; Veillon, L.; Dong, X.; Huang, Y.; Mechref, Y. Direct Comparison of Derivatization Strategies for LC-MS/MS Analysis of N-Glycans. Analyst 2017, 142, 4446–4455. [Google Scholar] [CrossRef]
- Qing, G.; Yan, J.; He, X.; Li, X.; Liang, X. Recent Advances in Hydrophilic Interaction Liquid Interaction Chromatography Materials for Glycopeptide Enrichment and Glycan Separation. TrAC Trends Anal. Chem. 2020, 124, 115570. [Google Scholar] [CrossRef]
- Goso, Y.; Kurihara, M. Preparation of O-Glycans from Mucins Using Hydrazine Treatment. Methods Mol. Biol. 2024, 2763, 139–150. [Google Scholar]
- Kameyama, A.; Thet Tin, W.W.; Toyoda, M.; Sakaguchi, M. A Practical Method of Liberating O-Linked Glycans from Glycoproteins Using Hydroxylamine and an Organic Superbase. Biochem. Biophys. Res. Commun. 2019, 513, 186–192. [Google Scholar] [CrossRef]
- Kameyama, A. Release of O-Glycan by Eliminative Oximation. In Glycoscience Protocols (GlycoPODv2); Japan Consortium for Glycobiology and Glycotechnology: Saitama, Japan, 2021. [Google Scholar]
- Li, X.; Wilmanowski, R.; Gao, X.; VanAernum, Z.L.; Donnelly, D.P.; Kochert, B.; Schuessler, H.A.; Richardson, D. Precise O-Glycosylation Site Localization of CD24Fc by LC-MS Workflows. Anal. Chem. 2022, 94, 8416–8425. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.; Mann, M.; Wang, Q.; Tian, E.; Zhang, L.; Cipollo, J.F.; Ten Hagen, K.G.; Tabak, L.A. Improved Online LC-MS/MS Identification of O-Glycosites by EThcD Fragmentation, Chemoenzymatic Reaction, and SPE Enrichment. Glycoconj. J. 2021, 38, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Helms, A.; Brodbelt, J.S. Mass Spectrometry Strategies for O-Glycoproteomics. Cells 2024, 13, 394. [Google Scholar] [CrossRef] [PubMed]
- Trastoy, B.; Naegeli, A.; Anso, I.; Sjögren, J.; Guerin, M.E. Structural Basis of Mammalian Mucin Processing by the Human Gut O-Glycopeptidase OpeRATOR from Akkermansia muciniphila. Nat. Commun. 2020, 11, 4844. [Google Scholar] [CrossRef]
- Haurat, M.F.; Scott, N.E.; Di Venanzio, G.; Lopez, J.; Pluvinage, B.; Boraston, A.B.; Ferracane, M.J.; Feldman, M.F. The Glycoprotease CpaA Secreted by Medically Relevant Acinetobacter Species Targets Multiple O-Linked Host Glycoproteins. mBio 2020, 11, e02033. [Google Scholar] [CrossRef]
- Fares, F. The Role of O-Linked and N-Linked Oligosaccharides on the Structure–Function of Glycoprotein Hormones: Development of Agonists and Antagonists. Biochim. Biophys. Acta 2006, 1760, 560–567. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Guo, K.-P.; Ji, S.-Y.; Liu, X.-M.; Wang, P.; Wu, J.; Gao, L.; Jiang, T.-Q.; Xu, T.; Fan, H.-Y. Development and Characterization of a Novel Long-Acting Recombinant Follicle Stimulating Hormone Agonist by Fusing Fc to an FSH-β Subunit. Hum. Reprod. 2016, 31, 169–182. [Google Scholar] [CrossRef]
- Morgan, F.J.; Birken, S.; Canfield, R.E. The amino acid sequence of human chorionic gonadotropin. The alpha subunit and beta subunit. J. Biol. Chem. 1975, 250, 5247–5258. [Google Scholar] [CrossRef]
- Zhu, H.; Qiu, C.; Ruth, A.C.; Keire, D.A.; Ye, H. A LC-MS All-in-One Workflow for Site-Specific Location, Identification and Quantification of N-/O-Glycosylation in Human Chorionic Gonadotropin Drug Products. AAPS J. 2017, 19, 846–855. [Google Scholar] [CrossRef]
- Bai, X.; Li, D.; Zhu, J.; Guan, Y.; Zhang, Q.; Chi, L. From individual proteins to proteomic samples: Characterization of O-glycosylation sites in human chorionic gonadotropin and human-plasma proteins. Anal. Bioanal. Chem. 2015, 407, 1857–1869. [Google Scholar] [CrossRef]
- Biskup, K.; Blanchard, V.; Castillo-Binder, P.; Alexander, H.; Engeland, K.; Schug, S. N- and O-glycosylation patterns and functional testing of CGB7 versus CGB3/5/8 variants of the human chorionic gonadotropin (hCG) beta subunit. Glycoconj. J. 2020, 37, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Halim, A.; Westerlind, U.; Pett, C.; Schorlemer, M.; Rüetschi, U.; Brinkmalm, G.; Sihlbom, C.; Lengqvist, J.; Larson, G.; Nilsson, J. Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC-MS/MS of glycopeptides. J. Proteome Res. 2014, 13, 6024–6032. [Google Scholar] [CrossRef] [PubMed]
- Alving, K.; Paulsen, H.; Peter-Katalinic, J. Characterization of O-glycosylation sites in MUC2 glycopeptides by nanoelectrospray QTOF mass spectrometry. J. Mass Spectrom. 1999, 34, 395–407. [Google Scholar] [CrossRef]
- Medzihradszky, K.F.; Gillece-Castro, B.L.; Settineri, C.A.; Townsend, R.R.; Masiarz, F.R.; Burlingame, A.L. Structure determination of O-linked glycopeptides by tandem mass spectrometry. Biomed. Environ. Mass Spectrom. 1990, 19, 777–781. [Google Scholar] [CrossRef]
- Hanisch, F.G.; Green, B.N.; Bateman, R.; Peter-Katalinic, J. Localization of O-glycosylation sites of MUC1 tandem repeats by QTOF ESI mass spectrometry. J. Mass Spectrom. 1998, 33, 358–362. [Google Scholar] [CrossRef]
- Müller, S.; Alving, K.; Peter-Katalinic, J.; Zachara, N.; Gooley, A.A.; Hanisch, F.G. High density O-glycosylation on tandem repeat peptide from secretory MUC1 of T47D breast cancer cells. J. Biol. Chem. 1999, 274, 18165–18172. [Google Scholar] [CrossRef]
- Chalkley, R.J.; Burlingame, A.L. Identification of GlcNAcylation sites of peptides and alpha-crystallin using Q-TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 1106–1113. [Google Scholar] [CrossRef]
- Chalkley, R.J.; Burlingame, A.L. Identification of novel sites of O-N-acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry. Mol. Cell. Proteom. 2003, 2, 182–190. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, B.; Chen, Z.; Urabe, G.; Glover, M.S.; Shi, X.; Guo, L.-W.; Kent, K.C.; Li, L. Electron-Transfer/Higher-Energy Collision Dissociation (EThcD)-Enabled Intact Glycopeptide/Glycoproteome Characterization. J. Am. Soc. Mass Spectrom. 2017, 28, 1751–1764. [Google Scholar] [CrossRef]
- Riley, N.M.; Malaker, S.A.; Bertozzi, C.R. Electron-Based Dissociation Is Needed for O-Glycopeptides Derived from OpeRATOR Proteolysis. Anal. Chem. 2020, 92, 14878–14884. [Google Scholar] [CrossRef]
- Higuchi, J.; Kurogochi, M.; Yamaguchi, T.; Fujio, N.; Mitsuduka, S.; Ishida, Y.; Fukudome, H.; Nonoyama, N.; Gota, M.; Mizuno, M.; et al. Qualitative and Quantitative Analyses of Sialyl O-glycans in Milk-Derived Sialylglycopeptide Concentrate. Foods 2024, 13, 2792. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Fukudome, H.; Higuchi, J.; Takahashi, T.; Tsujimori, Y.; Ueno, H.M.; Toba, Y.; Sakai, F. Label-Free Liquid Chromatography–Mass Spectrometry Quantitation of Relative N- and O-glycan Concentrations in Human Milk in Japan. Int. J. Mol. Sci. 2024, 25, 1772. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.-F.; Cao, W.-Q.; Liu, M.-Q.; He, S.-M.; Yang, P.-Y. Precise, Fast and Comprehensive Analysis of Intact Glycopeptides and Modified Glycans with pGlyco3. Nat. Methods 2021, 18, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
Time (min) | Glycan Name | Glycan Structure 1 | m/z |
---|---|---|---|
7.98 | GalGalNAc | 504.22 | |
12.94 | NeuAcGalGalNAc | 795.32 | |
13.77 | Gal(NeuAcGalNAc) | 795.32 | |
15.97 | NeuAcGal(NeuAcGalNAc) | 1086.41 |
Glycan Name | 10 μg (%) | 20 μg (%) | 60 μg (%) | 100 μg (%) |
---|---|---|---|---|
GalGalNAc | 123 | 114 | 87 | 80 |
NeuAcGalGalNAc | 127 | 118 | 81 | 75 |
Gal(NeuAcGalNAc) | 128 | 113 | 82 | 75 |
NeuAcGal(NeuAcGalNAc) | 123 | 109 | 96 | 94 |
Total glycans | 126 | 115 | 86 | 80 |
Peptide Sequence 1 | Location | Glycosylation Sites 2 | Precursor (m/z; Charge) | Peptide Mass (Da) | Positioned Fragment Ions (m/z) |
---|---|---|---|---|---|
SKAPPPSLP | 115–123 | S115 | 629.8241 (2+) | 893.5018 | z8 793.45 |
SLPSP | 121–127 | S121 | 433.2047 (2+) | 499.2642 | z4 397.22 |
SRLPGPSDTPILPQ | 126–139 | S126 | 921.9679 (2+) | 1476.7936 | z13 1374.74 |
SDTPILPQ | 132–139 | S132 | 618.2975 (2+) | 869.4464 | z6 653.38 |
TPILPQ | 134–139 | T134 | 517.2674 (2+) | 677.3904 | z5 550.32 |
SLPSPSRLPGP | 121–131 | S121 | 736.8767 (2+) | 1106.6084 | z10 1004.56 |
SSKAPPP | 114–120 | S114, S115 | 707.3223 (2+) | 682.3650 | z6 945.45 |
SSKAPPPSLP | 114–123 | S114, S115 | 855.9053 (2+) | 979.5338 | z9 1242.62 |
SSKAPPPSLP | 114–123 | S114, S121 | 855.9045 (2+) | 979.5338 | z8 1155.59; z9 1243.62; c7 1047.52; c8 1499.68 |
SKAPPPSLPSP | 114–125 | S115, S121 | 645.9761 (2+) | 1076.5866 | c2 300.15 (2+); c6 960.48; c7 1412.65 |
SRLPGPSDTPILPQ | 126–139 | S126, S132 | 1104.5358 (2+) | 1476.7936 | c4 836.43; c6 990.50; c7 1442.66 |
SLPSPSRLPGPSDTPILPQ | 121–139 | S121, S132 | 897.1101 (3+) | 1958.0472 | c1 470.20; c11 1472.76; c15 1119.04 (2+) |
SSKAPPPSLPSP | 114–125 | S114, S124 | 947.9465 (2+) | 1163.6186 | z10 1341.68; z11 1428.71; c7 1048.52 |
SSKAPPPSLPSP | 114–125 | S114, S115, S121 | 754.0142 (3+) | 1163.6186 | c1 470.20; c2 922.36; c7 1413.65; c8 1865.81 |
SRLPGPSDTPILPQ | 126–139 | S126, S132, T134 | 858.4017 (3+) | 1476.7936 | c1 470.20; c7 1443.66; z6 1016.51 |
SPSRLPGPSDTPILPQ | 124–139 | S124, S126, S132 | 919.7639 (3+) | 1660.8784 | c2 567.25; c3 1019.41; z7 766.40; z9 1315.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Xiang, Y.; Zhang, X.; Sun, Y.; Li, Y.; Wang, L.; Lv, P.; Long, Z.; Liang, C.; Li, J. Analysis Strategy for Identifying the O-Linked Glycan Profile and O-glycosylation Sites on Recombinant Human Follicle Stimulating Hormone-C-terminal Peptide (rhFSH-CTP). Molecules 2025, 30, 2141. https://doi.org/10.3390/molecules30102141
Hu X, Xiang Y, Zhang X, Sun Y, Li Y, Wang L, Lv P, Long Z, Liang C, Li J. Analysis Strategy for Identifying the O-Linked Glycan Profile and O-glycosylation Sites on Recombinant Human Follicle Stimulating Hormone-C-terminal Peptide (rhFSH-CTP). Molecules. 2025; 30(10):2141. https://doi.org/10.3390/molecules30102141
Chicago/Turabian StyleHu, Xinyue, Yuxing Xiang, Xiaoming Zhang, Yue Sun, Yi Li, Lvyin Wang, Ping Lv, Zhen Long, Chenggang Liang, and Jing Li. 2025. "Analysis Strategy for Identifying the O-Linked Glycan Profile and O-glycosylation Sites on Recombinant Human Follicle Stimulating Hormone-C-terminal Peptide (rhFSH-CTP)" Molecules 30, no. 10: 2141. https://doi.org/10.3390/molecules30102141
APA StyleHu, X., Xiang, Y., Zhang, X., Sun, Y., Li, Y., Wang, L., Lv, P., Long, Z., Liang, C., & Li, J. (2025). Analysis Strategy for Identifying the O-Linked Glycan Profile and O-glycosylation Sites on Recombinant Human Follicle Stimulating Hormone-C-terminal Peptide (rhFSH-CTP). Molecules, 30(10), 2141. https://doi.org/10.3390/molecules30102141