Coexistence of Superconductivity and Magnetic Ordering in the In–Ag Alloy Under Nanoconfinement
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wördenweber, R. Superconductors at the Nanoscale: From Basic Research to Applications; Moshchalkov, V., Bending, S., Tafuri, F., Eds.; De Gruyter: Berlin, Germany, 2017; ISBN 978-3-11-045680-6. [Google Scholar]
- Xiong, Y.; Lu, X. Metallic Nanostructures: From Controlled Synthesis to Applications; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-11303-6. [Google Scholar]
- Sun, L.G.; Wu, G.; Wang, Q.; Lu, J. Nanostructural Metallic Materials: Structures and Mechanical Properties. Mater. Today 2020, 38, 114–135. [Google Scholar] [CrossRef]
- Ochirkhuyag, N.; Matsuda, R.; Song, Z.; Nakamura, F.; Endo, T.; Ota, H. Liquid Metal-Based Nanocomposite Materials: Fabrication Technology and Applications. Nanoscale 2021, 13, 2113–2135. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, L.; Li, J.; Zhang, X.; Gao, H. Mechanical Properties and Deformation Mechanisms of Gradient Nanostructured Metals and Alloys. Nat. Rev. Mater. 2020, 5, 706–723. [Google Scholar] [CrossRef]
- Nefedov, D.Y.; Podorozhkin, D.Y.; Charnaya, E.V.; Uskov, A.V.; Haase, J.; Kumzerov, Y.A.; Fokin, A.V. Liquid–Liquid Transition in Supercooled Gallium Alloys under Nanoconfinement. J. Phys. Condens. Matter 2019, 31, 255101. [Google Scholar] [CrossRef] [PubMed]
- Gafner, Y.Y.; Gafner, S.L.; Zamulin, I.S.; Redel, L.V.; Samsonov, V.M. Possible Mechanisms of Increase in Heat Capacity of Nanostructured Metals. Phys. Solid State 2013, 55, 2142–2149. [Google Scholar] [CrossRef]
- Murashkin, M.Y.; Sabirov, I.; Sauvage, X.; Valiev, R.Z. Nanostructured Al and Cu Alloys with Superior Strength and Electrical Conductivity. J. Mater. Sci. 2016, 51, 33–49. [Google Scholar] [CrossRef]
- Wu, P.C.; Kim, T.; Suvorova, A.; Giangregorio, M.; Saunders, M.; Bruno, G.; Brown, A.S.; Losurdo, M. GaMg Alloy Nanoparticles for Broadly Tunable Plasmonics. Small 2011, 7, 751–756. [Google Scholar] [CrossRef]
- Bose, S. A Review of Superconductivity in Nanostructures—From Nanogranular Films to Anti-Dot Arrays. Supercond. Sci. Technol. 2023, 36, 063003. [Google Scholar] [CrossRef]
- Lang, W. Nanostructured Superconductors. In Encyclopedia of Condensed Matter Physics; Academic Press: Oxford, UK, 2024; pp. 368–380. ISBN 978-0-323-91408-6. [Google Scholar]
- Likholetova, M.V.; Charnaya, E.V.; Shevchenko, E.V.; Lee, M.K.; Chang, L.-J.; Kumzerov, Y.A.; Fokin, A.V. Magnetic Studies of Superconductivity in the Ga-Sn Alloy Regular Nanostructures. Nanomaterials 2023, 13, 280. [Google Scholar] [CrossRef]
- Gokhfeld, D.M.; Koblischka, M.R.; Koblischka-Veneva, A. Highly Porous Superconductors: Synthesis, Research, and Prospects. Phys. Met. Metallogr. 2020, 121, 936–948. [Google Scholar] [CrossRef]
- Lee, M.K.; Charnaya, E.V.; Mühlbauer, S.; Jeng, U.; Chang, L.J.; Kumzerov, Y.A. The Morphologic Correlation between Vortex Transformation and Upper Critical Field Line in Opal-Based Nanocomposites. Sci. Rep. 2021, 11, 4807. [Google Scholar] [CrossRef] [PubMed]
- Ciou, Y.S.; Lee, M.K.; Charnaya, E.V.; Tien, C.; Chang, L.J.; Kumzerov, Y.A.; Samoylovich, M.I. Superconductivity in Sn Nanocomposites. Supercond. Sci. Technol. 2013, 26, 055009. [Google Scholar] [CrossRef]
- Watson, J.H.P. Critical Magnetic Field and Transition Temperature of Synthetic High-Field Superconductors. Phys. Rev. 1966, 148, 223–230. [Google Scholar] [CrossRef]
- Gokhfeld, D.M.; Popkov, S.I.; Bykov, A.A. Analog of the Intertype Superconductivity in Nanostructured Materials. Phys. C 2019, 566, 1353526. [Google Scholar] [CrossRef]
- Likholetova, M.V.; Charnaya, E.V.; Kumzerov, Y.A.; Fokin, A.V.; Grigorieva, N.R.; Mikushev, V.M.; Shevchenko, E.V. Coexistence of Superconductivity and Ferromagnetism in a Nanocomposite Based on Porous Glass with Nickel and Indium Inclusions. Phys. Solid State 2023, 65, 1620–1624. [Google Scholar]
- Ekin, J.W. Superconductor to Normal-Metal Contacts. In Handbook of Superconductivity; CRC Press: Boca Raton, FL, USA, 2022; pp. 448–466. ISBN 978-0-429-18302-7. [Google Scholar]
- Made, R.I.; Gan, C.L.; Yan, L.L.; Yu, A.; Yoon, S.W.; Lau, J.H.; Lee, C. Study of Low-Temperature Thermocompression Bonding in Ag-In Solder for Packaging Applications. J. Electron. Mater. 2009, 38, 365–371. [Google Scholar] [CrossRef]
- Rossi, P.J.; Zotov, N.; Mittemeijer, E.J. Kinetics of Intermetallic Compound Formation in Thermally Evaporated Ag-In Bilayers. J. Appl. Phys. 2016, 120, 165308. [Google Scholar] [CrossRef]
- Granqvist, C.G. Superconductivity of Amorphous Indium with Silver Impurities. Solid State Commun. 1975, 16, 581–584. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Claeson, T. Superconducting Transition Temperatures of Vapour Quenched Ag-In and Ag-Sn Multilayers. Solid State Commun. 1979, 32, 531–535. [Google Scholar] [CrossRef]
- Okamoto, H.; Massalski, T.B. Binary Alloy Phase Diagrams, 2nd ed.; Okamoto, H., Schlesinger, M.E., Mueller, E.M., Eds.; ASM International: Materials Park, OH, USA, 1990; ISBN 978-0-87170-403-0. [Google Scholar]
- Moser, Z.; Gasior, W.; Pstrus, J.; Zakulski, W.; Ohnuma, I.; Liu, X.J.; Inohana, Y.; Ishida, K. Studies of the Ag-In Phase Diagram and Surface Tension Measurements. J. Electron. Mater. 2001, 30, 1120–1128. [Google Scholar] [CrossRef]
- Kroupa, A.; Dinsdale, A.T.; Watson, A.; Vrestal, J.; Vízdal, J.; Zemanova, A. The Development of the COST 531 Lead-Free Solders Thermodynamic Database. JOM 2007, 59, 20–25. [Google Scholar] [CrossRef]
- Zhang, J.-F.; Guo, P.-J.; Gao, M.; Liu, K.; Lu, Z.-Y. β—RhPb 2: A Topological Superconductor Candidate. Phys. Rev. B 2019, 99, 045110. [Google Scholar] [CrossRef]
- Lazarev, B.G.; Semenenko, E.E.; Sudovtsov, A.I.; Kuz’menko, V.M. Maximum Critical Magnetic Fields in Superconducting Metals. Soviet Phys. Doklady 1966, 165, 1275–1277. [Google Scholar]
- Tien, C.; Wur, C.S.; Lin, K.J.; Charnaya, E.V.; Kumzerov, Y.A. Double-Step Resistive Superconducting Transitions of Indium and Gallium in Porous Glass. Phys. Rev. B 2000, 61, 14833–14838. [Google Scholar] [CrossRef]
- Graf, M.J.; Huber, T.E.; Huber, C.A. Superconducting Properties of Indium in the Restricted Geometry of Porous Vycor Glass. Phys. Rev. B 1992, 45, 3133–3136. [Google Scholar] [CrossRef] [PubMed]
- Shamshur, D.V. Electrical Conductivity and Superconductivity of Ordered Indium–Opal Nanocomposites. Phys. Solid State 2005, 47, 2005. [Google Scholar] [CrossRef]
- Li, W.-H.; Yang, C.C.; Tsao, F.C.; Wu, S.Y.; Huang, P.J.; Chung, M.K.; Yao, Y.D. Enhancement of Superconductivity by the Small Size Effect in In Nanoparticles. Phys. Rev. B 2005, 72, 214516. [Google Scholar] [CrossRef]
- Shaw, R.W.; Mapother, D.E.; Hopkins, D.C. Critical Fields of Superconducting Tin, Indium, and Tantalum. Phys. Rev. 1960, 120, 88–91. [Google Scholar] [CrossRef]
- Provost, J.; Paumier, E.; Fortini, A. Shape Effects on the Magnetization of Superconducting Lead at 4.2K. J. Phys. F Met. Phys. 1974, 4, 439–448. [Google Scholar] [CrossRef]
- Satariano, R.; Parlato, L.; Vettoliere, A.; Caruso, R.; Ahmad, H.G.; Miano, A.; Palma, L.D.; Salvoni, D.; Montemurro, D.; Granata, C.; et al. Inverse Magnetic Hysteresis of the Josephson Supercurrent: Study of the Magnetic Properties of Thin Niobium/Permalloy (Fe20Ni80) Interfaces. Phys. Rev. B 2021, 103, 224521. [Google Scholar] [CrossRef]
- Kapran, O.M.; Golod, T.; Iovan, A.; Sidorenko, A.S.; Golubov, A.A.; Krasnov, V.M. Crossover between Short- and Long-Range Proximity Effects in Superconductor/Ferromagnet/Superconductor Junctions with Ni-Based Ferromagnets. Phys. Rev. B 2021, 103, 094509. [Google Scholar] [CrossRef]
- Parlato, L.; Caruso, R.; Vettoliere, A.; Satariano, R.; Ahmad, H.G.; Miano, A.; Montemurro, D.; Salvoni, D.; Ausanio, G.; Tafuri, F.; et al. Characterization of Scalable Josephson Memory Element Containing a Strong Ferromagnet. J. Appl. Phys. 2020, 127, 193901. [Google Scholar] [CrossRef]
- Buzdin, A.I. Proximity Effects in Superconductor-Ferromagnet Heterostructures. Rev. Mod. Phys. 2005, 77, 935–976. [Google Scholar] [CrossRef]
- Fermin, R.; Van Dinter, D.; Hubert, M.; Woltjes, B.; Silaev, M.; Aarts, J.; Lahabi, K. Superconducting Triplet Rim Currents in a Spin-Textured Ferromagnetic Disk. Nano Lett. 2022, 22, 2209–2216. [Google Scholar] [CrossRef] [PubMed]
- Aladyshkin, A.Y.; Silhanek, A.V.; Gillijns, W.; Moshchalkov, V.V. Nucleation of Superconductivity and Vortex Matter in Superconductor—Ferromagnet Hybrids. Supercond. Sci. Technol. 2009, 22, 053001. [Google Scholar] [CrossRef]
- Krivoruchko, V.N.; Koshina, E.A. Inhomogeneous Magnetism Induced in a Superconductor at a Superconductor-Ferromagnet Interface. Phys. Rev. B 2002, 66, 014521. [Google Scholar] [CrossRef]
- Bergeret, F.S.; Volkov, A.F.; Efetov, K.B. Induced Ferromagnetism Due to Superconductivity in Superconductor-Ferromagnet Structures. Phys. Rev. B 2004, 69, 174504. [Google Scholar] [CrossRef]
- Bergeret, F.S.; Yeyati, A.L.; Martín-Rodero, A. Inverse Proximity Effect in Superconductor-Ferromagnet Structures: From the Ballistic to the Diffusive Limit. Phys. Rev. B 2005, 72, 064524. [Google Scholar] [CrossRef]
- Löfwander, T.; Champel, T.; Durst, J.; Eschrig, M. Interplay of Magnetic and Superconducting Proximity Effects in Ferromagnet-Superconductor-Ferromagnet Trilayers. Phys. Rev. Lett. 2005, 95, 187003. [Google Scholar] [CrossRef]
- Mironov, S.; Mel’nikov, A.S.; Buzdin, A. Electromagnetic Proximity Effect in Planar Superconductor-Ferromagnet Structures. Appl. Phys. Lett. 2018, 113, 022601. [Google Scholar] [CrossRef]
- Devizorova, Z.; Mironov, S.V.; Mel’nikov, A.S.; Buzdin, A. Electromagnetic Proximity Effect Controlled by Spin-Triplet Correlations in Superconducting Spin-Valve Structures. Phys. Rev. B 2019, 99, 104519. [Google Scholar] [CrossRef]
- Crespo, P.; Litrán, R.; Rojas, T.C.; Multigner, M.; De La Fuente, J.M.; Sánchez-López, J.C.; García, M.A.; Hernando, A.; Penadés, S.; Fernández, A. Permanent Magnetism, Magnetic Anisotropy, and Hysteresis of Thiol-Capped Gold Nanoparticles. Phys. Rev. Lett. 2004, 93, 087204. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Miura, T.; Suzuki, M.; Kawamura, N.; Miyagawa, H.; Nakamura, T.; Kobayashi, K.; Teranishi, T.; Hori, H. Direct Observation of Ferromagnetic Spin Polarization in Gold Nanoparticles. Phys. Rev. Lett. 2004, 93, 116801. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Oba, Y.; Maki, H.; Suda, M.; Einaga, Y.; Sato, T.; Mizumaki, M.; Kawamura, N.; Suzuki, M. Ferromagnetism of Pt Nanoparticles Induced by Surface Chemisorption. Phys. Rev. B 2011, 83, 104420. [Google Scholar] [CrossRef]
- Li, W.-H.; Wang, C.-W.; Li, C.-Y.; Hsu, C.K.; Yang, C.C.; Wu, C.-M. Coexistence of Ferromagnetism and Superconductivity in Sn Nanoparticles. Phys. Rev. B 2008, 77, 094508. [Google Scholar] [CrossRef]
- Hyun, O.B. Experimental Aspects of Flux Expulsion in Type-II Superconductors. Phys. Rev. B 1993, 48, 1244–1248. [Google Scholar] [CrossRef] [PubMed]
- Krusin-Elbaum, L.; Malozemoff, A.P.; Cronemeyer, D.C.; Holtzberg, F.; Clem, J.R.; Hao, Z. New Mechanisms for Irreversibility in High-Tc Superconductors (Invited). J. Appl. Phys. 1990, 67, 4670–4675. [Google Scholar] [CrossRef]
- Clem, J.R.; Hao, Z. Theory for the Hysteretic Properties of the Low-Field Dc Magnetization in Type-II Superconductors. Phys. Rev. B 1993, 48, 13774–13783. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Likholetova, M.V.; Charnaya, E.V.; Shevchenko, E.V.; Kumzerov, Y.A.; Fokin, A.V. Coexistence of Superconductivity and Magnetic Ordering in the In–Ag Alloy Under Nanoconfinement. Nanomaterials 2024, 14, 1792. https://doi.org/10.3390/nano14221792
Likholetova MV, Charnaya EV, Shevchenko EV, Kumzerov YA, Fokin AV. Coexistence of Superconductivity and Magnetic Ordering in the In–Ag Alloy Under Nanoconfinement. Nanomaterials. 2024; 14(22):1792. https://doi.org/10.3390/nano14221792
Chicago/Turabian StyleLikholetova, Marina V., Elena V. Charnaya, Evgenii V. Shevchenko, Yurii A. Kumzerov, and Aleksandr V. Fokin. 2024. "Coexistence of Superconductivity and Magnetic Ordering in the In–Ag Alloy Under Nanoconfinement" Nanomaterials 14, no. 22: 1792. https://doi.org/10.3390/nano14221792
APA StyleLikholetova, M. V., Charnaya, E. V., Shevchenko, E. V., Kumzerov, Y. A., & Fokin, A. V. (2024). Coexistence of Superconductivity and Magnetic Ordering in the In–Ag Alloy Under Nanoconfinement. Nanomaterials, 14(22), 1792. https://doi.org/10.3390/nano14221792