Mathematical and Physical Description of Transport Phenomena in Heat Pipes Based on Nanofluids: A Review
Abstract
1. Introduction
2. Mathematical Formulation and Governing Equations
3. Peculiarities in Description of Transport Phenomena in Wicks
3.1. Porous (Composite) Wick
3.2. Grooved Wick
3.3. Screen Mesh Wick
3.4. Sintered Wick
3.5. Other Types of Wicks
3.6. Comparative Analysis: Mathematical Models & Experimental Results
- 1.
- Composite wicks:
- -
- Models: Continuum approaches (e.g., Darcy-Brinkman equations) and Volume of Fluid (VOF) methods simulate capillary-driven flow in porous media. Zhang et al. [27] developed a 3D transient model predicting 23% permeability improvement, validated experimentally up to 71,111 W/m2.
- -
- Experiments: Yi et al. [23] observed a 16.7% heat dissipation increase in double-layer wicks, aligning with model predictions of reduced interfacial resistance. Discrepancies arise in pore-scale uniformity, often oversimplified in simulations.
- 2.
- Grooved wicks:
- -
- Models: Numerical simulations (Xiong et al. [30]) optimize groove-mesh configurations, predicting 25.1% vapor velocity reduction.
- -
- Experiments: Hybrid wicks achieved 48.9% lower thermal resistance, validating model insights. However, geometric sensitivity (e.g., groove depth) is less captured in theoretical frameworks.
- 3.
- Screen mesh wicks:
- -
- Models: Multiscale capillary models (Ma et al. [28]) integrate disjoining pressure and surface tension, predicting hydrodynamic instabilities with <12% error.
- -
- Experiments: Nookaraju et al. [39] reported thermal resistance reduction (0.023–0.042 °C/W) under increasing heat flux, consistent with model trends. However, numerical simulations often underestimate convective losses.
- 4.
- Sintered wicks:
- -
- Models: Pore-network models predict capillary limits and permeability trade-offs. Jiang et al. [45] optimized sintering parameters (porosity: 47.7%) to minimize thermal resistance.
- -
- 5.
- Nanoparticle-enhanced wicks:
- -
- Models: Thin-film evaporation models (Brusly et al. [50]) predict 40% evaporator resistance reduction but struggle with nanoparticle agglomeration dynamics.
- -
- Experiments: Wang et al. [51] confirmed 63% resistance reduction but noted coating instability under prolonged operation, underscoring gaps in long-term modeling.
- -
- Agreements: Most models accurately predict trends in capillary pressure, permeability, and thermal resistance reduction. Experimental validations confirm the efficacy of hybrid/composite designs and surface modifications.
- -
- Discrepancies: Simplifications in pore-scale interactions, nanoparticle stability, and deformation effects (e.g., bending/flattening) lead to deviations. Experimental setups often face uncontrollable variables (e.g., wettability hysteresis) not fully captured in simulations.
- -
- Recommendations: Unified frameworks integrating multiscale modeling (microstructure to macroscale) and long-term stability assessments are needed to bridge theory-practice gaps.
- Composite wicks excel in high heat flux scenarios but require advanced manufacturing.
- Grooved wicks are cost-effective for low-power applications but need geometry optimization.
- Nanoparticle-enhanced wicks show exceptional thermal gains but demand stabilization techniques (e.g., surface functionalization).
- Sintered wicks are durable but face scalability challenges; deformation-aware models are critical.
- Self-rewetting nanofluids (e.g., SRWF) demonstrate superior thermal management under gradients but require long-term stability tests.
- Future work:
- -
- Standardize testing protocols for wick-nanofluid combinations.
- -
- Develop AI-driven models to predict optimal configurations.
- -
- Prioritize green nanofluids (e.g., cellulose-based) for sustainable applications.
3.7. Current Challenges and Future Research Directions
- -
- Composite (porous) wicks: Engineered with hierarchical pore structures (e.g., sintered metals, copper foam, and mesh layers), these wicks optimize capillary pressure and permeability. Studies (Yi et al. [22,23], Wang et al. [24]) demonstrate enhanced thermal performance (e.g., 16.7% higher heat dissipation) through reduced interfacial flow resistance and improved vapor-liquid circulation.
- -
- Grooved wicks: Simple to fabricate, these wicks rely on channel geometry for low hydraulic resistance but face dry-out risks under high heat fluxes. Hybrid designs (e.g., mesh-grooved wicks) balance capillarity and permeability, reducing thermal resistance by up to 48.9% (Xiong et al. [30]).
- -
- Screen mesh wicks: High surface area and design flexibility enable robust capillary pumping, though mechanical degradation under thermal cycling remains a concern. Numerical models (Zhang et al. [27]) validated experimentally show 16% lower thermal resistance in composite mesh wicks.
- -
- Sintered wicks: High thermal conductivity and mechanical strength make them ideal for high-heat applications. However, pore uniformity challenges and energy-intensive fabrication limit scalability. Surface modifications (e.g., nanostructuring) improve hydrophilicity, reducing thermal resistance by 38.1% (Sun et al. [47]).
- -
- Nanoparticle-enhanced wicks: Ultrathin nanoparticle layers (e.g., silica, Cu) enhance capillarity and nucleation sites, achieving 63% lower thermal resistance (Wang et al. [51]). However, long-term nanoparticle stability requires further investigation.
- 1.
- Nanoparticles sedimentation and agglomeration
- -
- Issue: Nanoparticles in nanofluids tend to settle or cluster over time due to gravitational forces, van der Waals interactions, and insufficient stabilizers (Brusly et al. [50]; Wang et al. [51]). This compromises capillary performance, leading to uneven thermal distribution, localized dry-out, and reduced heat transfer efficiency.
- -
- -
- Gaps: Existing models often neglect time-dependent particle dynamics, oversimplifying nanofluid behavior.
- 2.
- Advanced material integration and durability
- Issue: While advanced materials like graphene, carbon nanotubes (e.g., CSs-Ni-Wick [28]) offer superior thermal conductivity, their integration into wicks faces challenges:
- -
- Compatibility: Mismatched thermal expansion coefficients between materials induce stress fractures.
- -
- Consequences: High-performing lab-scale designs (e.g., 373 improved thermal conductivity in surface-treated foams [49]) struggle with real-world longevity.
- 3.
- Scalability and manufacturing constraints
- -
- -
- Example: Ultra-thin vapor chambers with sintered wicks achieve 117,734 W/m2 in labs but face cost barriers for industrial adoption due to pore uniformity challenges and redox-induced microcracks.
- 4.
- Modeling limitations
- 1.
- Stabilization techniques for nanofluids
- 2.
- Hybrid and composite material development
- -
- -
- Bio-inspired designs: Mimicking natural structures (e.g., leaf venation, spider silk) for optimized fluid transport (Wang et al. [24]).
- 3.
- AI-driven design and optimization
- 4.
- Sustainable and high-performance materials
- -
- Green nanofluids: Exploring biodegradable nanoparticles (e.g., cellulose-based) to reduce environmental impact.
- -
- High-temperature alloys: Developing refractory metal wicks (e.g., Mo-Re composites) for aerospace applications (Xiong et al. [25]).
- 5.
- Enhanced multiscale modeling
- -
- Particle-resolved simulations: Incorporating discrete element methods (DEM) to track nanoparticle movement in nanofluids.
- -
- Deformation-aware models: Coupling mechanical stress analysis with thermal-fluid dynamics to predict wick performance under bending/flattening (Sangpab et al. [44]).
4. Mathematical Conditions for Condensation and Evaporation
5. Numerical and Experimental Results Overview
5.1. Numerical Simulations Results
5.2. Experimental Results
6. Heat Pipes Applications
6.1. Spacecraft Heat Change
6.2. Microelectronics Cooling
6.3. Solar and Geothermal System Construction
6.4. Interdisciplinary Research and Heat Pipes Improving
7. Future Research
- -
- Development of mathematical models to describe in detail the transport phenomena for heat pipes with nanofluid as a working fluid, where it is necessary to take into account the nanoparticles aggregation, stability of the nanofluid, changes in surface wettability, or the formation of nanolayers during evaporation/condensation.
- -
- More detailed simulation of the wick porous structure taking into account the heterogeneity of the porous wick.
- -
- Research in hybrid and composite materials to create the effective porous wick.
- -
- Development of AI-driven design and optimization not only for simulation of transport processes but also for creation of optimal heat pipes.
- -
- Creation of effective nanofluid using green nanoparticles and effective base fluids.
- -
- Development of numerical and analytical techniques for effective simulation of fluid flow, heat and mass transfer in heat pipes.
8. Conclusions
- -
- Nowadays, there are many different correlations for the physical properties of nanofluids that can be used as working fluids in heat pipes. More important to use the experimentally-based correlations with single-phase nanofluid models or it is possible to use the theoretical correlations but combined with two-phase nanofluid models.
- -
- Description of transport phenomena in wicks can be performed also using the average approaches based on the porous medium models, but it is possible to design the structure of the porous material from practice.
- -
- Applications of heat pipes can be found in various practical fields including building engineering, power engineering, electronics and medicine engineering, where the used heat pipes can be improved with more effective working fluid or optimal structure of the wick combined with condensation/evaporation sections.
- -
- As a result, the future research can be focused on unifying theoretical, experimental, and computational approaches to optimize nanofluid selection and wick design for practical applications.
- -
- From another side, a development of numerical approaches for solution of boundary-value problems for fluid flow, heat and mass transfer in heat pipes is very important also.
Author Contributions
Funding
Conflicts of Interest
References
- Singh, U.; Gupta, N.K. Stability issues and operating limitations of nanofluid filled heat pipe: A critical review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Cacua, K.; Buitrago-Sierra, R.; Herrera, B.; Pabon, E.; Murshed, S.M.S. Nanofluids’ stability effects on the thermal performance of heat pipes. J. Therm. Anal. Calorim. 2019, 136, 1597–1614. [Google Scholar] [CrossRef]
- Faghri, A.; Zhang, Y. Transport Phenomena in Multiphase Systems, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Faghri, A.; Zhang, Y.; Howell, J. Advanced Heat and Mass Transfer, 1st ed.; Global Digital Press: Columbia, MO, USA, 2010. [Google Scholar]
- Poplaski, L.M.; Benn, S.P.; Faghri, A. Thermal performance of heat pipes using nanofluids. Int. J. Heat Mass Transf. 2017, 107, 358–371. [Google Scholar] [CrossRef]
- Schwartz, L.M.; Garboczi, E.J.; Bentz, D.P. Interfacial transport in porous media: Application to DC electrical conductivity of mortars. J. Appl. Phys. 1995, 10, 5898. [Google Scholar] [CrossRef]
- You, S.M.; Kim, J.H.; Kim, K.H. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett. 2003, 83, 3374. [Google Scholar] [CrossRef]
- Liu, S.; Chen, X.; Suleiman, K.; Wang, E. Thermal conductivity of carboxymethyl cellulose-based Fe3O4 and Al2O3 nanofluids: An improved measurement method. Exp. Therm. Fluid Sci. 2025, 164, 111431. [Google Scholar] [CrossRef]
- Selvarajoo, K.; Wanatasanappan, V.V.; Luon, N.Y. Experimental measurement of thermal conductivity and viscosity of Al2O3-GO (80:20) hybrid and mono nanofluids: A new correlation. Diam. Relat. Mater. 2024, 144, 111018. [Google Scholar] [CrossRef]
- Ghafouri, A.; Toghraie, D. Novel multivariate correlation for thermal conductivity of SiC-MgO/ethylene glycol nanofluid based on an experimental study. Mater. Sci. Eng. B 2023, 297, 116771. [Google Scholar] [CrossRef]
- Ajeena, A.M.; Farkas, I.; Víg, P. A comparative experimental study on thermal conductivity of distilled water-based mono nanofluids with zirconium oxide and silicon carbide for thermal industrial applications: Proposing a new correlation. Int. J. Thermofluids 2023, 20, 100424. [Google Scholar] [CrossRef]
- Brinkman, H.C. The viscosity of concentrated suspensions and solution. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Ajeena, A.M.; Farkas, I.; Víg, P. A comparative experimental investigation of dynamic viscosity of ZrO2/DW and SiC/DW nanofluids: Characterization, rheological behavior, and development of new correlation. Heliyon 2023, 9, e21113. [Google Scholar] [CrossRef]
- Bhat, A.Y.; Qayoum, A. Viscosity of CuO nanofluids: Experimental investigation and modelling with FFBP-ANN. Thermochim. Acta 2022, 714, 179267. [Google Scholar] [CrossRef]
- Coccia, G.; Falcone, F. A new semi-empirical correlation for the evaluation of the dynamic viscosity of nanofluids. J. Mol. Liq. 2024, 416, 126456. [Google Scholar] [CrossRef]
- Klazly, M.; Bognar, G. A novel empirical effective viscosity equation for hybrid nanofluids. J. Mol. Liq. 2025, 427, 127404. [Google Scholar] [CrossRef]
- Bhaumik, B.; Chaturvedi, S.; Changdar, S.; De, S. A unique physics-aided deep learning model for predicting viscosity of nanofluids. Int. J. Comput. Methods Eng. Sci. Mech. 2022, 24, 167–181. [Google Scholar] [CrossRef]
- Changdar, S.; Bhaumik, B.; De, S. Physics-based smart model for prediction of viscosity of nanofluids containing nanoparticles using deep learning. J. Comput. Des. Eng. 2021, 8, 600–614. [Google Scholar] [CrossRef]
- Heidari, E.; Sobati, M.A.; Movahedirad, S. Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemom. Intell. Lab. Syst. 2016, 155, 73–85. [Google Scholar] [CrossRef]
- Dalkılıç, A.S.; Çebi, A.; Celen, A.; Yıldız, O.; Acikgoz, O.; Jumpholkul, C.; Bayrak, M.B.; Surana, K.S.; Wongwises, S. Prediction of graphite nanofluids’ dynamic viscosity by means of artificial neural networks. Int. Commun. Heat Mass Transf. 2016, 73, 33–42. [Google Scholar] [CrossRef]
- Yi, F.; Gan, Y.; Xin, Z.; Li, Y.; Chen, H. Analysis of thermal characteristics of the heat pipes with segmented composite wicks. Int. J. Therm. Sci. 2023, 191, 108341. [Google Scholar] [CrossRef]
- Yi, F.; Gan, Y.; Xin, Z.; Li, Y.; Chen, H. Experimental study on thermal performance of ultra-thin heat pipe with a novel composite wick structure. Int. J. Therm. Sci. 2023, 193, 108539. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Sun, Y.; Li, J.; Hao, M. Experimental study on the thermal performance of ultra-thin flat heat pipes with novel multiscale striped composite wick structures. Heliyon 2023, 9, e20840. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.; Huang, Y.; Wang, S. Experimental research on the thermal performance of a flat evaporator loop heat pipe with a new composite wick. Appl. Therm. Eng. 2024, 246, 122927. [Google Scholar] [CrossRef]
- Ming, T.; Yuan, Y.; Li, Z.; Zhao, S.; Tan, G.; Zhi, C.; Wu, Y. Heat transfer enhancement of the ultra-thin flat heat pipe integrated with copper-fiber bundle wicks. Appl. Therm. Eng. 2024, 236, 121676. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Q.; Tan, Q.; Liu, Y.; Zhu, J.; Wang, J. Numerical analysis on heat transfer of porous wick flat micro heat pipe under various operating conditions. Int. Commun. Heat Mass Transf. 2024, 157, 107842. [Google Scholar] [CrossRef]
- Ma, Z.; Tan, Y.; Zhang, Z.; Liu, W.; Liu, Z. Experimental investigation on the heat transfer characteristics of loop heat pipe with carbon spheres modified nickel wick. Appl. Therm. Eng. 2024, 255, 123956. [Google Scholar] [CrossRef]
- Liu, X.; Chai, Y.; Li, J.; Gu, J.; Zhu, J.; Yang, L.; Wei, W.; Liu, C.; Liu, Y. Effect of evaporation and condensation section length ratio on thermal performance of aluminum flat plate heat pipe with different micro grooved wicks. Appl. Therm. Eng. 2023, 233, 12115. [Google Scholar] [CrossRef]
- Xiong, T.; Li, R.; Gan, Y.; Luo, Q.; Li, Y.; Qi, R. A study on thermal and hydraulic performance of ultra-thin heat pipe with hybrid mesh-groove wick. e-Prime—Adv. Electr. Eng. Electron. Energy 2023, 3, 100117. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Diao, Y. Experimental study on the heat transfer characteristics of flat-plate micro heat pipe arrays with grooved porous wick structure and porous copper foam inserts. Appl. Therm. Eng. 2024, 257, 124251. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Y.; Yu, W.; Hu, T.; Su, H.; Zhu, T. Heat transfer characteristics of flat-plate micro heat pipes with integrated copper foam for aerospace thermal management. Appl. Therm. Eng. 2025, 263, 125319. [Google Scholar] [CrossRef]
- Wang, L.; Quan, Z.; Xu, H.; Guo, H.; Zhao, Y. Heat transfer performance of a micro heat pipe array filled with copper foam. Appl. Therm. Eng. 2025, 269, 126068. [Google Scholar] [CrossRef]
- Tan, S.-C.; Xu, Q.; Wang, T.; Guo, C.; Jiang, Y.-Y.; Kong, H. A new investigation on permeability of multilayer stacked screen wick. Int. Commun. Heat Mass Transf. 2024, 158, 107912. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, H.; Wang, X.; Zhang, Y.; Huang, S.; Wang, C.; Su, G.H.; He, X.; Zhong, R.; Deng, J.; et al. Experimental study on sodium Screen-Wick heat pipe capillary limit. Appl. Therm. Eng. 2023, 227, 120397. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Yu, H.; Su, G.H.; Huang, S.; Deng, J.; Chai, X.; He, X.; Zhang, Z. Capillary evaporating film model for a screen-wick heat pipe. Appl. Therm. Eng. 2023, 225, 120155. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, X.; Yu, H.; Huang, S.; Zhang, Y.; Su, G.H.; Deng, J.; Chai, X.; Hu, W. Capillary limit of a sodium screen-wick heat pipe. Appl. Therm. Eng. 2023, 223, 120972. [Google Scholar] [CrossRef]
- Tian, L.; Ma, Y.; Zhang, L.; Zhu, Y.; Ma, Z.; Tang, S.; Lian, Q.; Sun, W.; Zhu, L.; Pan, L.; et al. Experimental study on liquid sodium capillary dynamics in screen wicks. Appl. Therm. Eng. 2025, 271, 126306. [Google Scholar] [CrossRef]
- Nookaraju, B.C.; Rani, P.K.; Kurmarao, P.S.V.; Sarada, S.N.; Sateesh, N.; Lakshmi, A.A.; Subbiah, R. Experimental and transient thermal analysis of screen mesh wick heat pipe. Mater. Today Proc. 2021, 46, 9920–9926. [Google Scholar] [CrossRef]
- Liu, K.; Shi, B.; Zhang, P. Heat transfer characteristics of ultrathin heat pipe considering unsaturated wick at different filling rates. Int. J. Heat Mass Transf. 2024, 235, 126195. [Google Scholar] [CrossRef]
- Zhao, Z.; Peng, G.; Zhang, Y.; Zhang, D. Heat transfer performance of flat micro-heat pipe with sintered multi-size copper powder wick. Case Stud. Therm. Eng. 2023, 42, 102720. [Google Scholar] [CrossRef]
- Wang, X.; Wan, Z. Heat transfer performance of a heat pipe with sintered stainless-steel fiber wick. Case Stud. Therm. Eng. 2023, 45, 103016. [Google Scholar] [CrossRef]
- Maneemuang, S.; Kammuang-Lue, N.; Terdtoon, P.; Sakulchangsatjatai, P. Effect of pipe flattening on pressure drop in vapor core and thermal characteristic of miniature round and flat-shape heat pipe with sintered fiber wick. Int. J. Heat Mass Transf. 2021, 176, 121416. [Google Scholar] [CrossRef]
- Sangpab, N.; Kimura, N.; Terdtoon, P.; Sakulchangsatjatai, P.; Kammuanglue, N.; Murakami, M. Combined effect of bending and flattening on heat transfer performance of cryogenic sintered-wick heat pipe. Appl. Therm. Eng. 2019, 148, 878–885. [Google Scholar] [CrossRef]
- Jiang, L.-L.; Tang, Y.; Zhou, W.; Jiang, L.-Z.; Xiao, T.; Li, Y.; Gao, J.-W. Design and fabrication of sintered wick for miniature cylindrical heat pipe. Trans. Nonferrous Met. Soc. China 2014, 24, 292–301. [Google Scholar] [CrossRef]
- Ginting, F.H.S.; Tetuko, A.P.; Asri, N.S.; Nurdiyansah, L.F.; Setiadi, E.A.; Humaidi, S.; Sebayang, P. Surface treatment on metal foam wick of a ferrofluid heat pipe. Surf. Interfaces 2023, 36, 102499. [Google Scholar] [CrossRef]
- Sun, Q.; Han, R.; Guo, K.; Wang, C.; Zhang, J.; He, X.; Qiu, S.; Su, G.; Tian, W. Characterization of high-performance nanostructured wick for heat pipes. Appl. Therm. Eng. 2024, 236, 121814. [Google Scholar] [CrossRef]
- Guo, H.; Chen, J.; Wang, Z.; Wang, T.; Liu, S.; Ji, X.; Cao, S.; Hu, C. Effect of the self-rewetting fluids on heat transfer performance of gravity heat pipes with sintered porous wick. Appl. Therm. Eng. 2025, 258, 124761. [Google Scholar] [CrossRef]
- Yang, H.; Ren, F.; Jiang, Y.; Zhu, Y. Experimental study on the thermal performance enhancement of a flat plate heat pipe with surface-treated metal foam wick. Appl. Therm. Eng. 2025, 274, 126572. [Google Scholar] [CrossRef]
- Brusly, S.A.; Ramachandran, K.; Pillai, B.C. Thermal performance of a heat pipe with nanoparticles coated wick. Appl. Therm. Eng. 2012, 36, 106–112. [Google Scholar]
- Wang, M.; Liu, Y.; Okawa, T. Experiments on thermal performance of heat pipes using nanoparticle layer as the wick. Appl. Therm. Eng. 2023, 228, 120518. [Google Scholar] [CrossRef]
- Hirth, J.P.; Pound, G.M. Condensation and Evaporation—Nucleation and Growth Kinetics; Pergamon Press: Oxford, UK, 1963; 190p. [Google Scholar]
- Knudsen, M. Kinetic Theory of Gases, 3rd ed.; London Methuene: London, UK, 1950. [Google Scholar]
- Kudryashova, O.B.; Titov, S.S. A mathematical model for sublimation of a thin film in trace explosive detection problem. Molecules 2022, 27, 7939. [Google Scholar] [CrossRef]
- Persad, A.H.; Ward, C.A. Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation. Chem. Rev. 2016, 116, 7727–7767. [Google Scholar] [CrossRef]
- Gaultier, M.; Lezaun, M.; Vadillo, F. A Problem of heat and mass transfer: Proof of the existence condition by a finite difference method. Int. J. Numer. Methods Fluids 1993, 16, 87–104. [Google Scholar] [CrossRef]
- Jones, P.; Renz, U. Condensation from a turbulent stream onto a vertical surface. Int. J. Heat Mass Transf. 1974, 17, 1019–1028. [Google Scholar] [CrossRef]
- Cossmann, R.; Odenthal, H.-P.; Renz, U. Heat and mass transfer during partial condensation in a turbulent pipe flow. In Proceedings of the 7th International Heat Transfer Conference, Munchen, Germany, 6–10 September 1982; Hemisphere Publishing Corp.: Washington, DC, USA, 1982. [Google Scholar]
- Adachi, T.; Chang, X.; Nagai, H. Numerical analysis of loop heat pipe using nucleate boiling model in evaporator core. Int. J. Heat Mass Transf. 2022, 195, 123207. [Google Scholar] [CrossRef]
- Tan, Z.; Cao, Z.; Chu, W.; Wang, Q. Improvement on evaporation-condensation prediction of Lee model via a temperature deviation based dynamic correction on evaporation coefficient. Case Stud. Therm. Eng. 2023, 48, 103147. [Google Scholar] [CrossRef]
- Lee, W.H. A pressure iteration scheme for two-phase flow modeling. In Computational Methods for Two-Phase Flow and Particle Transport; World Scientific Publishing Co Pte Ltd: Singapore, 2013; pp. 61–82. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Ose, Y.; Kunugi, T. Development of a boiling and condensation model on sub- cooled boiling phenomena. Energy Procedia 2011, 9, 605–618. [Google Scholar] [CrossRef]
- Son, G.; Ramanujapu, N.; Dhir, V. Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling. J. Heat Transf. 2002, 124, 51–62. [Google Scholar] [CrossRef]
- Xiang, Y.; Fang, D.; Deng, Y.; Zhao, L.; Ma, W. A numerical study on melt jet breakup in a water pool using coupled VOF and level set method. Nucl. Eng. Des. 2024, 426, 113363. [Google Scholar] [CrossRef]
- Ling, K.; Li, Z.; Sun, D.; He, Y.; Tao, W. A three-dimensional volume of fluid & level set (VOSET) method for incompressible two-phase flow. Comput. Fluids 2015, 118, 293–304. [Google Scholar]
- Kupershtokh, A.L.; Alyanov, A.V. Evaporation and condensation of pure vapor at the liquid surface in the method of lattice Boltzmann equations. Numer. Methods Program. 2022, 23, 311–327. [Google Scholar]
- Kirillov, Y.P.; Shaposhnikov, V.A.; Kuznetsov, L.A.; Shiryaev, V.S.; Churbanov, M.F. Modeling of the evaporation of liquids and condensation of their vapor during distillation. Inorg. Mater. 2016, 52, 1183–1188. [Google Scholar] [CrossRef]
- Wadekar, V.V.; Kenning, D.B.R. Flow boiling heat transfer in vertical slug and churn flow region. In Proceedings of the International Heat Transfer Conference, Jerusalem, Israel, 19–24 August 1990; pp. 449–454. [Google Scholar]
- Li, Y.; Shen, S.; Li, Z.; Wang, C.; Xing, Z.; Ren, D.; Zhang, H. Mathematical model of the evaporative condenser for on-site condition simulation. Int. J. Refrig. 2024, 162, 121–131. [Google Scholar] [CrossRef]
- Knacke, O.; Stranski, I.N. The mechanism of evaporation. Prog. Met. Phys. 1956, 6, 181–235. [Google Scholar] [CrossRef]
- Kryukov, A.P.; Levashov, V.Y.; Pavlyukevich, N.V. Condensation coefficient: Definitions, estimations, modern experimental and calculation data. J. Eng. Phys. Thermophys. 2014, 87, 237–245. [Google Scholar] [CrossRef]
- Kucherov, R.Y.; Rikenglaz, L.E. The problem of measuring the condensation coefficient. Dokl. Akad. Nauk USSR 1960, 133, 1130–1131. [Google Scholar]
- Schrage, R.W. A Theoretical Study of Interphase Mass Transfer; Columbia University Press: New York, NY, USA, 1953. [Google Scholar]
- Marek, R. Einflub Thermokapillarer Konvektion und Inerter Gase Beim Blasensieden in Unterkhlter Flussigkeit. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 1996. [Google Scholar]
- Davis, E.J. A history and state-of-the-art of accommodation coefficients. Atmos. Res. 2006, 82, 561–578. [Google Scholar] [CrossRef]
- Kharangate, C.R.; Mudawar, I. Review of computational studies on boiling and condensation. Int. J. Heat Mass Transf. 2017, 108, 1164–1196. [Google Scholar] [CrossRef]
- Ryskin, G.; Leal, L.G. Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique. J. Fluid Mech. 1984, 148, 1–17. [Google Scholar] [CrossRef]
- Ryskin, G.; Leal, L.G. Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid. J. Fluid Mech. 1984, 148, 19–35. [Google Scholar] [CrossRef]
- Haberman, W.L.; Morton, R.K. An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids; David W. Taylor Model Basin Reports; David W. Taylor Model Basin: Washington, DC, USA, 1953; p. 802. [Google Scholar]
- Saffman, P.G. On the rise of small air bubbles in water. J. Fluid Mech. 1956, 1, 24S275. [Google Scholar] [CrossRef]
- Hartunian, R.A.; Sears, W.R. On the instability of small gas bubbles moving uniformly in various liquids. J. Fluid Mech. 1957, 3, 2747. [Google Scholar] [CrossRef]
- Hnat, J.G.; Buckmaster, J.D. Spherical cap bubbles and skirt formation. Phys. Fluids 1976, 19, 182–194. [Google Scholar] [CrossRef]
- Bhaga, D.; Weber, M.E. Bubbles in viscous liquids: Shapes, wakes and velocities. J. Fluid Mech. 1981, 105, 61–85. [Google Scholar] [CrossRef]
- Yang, X.S.; Karamanoglu, M.; Luan, T.; Koziel, S. Mathematical modelling and parameter optimization of pulsating heat pipes. J. Comput. Sci. 2014, 5, 119–125. [Google Scholar] [CrossRef]
- Sangpab, N.; Sakulchangsatjatai, P.; Kammuang-lue, N.; Terdtoon, P. Mathematical model of bent-flattened sintered-grooved heat pipe with concept of receding-and-excessing fluid. Case Stud. Therm. Eng. 2021, 27, 101307. [Google Scholar] [CrossRef]
- Saadatian, S.; Wong, H. Analytic solutions of heat and mass transfer in flat heat pipes with porous wicks. Int. J. Heat Mass Transf. 2023, 205, 123870. [Google Scholar] [CrossRef]
- Rathore, S.S.; Mehta, B.; Kumar, P.; Asfer, M. Heat transfer analysis of the flat plate heat pipe − like system with ordered porous wick structure: Effect of gravitational orientation. Appl. Therm. Eng. 2025, 265, 125612. [Google Scholar] [CrossRef]
- Yan, W.; Yang, X.; Liu, T.; Wang, S. Numerical simulation of heat transfer performance for ultra-thin flat heat pipe. J. Therm. Sci. 2023, 32, 643–649. [Google Scholar] [CrossRef]
- Chhokar, C.; Ashouri, M.; Bahrami, M. Modeling the thermal and hydrodynamic performance of grooved wick flat heat pipes. Appl. Therm. Eng. 2024, 257, 124281. [Google Scholar] [CrossRef]
- Solomon, A.B.; Ramachandran, K.; Asirvatham, L.G.; Pillai, B.C. Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid. Int. J. Heat Mass Transf. 2014, 75, 523–533. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Navaneethakrishnan, P.; Kumaresan, G. Thermal characteristics studies on sintered wick heat pipe using CuO and Al2O3 nanofluids. Exp. Therm. Fluid Sci. 2016, 79, 25–35. [Google Scholar] [CrossRef]
- Herrera, B.; Chejne, F.; Mantelli, M.B.; Mejia, J.; Cacua, K.; Gallego, A. Population balance for capillary limit modeling in a screen mesh wick heat pipe working with nanofluids. Int. J. Therm. Sci. 2019, 138, 134–158. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Olabi, A.G.; Alami, A.H.; Al Radi, M.; Zwayyed, F.; Wilberforce, T.; Abdelkareem, M.A. Numerical simulation of heat pipes in different applications. Int. J. Thermofluids 2022, 16, 100199. [Google Scholar] [CrossRef]
- Mahjoub, S.; Mahtabroshan, A. Numerical Simulation of a conventional heat pipe. World Acad. Sci. Eng. Technol. 2008, 39, 117–122. [Google Scholar]
- Nekrashevych, I.; Nikolayev, V.S. Effect of tube heat conduction on the pulsating heat pipe start-up. Appl. Therm. Eng. 2017, 117, 24–29. [Google Scholar] [CrossRef]
- Bhramara, P. CFD analysis of multi turn pulsating heat pipe. Mater. Today Proc. 2017, 4, 2701–2710. [Google Scholar]
- Błasiak, P.; Opalski, M.; Parmar, P.; Czajkowski, C.; Pietrowicz, S. The thermal–Flow processes and flow pattern in a pulsating heat pipe—Numerical modelling and experimental validation. Energies 2021, 14, 5952. [Google Scholar] [CrossRef]
- Mottet, L.; Prat, M. Numerical simulation of heat and mass transfer in bidispersed capillary structures: Application to the evaporator of a loop heat pipe. Appl. Therm. Eng. 2016, 102, 770–784. [Google Scholar] [CrossRef]
- Li, J.; Hong, F.; Xie, R.; Cheng, P. Pore scale simulation of evaporation in a porous wick of a loop heat pipe flat evaporator using Lattice Boltzmann method. Int. Commun. Heat Mass Transf. 2019, 102, 22–33. [Google Scholar] [CrossRef]
- Ling, L.; Zhang, Q.; Yu, Y.; Wu, Y.; Liao, S.; Sha, Z. Simulation of a micro channel separate heat pipe (MCSHP) under low heat flux and low mass flux. Appl. Therm. Eng. 2017, 119, 25–33. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Huang, G.; Tang, R.; Yang, F.; Xin, Z.; Wu, B. Detection and grading of oxidation for copper–water heat pipe wicks based on the machine learning methods. Appl. Therm. Eng. 2025, 272, 126437. [Google Scholar] [CrossRef]
- Li, X.; Zhao, X.; Shi, X.; Zhang, Z.; Zhang, C.; Liu, S. Developing a machine learning model for heat pipes considering different input features. Int. J. Therm. Sci. 2025, 208, 109398. [Google Scholar] [CrossRef]
- Bai, X.; Huang, J.; Chen, Z.; Sun, P.; Wei, X. Predictive control of a heat pipe-cooled reactor based on a neural network model. Nucl. Eng. Des. 2025, 436, 113983. [Google Scholar] [CrossRef]
- Lee, J.S.; Ahn, J.H.; Chae, H.I.; Lee, H.C.; Rhi, S.H. 1-D modeling of two-phase flow process in concentric annular heat pipe and experimental investigation. Processes 2022, 10, 493. [Google Scholar] [CrossRef]
- Eshwar, H.; Arunachala, U.C.; Varun, K. Single-phase thermosyphon heat transport device, a future prospect for heat removal applications: An experimental comparison with heat pipe and two-phase closed thermosyphon. Int. J. Therm. Sci. 2024, 203, 109130. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Yu, J.; Deng, L.; Chen, H.; Tang, X. Fabrication and characterization of ultra-thin vapour chambers with printed copper powder wick. Appl. Therm. Eng. 2022, 201, 117734. [Google Scholar] [CrossRef]
- Li, D.; Huang, Z.; Liao, X.; Zu, S.; Jian, Q. Heat and mass transfer characteristics of ultra-thin flat heat pipe with different liquid filling rates. Appl. Therm. Eng. 2021, 199, 117588. [Google Scholar] [CrossRef]
- Chen, Y.; Sheng, Y.; Yu, B.; Tian, M.; Yu, X.; Jian, Q. Study on heat transfer characteristics of ultra-thin flat heat pipes at different liquid filling rates and heat loads. Appl. Therm. Eng. 2024, 236, 121398. [Google Scholar] [CrossRef]
- Yu, J.; Xin, Z.; Zhang, R.; Chen, Z.; Li, Y.; Zhou, W. Effect of spiral woven mesh liquid pumping action on the heat transfer performance of ultrathin vapour chamber. Int. J. Therm. Sci. 2022, 182, 107799. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, H.; Zhang, P.; Yan, L. Performance test of an ultra-thin flat heat pipe with a 0.2 mm thick vapor chamber. J. Micromech. Microeng. 2019, 29, 115019. [Google Scholar] [CrossRef]
- Li, D.; Huang, Z.; Zhao, J.; Jian, Q.; Chen, Y. Analysis of heat transfer performance and vapor–liquid meniscus shape of ultra-thin vapor chamber with supporting columns. Appl. Therm. Eng. 2021, 193, 117001. [Google Scholar] [CrossRef]
- Hassan, H.; Harmand, S. 3D transient model of vapour chamber: Effect of nanofluids on its performance. Appl. Therm. Eng. 2013, 51, 1191–1201. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Zhang, R.; Xin, Z.; Yu, J.; Deng, L.; Yi, W. Optimization of vapor-liquid channel parameters for ultrathin heat pipe with limited internal cavity. Int. Commun. Heat Mass Transf. 2023, 142, 106659. [Google Scholar] [CrossRef]
- Li, R.; Gan, Y.; Luo, Q.; Yan, Y.; Li, Y. Numerical analysis on thermal hydraulic characteristics of mesh-type ultra-thin vapor chambers. Appl. Therm. Eng. 2024, 236, 121648. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, Y.; He, J.; Chen, R.; Jian, Y.; Shao, D.; Wu, A. An experimental study of a composite wick structure for ultra-thin flattened heat pipes. Micromachines 2024, 15, 764. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Z.; Song, B.; Xu, M.; Tian, Y.; Chen, Y. Experimental analysis on the loop heat pipes with different microchannel evaporators. Appl. Therm. Eng. 2020, 178, 115547. [Google Scholar] [CrossRef]
- Lu, X.; Liu, J.; Tong, X.; Dai, R.; Xiao, Y.; Deng, J. Experimental investigation on thermal performance of gravity heat pipe with different pipe configurations. Case Stud. Therm. Eng. 2025, 65, 105695. [Google Scholar] [CrossRef]
- Do, K.H.; Jang, S.P. Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int. J. Heat Mass Transf. 2010, 53, 2183–2192. [Google Scholar] [CrossRef]
- Do, K.H.; Ha, H.J.; Jang, S.P. Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids. Int. J. Heat Mass Transf. 2010, 53, 5888–5894. [Google Scholar] [CrossRef]
- Putra, N.; Septiadi, W.N.; Rahman, H.; Irwansyah, R. Thermal performance of screen mesh wick heat pipes with nanofluids. Exp. Therm. Fluid Sci. 2012, 40, 10–17. [Google Scholar] [CrossRef]
- Asirvatham, L.G.; Nimmagadda, R.; Wongwises, S. Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid. Int. J. Heat Mass Transf. 2013, 60, 201–209. [Google Scholar] [CrossRef]
- Buschmann, M.H. Nanofluids in thermosyphons and heat pipes: Overview of recent experiments and modelling approaches. Int. J. Therm. Sci. 2013, 72, 1–17. [Google Scholar] [CrossRef]
- Shafieian, A.; Khiadani, M.; Nosrati, A. A review of latest developments, progress, and applications of heat pipe solar collectors. Renew. Sustain. Energy Rev. 2018, 95, 273–304. [Google Scholar] [CrossRef]
- Kole, M.; Dey, T.K. Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Appl. Therm. Eng. 2013, 50, 763–770. [Google Scholar] [CrossRef]
- Kumaresan, G.; Venkatachalapathy, S.; Asirvatham, L.G.; Wongwises, S. Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. Int. Commun. Heat Mass Transf. 2014, 57, 208–215. [Google Scholar] [CrossRef]
- Kumaresan, G.; Venkatachalapathy, S.; Asirvatham, L.G. Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. Int. J. Heat Mass Transf. 2014, 72, 507–516. [Google Scholar] [CrossRef]
- Hameed, H.G.; Rageb, A.M.A. Experimental investigation of thermal performance of variable conductance cylindrical heat pipe using nanofluid. Int. J. Mech. Mechatron. Eng. 2014, 14, 27–32. [Google Scholar]
- Putra, N.; Saleh, R.; Septiadi, W.N.; Okta, A.; Hamid, Z. Thermal performance of biomaterial wick loop heat pipes with water-based Al2O3 nanofluids. Int. J. Therm. Sci. 2014, 76, 128–136. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Kuo, W.C.; Ho, C.C.; Chieh, J.J. Experimental study on thermal performances of heat pipes for air-conditioning systems influenced by magnetic nanofluids, external fields, and micro wicks. Int. J. Refrig. 2014, 43, 62–70. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Navaneethakrishnan, P.; Kumaresan, G.; Kamatchi, R. A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3 nanofluids. J. Taiwan Inst. Chem. Eng. 2017, 81, 190–198. [Google Scholar] [CrossRef]
- Weng, Z.; Du, J.; Jiao, F.; Hong, Y.; He, Y.; Wang, C. Experimental investigation on the heat transfer performance of pulsating heat pipe with self-rewetting Fe3O4-nanofluid. Case Stud. Therm. Eng. 2024, 59, 104456. [Google Scholar] [CrossRef]
- Kholi, F.K.; Kallath, H.; Mucci, A.; Ha, M.A.; Chetwynd-Chatwin, J.; Min, J.K. Experimental study of effects of wicks and boundary conditions on thermal performance of heat pipes. J. Mech. Sci. Technol. 2022, 36, 417–432. [Google Scholar] [CrossRef]
- Dhairiyasamy, R.; Gabiriel, D. Optimizing heat transfer in heat pipes using hybrid nanofluids with multi-walled carbon nanotubes and alumina. Eng. Rep. 2025, 7, e13030. [Google Scholar] [CrossRef]
- Hu, Y.; Meng, G.; Yao, Y.; Zhang, F.; Luoshan, M. Experimental investigation on the start-up and thermal performance of nanofluid-based pulsating heat pipe. Appl. Therm. Eng. 2025, 259, 124897. [Google Scholar] [CrossRef]
- Dandoutiya, B.K.; Kumar, A. Experimental analysis of thermal performance factor for double pipe heat exchanger with ZnO–water nanofluid. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2025, 239, 221–230. [Google Scholar] [CrossRef]
- Dhairiyasamy, R.; Gabiriel, D.; Varudharajan, G.; Manivannan, J.M.; Arputharaj, B.S.; Al Awadh, M.; Al-Mdallal, Q.M. Impact of coated silver nanoplates on the thermal efficiency of heat pipes under varying operating conditions. Case Stud. Therm. Eng. 2025, 67, 105662. [Google Scholar] [CrossRef]
- Faghri, A. Heat pipes: Review, opportunities and challenges. Front Heat Pipes. 2014, 5. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, S.; Tian, Y. A review of thermal performance in multiple evaporators loop heat pipe. Appl. Therm. Eng. 2018, 143, 209–224. [Google Scholar] [CrossRef]
- Shafieian, A.; Khiadani, M.; Nosrati, A. Theoretical modelling approaches of heat pipe solar collectors in solar systems: A comprehensive review. Sol. Energy 2019, 193, 227–243. [Google Scholar] [CrossRef]
- Wang, X.; Luo, L.; Xiang, J.; Zheng, S.; Shittu, S.; Wang, Z.; Zhao, X. A comprehensive review on the application of nanofluid in heat pipe based on the machine learning: Theory, application and prediction. Renew. Sustain. Energy Rev. 2021, 150, 111434. [Google Scholar] [CrossRef]
- Mueller, C.; Tsvetkov, P. A review of heat-pipe modeling and simulation approaches in nuclear systems design and analysis. Ann. Nucl. Energy 2021, 160, 108393. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Abosinnee, A.S.; Al-Hadraawy, S.K.; Ismael, M.A.; Fteiti, M.A.; Hashim, I.; Sheremet, M.A.; Ghalambaz, M.; Chamkha, A.J. Convection heat transfer in enclosures with inner bodies: A review on single and two-phase nanofluid models. Renew. Sustain. Energy Rev. 2023, 183, 113424. [Google Scholar] [CrossRef]
- Kholi, F.K.; Park, S.; Yang, J.S.; Ha, M.Y.; Min, J.K. A detailed review of pulsating heat pipe correlations and recent advances using Artificial Neural Network for improved performance prediction. Int. J. Heat Mass Transf. 2023, 207, 124010. [Google Scholar] [CrossRef]
- Zafar, M.; Sakidin, H.; Sheremet, M.; Dzulkarnain, I.B.; Hussain, A.; Nazar, R.; Khan, J.A.; Said, Z.; Afzal, F.; Al-Yaari, A. Recent development and future prospective of Tiwari and Das mathematical model in nanofluid flow for different geometries: A review. Processes 2023, 11, 834. [Google Scholar] [CrossRef]
- Qin, Y.; Yazdani, S.; Li, F.; Sheremet, M.; Ghalambaz, M. A review of technology, applications, and future perspectives of thermosyphons in permafrost regions. Renew. Sustain. Energy Rev. 2025, 213, 115473. [Google Scholar] [CrossRef]
- Grover, G.M. Evaporation-Condensation Heat Transfer Device. US Patent No. 3229759, 18 January 1966. [Google Scholar]
- Maydanik, Y.F.; Chernysheva, M.S. Loop heat pipes: Development, research, application. J. Eng. Phys. Thermophys. 2024, 97, 1653–1665. [Google Scholar] [CrossRef]
- Werner, T.C.; Yan, Y.; Karayiannis, T.; Pickert, V.; Wrobel, R.; Law, R. Medium temperature heat pipes—Applications, challenges and future direction. Appl. Therm. Eng. 2024, 236, 121371. [Google Scholar] [CrossRef]
- Choi, J.; Zhang, Y. Numerical simulation of oscillatory flow and heat transfer in pulsating heat pipes with multi-turns using OpenFOAM. Numer. Heat Transf. Part A Appl. 2020, 77, 761–781. [Google Scholar] [CrossRef]
- Yoon, A.; Noh, H.Y.; Lee, S.; Kim, S.J. Study on the effect of condenser configuration of pulsating heat pipes for space applications. Int. J. Therm. Sci. 2025, 208, 109418. [Google Scholar] [CrossRef]
- Ersoy, K. Review of electronic cooling and thermal management in space and aerospace applications. Eng. Proc. 2025, 89, 42. [Google Scholar]
- Hoshyar, A.; Johari, M.; Ganji, D.D. Advanced thermal management in radiology equipment: Numerical and semi-analytical analysis of flat heat pipes. SSRN 2025, 5191749. [Google Scholar] [CrossRef]
- Fazeli, K.; Vafai, K. Analysis of optimized combined microchannel and heat pipes for electronics cooling. Int. J. Heat Mass Transf. 2024, 219, 124842. [Google Scholar] [CrossRef]
- Delendik, K.; Baranova, T.; Chorny, A.; Kolyago, N.; Voitik, O.; Zhukova, Y. Improving the cooling efficiency of microchips by vapor chamber. In Computational Fluid Dynamics: Novel Numerical and Computational Approaches: Methodology and Numericsl; Springer Nature Singapore: Singapore, 2025; pp. 87–113. [Google Scholar]
- Du, S.; Ye, Z. Analysis and applications of the two phases closed thermosyphon technology in the highways in permafrost regions: A review. Appl. Sci. 2024, 14, 4185. [Google Scholar] [CrossRef]
- Abweny, M.A.; Abdel-Jawad, A.; Xiao, S. Experimental investigation of optimal filling ratio for a two-phase closed thermosyphon pile in a frozen soil. SSRN 2024, 4962108. [Google Scholar] [CrossRef]
- Karthigairajan, M.; Seeniappan, K.; Balaji, N.; Natrayan, L.; Sheik, S.B.; Ravi, D. Performance Analysis of Graphene-Coated Heat Pipe Heat Exchangers for Automobile Exhaust Cooling and Purification (No. 2025-01-5006); SAE Technical Paper; SAE International: Warrendale, PA, USA, 2025. [Google Scholar] [CrossRef]
- Vasiliev, L.L.; Zhuravlev, A.S.; Grakovich, L.P.; Rabetskii, M.I.; Dragun, L.A. Two-phase devices for thermal regulation of heat loaded components of electric transport. J. Eng. Phys. Thermophys. 2025, 98, 62–72. [Google Scholar] [CrossRef]
- Evstatiev, B.; Evstatieva, N. A model for simulation of the energy flows in a heat pipe solar collector. Int. J. Adv. Comput. Sci. Appl. 2025, 16, 90–99. [Google Scholar] [CrossRef]
- Yi, G.; Zhang, D.; Zhang, W.; Li, Y.; Gong, L. Exploiting seafloor hydrothermal energy through optimized closed-loop heat extraction. Renew. Energy 2025, 242, 122404. [Google Scholar] [CrossRef]
- Amir, F.; Amin, M.; Abdullah, N.A.; Ginting, S.F.; Rizal, T.A.; Suheri, S.; Umar, H.; Nur, F.M.; Mahlia, T.M.I. Development of a parabolic trough collector-based solar oven with heat pipe for efficient drying of kitchen spices. Energy Built Environ. 2025. [Google Scholar] [CrossRef]
- Venkateshwaran, B.G.; Kumaresan, G.; Santosh, R.; Velraj, R. Performance enhancement of flat plate cooking unit using novel hook turbulators for indirect solar cooking applications: Numerical and experimental assessment with enviroeconomic analyses. Sol. Energy 2025, 287, 113247. [Google Scholar] [CrossRef]
- Tang, S.; Lian, Q.; Zhu, L.; Zhang, L.; Ma, Z.; Sun, W.; Pan, L. Thermal-electrical coupling analysis of the static heat pipe cooled reactor under heat pipe failure condition. Nucl. Eng. Des. 2024, 417, 112812. [Google Scholar] [CrossRef]
- Song, M.; Qian, Y.; Leng, Y.; Liu, T.; Yu, L.; Chen, W. Multi-objective optimization research of open and closed air Brayton cycle. Int. J. Adv. Nucl. React. Des. Technol. 2024, 6, 21–31. [Google Scholar] [CrossRef]
- La Sorsa, A.; Sprunger, J.; Smith, S.D.; Alunno, E.; Kotler, A.R.; Ahmed, K.A. Thermal analysis of Inconel-718 in hypersonic leading edge configurations. In Proceedings of the AIAA SCITECH 2025 Forum, Orlando, FL, USA, 6–10 January 2025; p. 1327. [Google Scholar]
- Riehl, R.R.; Dutra, T. Development of an experimental loop heat pipe for application in future space missions. Appl. Therm. Eng. 2005, 25, 101–112. [Google Scholar] [CrossRef]
- Wang, G.; Mishkinis, D.; Nikanpour, D. Capillary heat loop technology: Space applications and recent Canadian activities. Appl. Therm. Eng. 2008, 28, 284–303. [Google Scholar] [CrossRef]
- Jie, L.; Li, T.X.; Guo, K.H.; He, Z.H. Experimental investigation on a novel method for set point temperature controlling of the active two-phase cooling loop. Int. J. Refrig. 2008, 31, 1391–1397. [Google Scholar] [CrossRef]
- Mishra, D.K.; Saravanan, T.T.; Khanra, G.P.; Girikumar, S.; Sharma, S.C.; Sreekumar, K.; Sinha, P.P. Studies on the processing of nickel base porous wicks for capillary pumped loop for thermal management of spacecrafts. Adv. Powder Technol. 2010, 21, 658–662. [Google Scholar] [CrossRef]
- Yunze, L.I.; Mingmin, L.; Kok Meng, L.E.E. A dual-driven intelligent combination control of heat pipe space cooling system. Chin. J. Aeronaut. 2012, 25, 566–574. [Google Scholar]
- Dong, S.J.; Li, Y.Z.; Wang, J.; Wang, J. Fuzzy incremental control algorithm of loop heat pipe cooling system for spacecraft applications. Comput. Math. Appl. 2012, 64, 877–886. [Google Scholar] [CrossRef]
- Kim, T.Y.; Hyun, B.S.; Lee, J.J.; Rhee, J. Numerical study of the spacecraft thermal control hardware combining solid–liquid phase change material and a heat pipe. Aerosp. Sci. Technol. 2013, 27, 10–16. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Z.; Zhu, Z.; Yu, Y.; Gao, Y.; Guo, C. Two methods for thermal conduction analysis of bi-porous sintered structures. Case Stud. Therm. Eng. 2023, 52, 103776. [Google Scholar] [CrossRef]
- Miranda, F.K.; Rioboo, R.; Mohaupt, M.; Marchioli, C. Experimental study on the detection of frozen diffused ammonia blockage in the inactive section of a variable conductance heat pipe. Appl. Therm. Eng. 2024, 236, 121742. [Google Scholar] [CrossRef]
- Nobrega, G.; Afonso, I.S.; Cardoso, B.; de Souza, R.R.; Moita, A.; Ribeiro, J.E.; Lima, R.A. Exploring heat exchange in space: Recent advances in two-phase fluid experiments in microgravity. Therm. Sci. Eng. Prog. 2024, 56, 103025. [Google Scholar] [CrossRef]
- Rao, S.S.; Wong, H. Heat and mass transfer in polygonal micro heat pipes under small imposed temperature differences. Int. J. Heat Mass Transf. 2015, 89, 1369–1385. [Google Scholar] [CrossRef]
- Qu, J.; Wu, H.; Cheng, P.; Wang, Q.; Sun, Q. Recent advances in MEMS-based micro heat pipes. Int. J. Heat Mass Transf. 2017, 110, 294–313. [Google Scholar] [CrossRef]
- Tang, Y.; Hong, S.; Wang, S.; Deng, D. Experimental study on thermal performances of ultra-thin flattened heat pipes. Int. J. Heat Mass Transf. 2019, 134, 884–894. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, H.; Yao, F.; Deng, Z.; Zhang, Y.; Jiang, S. Experimental study on two-phase flow and thermal performance in pulsating heat pipes. Proc. Inst. Civ. Eng. -Energy 2021, 174, 113–123. [Google Scholar] [CrossRef]
- Yuan, D.; Chen, J.; Yang, Y.; Zhang, L.; Liu, S.; Jiang, H.; Qian, N. Thermal performance of the thin heat pipe for cooling of solid-state drives. Metals 2022, 12, 1786. [Google Scholar] [CrossRef]
- Ming, T.; Liu, W.; Caillol, S. Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change? Renew. Sustain. Energy Rev. 2014, 31, 792–834. [Google Scholar] [CrossRef]
- Morawietz, K.; Hermann, M. Integrated development and modeling of heat pipe solar collectors. Energy Procedia 2014, 48, 157–162. [Google Scholar] [CrossRef]
- Morawietz, K.; Röschl, T.; Halim, I.A.A.; Paul, T.; Hermann, M. Effects of measurement conditions on operating limits of solar horizontal heat pipes. Energy Procedia 2016, 91, 366–375. [Google Scholar] [CrossRef]
- Föste, S.; Schiebler, B.; Giovannetti, F.; Rockendorf, G.; Jack, S. Butane heat pipes for stagnation temperature reduction of solar thermal collectors. Energy Procedia 2016, 91, 35–41. [Google Scholar] [CrossRef]
- Pise, G.A.; Salve, S.S.; Pise, A.T.; Pise, A.A. Investigation of solar heat pipe collector using nanofluid and surfactant. Energy Procedia 2016, 90, 481–491. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yang, L.; Entchev, E.; Cho, S.; Kang, E.C.; Lee, E.J. Hybrid solar geothermal heat pump system model demonstration study. Front. Energy Res. 2022, 9, 778501. [Google Scholar] [CrossRef]
- Huang, W.; Chen, J.; Ma, Q.; Xing, L.; Wang, G.; Cen, J.; Jiang, F. Developing kilometers-long gravity heat pipe for geothermal energy exploitation. Energy Environ. Sci. 2024, 17, 4508–4518. [Google Scholar] [CrossRef]
- Shen, J.; Guo, C. Bionic design and analysis of 3D-printed lattice structure wicks for heat pipe application. Case Stud. Therm. Eng. 2025, 69, 105967. [Google Scholar] [CrossRef]
Wick Type | Heat Transfer Performance | Pressure Drop Characteristics | Stability/Limitations | Key Studies |
---|---|---|---|---|
Composite (porous) wicks | - 16.7% higher heat dissipation (segmented designs) - Thermal resistance: 0.069–0.79 °C/W | - Reduced interfacial flow resistance - Optimized vapor-liquid segregation | - Susceptible to clogging in contaminated environments - Complex fabrication | Yi et al. [22,23]; Wang et al. [24] |
Grooved wicks | - 48.9% lower thermal resistance (hybrid designs) - Effective in low-gravity conditions | - Low hydraulic resistance - 25.1% vapor velocity reduction | - Dry-out under high heat fluxes - Geometry-dependent performance | Xiong et al. [30]; Wang et al. [32] |
Screen mesh wicks | - Thermal resistance: 0.023–0.042 °C/W - High surface area for capillary action | - Permeability depends on mesh layers (A/B/C configurations) - <10% prediction error | - Mechanical degradation under thermal cycling - Limited pore size control | Tan et al. [34]; Nookaraju et al. [39] |
Sintered wicks | - 38.1% lower thermal resistance (nanostructured) - Capillary pressure: 0.65 Pa | - High flow resistance in deformed wicks - 155% thermal resistance increase if bent | - Energy-intensive manufacturing - Pore uniformity challenges | Sangpab et al. [44]; Ginting et al. [46] |
Nanoparticle-enhanced | - 63% thermal resistance reduction (silica layer) - Enhanced nucleation sites | - Increased surface roughness elevates condenser resistance | - Nanoparticle sedimentation/agglomeration - Coating instability under prolonged use | Brusly et al. [50]; Wang et al. [51] |
Nanofluid Type | Thermal Conductivity Enhancement | Impact on Stability | Key Applications | Key Studies |
---|---|---|---|---|
Cu nanoparticles | - 40% evaporator resistance reduction - Improved boiling efficiency | - Sedimentation-induced hotspots - Requires surfactants for stabilization | Electronics cooling, aerospace | Brusly et al. [50] |
Al2O3 nanoparticles | - 10–30% higher thermal conductivity - Reduced thermal gradients | - Agglomeration under high heat - Wettability hysteresis | Solar collectors, industrial cooling | Sun et al. [47] |
Carbon nanotubes | - 373× effective thermal conductivity (surface-treated foams) | - Degradation under prolonged high heat - High cost | High-power electronics, aerospace | Yang et al. [49] |
Self-rewetting fluids | - 53.6% higher evaporator coefficients - 66% temperature uniformity improvement | - Sustained performance under thermal gradients - Non-linear surface tension dynamics | Gravity heat pipes, renewable energy systems | Guo et al. [48] |
Heat Pipe Structure | Reason/Goal | Methods Used | Reference |
---|---|---|---|
simplified HP model | Optimization of HP parameters | Firefly algorithm Finite Differences Method FDM | [85] |
simplified HP model | To evaluate the effect of Al2O3/water nanofluid concentration on the capillary limit | a numerical model coupling hydrodynamical equations with a population balance for nanoparticle agglomeration and deposition | [93] |
cylindrical HP | To study the effect of Cu-water nanofluid on heat transfer performance | A two-dimensional transient analysis model | [91] |
cylindrical HP | To analyze parameters affecting heat pipe operation using a numerical model | FLUENT software SIMPLE algorithm | [95] |
flat HP | To optimize heat transfer by varying pipe length or wick thickness | Analytic solutions | [87] |
flat HP | Compact model for predicting thermal and hydrodynamic performance | Analytic solutions | [90] |
flat plate HP | Phase change phenomena in systems analogous to heat pipes using pore-scale numerical simulation | Ansys® Fluent (version 19.0) Volume of Fluid (VOF) method | [88] |
flat micro HP | The effects of unsaturated flow in porous media | Volume of Fluid (VOF) method The Pressure-Implicit with Splitting of Operators (PISO) algorithm | [27] |
bent-flattened sintered-grooved miniature HP | Impact of wick damage on liquid return and thermal performance | Receding and Excess Fluid (REF) FEM | [86] |
micro channel separate HP | to investigate the thermal-hydraulic mechanism and improve the design and operation of the separate HP | Matlab R2016b A finite element method (FEM) | [101] |
pulsating HP | To simulate the start-up, functioning, and stopping of multi-branch pulsating heat pipes | in-house CASCO software film evaporation/condensation model (FEC) | [96] |
pulsating HP | The heat transfer performance of a pulsating heat pipe using methanol | ANSYS CFX | [97] |
pulsating HP | To numerically model a two-dimensional multiphase flow in a pulsating heat pipe | OpenFOAM volume of fluid (VOF) method | [98] |
loop HP | To analyze heat and mass transfer with phase change in an evaporator unit cell using a mixed pore network model | code in Fortran90 finite volume method | [99] |
loop HP | to numerically simulate evaporation heat transfer in a loop heat pipe | Lattice Boltzmann Method (LBM) OpenMP parallel algorithm for C++ code | [100] |
Type of HP | Working Fluid | Materials | Reference |
---|---|---|---|
heat pipe (HP) | water | Container—copper Screen mesh—phosphor bronze | [106] |
heat pipe (HP) | water-based or ethylene glycol-based Al2O3 or TiO2 or ZnO nanofluid | screen mesh wick—stainless steel tube—copper | [121,136] |
heat pipe (HP) | de-ionized water silver nanoparticles | copper | [122,137] |
heat pipe (HP) | distilled water copper nanoparticles | not specified | [125] |
heat pipe (HP) | water-based CuO-nanofluid | copper | [128] |
heat pipe (HP) | de-ionized water CuO, Al2O3 nanofluid | copper | [131] |
heat pipe (HP) | multi-walled carbon nanotubes (MWCNT) and Al2O3 nanoparticles | copper | [134] |
flat heat pipe (FHP) | Water with nanoparticles Cu, CuO, Al2O3 | copper | [113] |
flat micro-heat pipe (FMHP) | water-based Al2O3 nanofluid | copper | [119] |
ultra-thin flat heat pipe (UFHP) | de-ionized water | Copper foil Copper wick or composite wick with different structures | [40,107,108,109,110,111,112,114,115] |
loop heat pipe (LHP) | not specified | carbon spheres modified nickel wick | [28] |
loop heat pipe (LHP) | water-based Al2O3 nanofluid | biomaterial (Collar) as a wick | [129] |
gravity heat pipe (GHP) | not specified | not specified | [118] |
gravity heat pipe (GHP) | self-rewetting fluids (SRWF) | copper | [48] |
pulsating heat pipe (PHP) | self-rewetting nanofluids (SRNF) | copper | [132] |
pulsating heat pipe (PHP) | de-ionized water PbSH2O, AuH2O, and GrapheneH2O nanofluids | copper | [135] |
concentric annular heat pipe (CAHP) | distilled water | container, screen mesh wick—stainless steel Fins—copper | [105] |
circular screen mesh wick heat pipe | water-based Al2O3 nanofluid | copper | [120] |
sintered wick heat pipe (SWHP) and mesh wick heat pipe (MWHP) | de-ionized water CuO nanofluid | copper | [126,127] |
Year | Author | Title of Review | Sources | Highlights |
---|---|---|---|---|
2014 | Amir Faghri | Heat pipes: Review, opportunities and challenges [138] | 259 | heat pipes in electronic cooling and energy sectors; flexibility of heat pipes and their ability to operate without external power; importance of numerical modeling and experimental simulations in enhancing understanding and performance of heat pipes. |
2018 | Y. Qu et al. | A review of thermal performance in multiple evaporators loop heat pipe [139] | 68 | investigated the development status of Multiple Evaporators Loop Heat Pipes (ME-LHP) focusing on system design, mathematical models, and operational performance; key factors influencing ME-LHP performance include the ratio of component volumes, working fluid mass, and operational temperature control. |
2019 | Mehdi Khiadani et al. | Theoretical modelling approaches of heat pipe solar collectors in solar systems: A comprehensive review [140] | 114 | theoretical modeling approaches of heat pipe solar collectors (HPSCs), highlighting their operational principles, advantages, and disadvantages; various mathematical models, including steady state and dynamic models, and discusses their applications in improving HPSC efficiency. |
2021 | Zhangyuan Wang et al. | A comprehensive review on the application of nanofluid in heat pipe based on the machine learning: Theory, application and prediction [141] | 163 | application of nanofluids in heat pipes, emphasizing the importance of viscosity, thermal conductivity, and stability in enhancing heat transfer performance; role of machine learning in modeling the thermal properties of nanofluids and identifies challenges such as uncertainties in thermal conductivity and viscosity, and limitations in predictive models; machine learning, particularly ANNs (Artificial Neural Network), can provide high prediction accuracy for nanofluid properties when combined with optimization algorithms. |
2021 | Cole Mueller et al. | A review of heat-pipe modeling and simulation approaches in nuclear systems design and analysis [142] | 66 | the historical context and evolution of heat-pipes, highlighting their transition from electronic systems to advanced nuclear applications; efficient approach for accurate heat-pipe modeling in multi-physics simulations, reducing computational time. |
2023 | Ishak Hashim et al. | Convection heat transfer in enclosures with inner bodies: A review on single and two-phase nanofluid models [143] | 189 | significant number of studies on natural and mixed convection in cavities with solid inner bodies, emphasizing the importance of geometry in heat exchange simulations; most research has utilized single-phase models due to the high numerical costs associated with two-phase models. |
2023 | June Kee Min et al. | A detailed review of pulsating heat pipe correlations and recent advances using Artificial Neural Network for improved performance prediction [144] | 185 | mathematical models for estimating the thermal performance of pulsating heat pipes (PHPs) and suggests improvements for prediction accuracy; the need for future studies to explore synergies between semi-empirical correlations and artificial neural networks (ANN) to enhance prediction capabilities. |
2023 | Mudasar Zafar et al. | Recent Development and Future Prospective of Tiwari and Das Mathematical Model in Nanofluid Flow for Different Geometries: A Review [145] | 105 | Tiwari and Das mathematical model for nanofluid flow, emphasizing its significance in enhancing heat transfer rates through various geometries; importance of accurate mathematical modeling and the effects of cavity shapes and thermal boundary conditions on fluid dynamics; copper nanoparticles are noted to provide the highest heat transmission rates, indicating their effectiveness in improving heat transfer performance. |
2025 | Mohammad Ghalambaz et al. | A review of technology, applications, and future perspectives of thermosyphons in permafrost regions [146] | 236 | thermosyphons play a vital role in thermal management, particularly in permafrost regions, by providing an efficient, passive heat transfer solution essential for infrastructure stability in cold climates; thermosyphons significantly improve soil stability and prevent thaw-induced damage, with innovative designs like L-shaped configurations showing enhanced cooling performance. |
Shape | Applications |
---|---|
cylinder | Common cases such as normal size electronics, climate devices, industry heat systems |
flat | Microelectronic devices, LED-lights |
flexible | Spacecraft, cooling of medical devices, some uncommon industry systems with specific geometry |
other | Unique devices and systems |
Working Temperature, K | Fluids | Applications |
---|---|---|
4–200 | Helium, argon, krypton, oxygen | Spacecraft [151,152], medical devices [153] |
200–550 | Water, ammonia, acetone, the Freon compounds | Electronics and microelectronics cooling [154,155], permafrost cooling [156,157] |
450–750 | Mercury, sulphur, Thermex compound, Dowtherm-A compaund | Combustion engines and automotive industry [158,159], solar and geothermal systems [160,161], cooking [162,163] |
>750 | Sodium, lithium, cesium, silver, indium, sodium-potassium compound (NaK) | Nuclear power conversion [164,165], aerospace engineering [166] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astanina, M.S.; Gibanov, N.S.; Miroshnichenko, I.V.; Tarasov, E.A.; Sheremet, M.A. Mathematical and Physical Description of Transport Phenomena in Heat Pipes Based on Nanofluids: A Review. Nanomaterials 2025, 15, 757. https://doi.org/10.3390/nano15100757
Astanina MS, Gibanov NS, Miroshnichenko IV, Tarasov EA, Sheremet MA. Mathematical and Physical Description of Transport Phenomena in Heat Pipes Based on Nanofluids: A Review. Nanomaterials. 2025; 15(10):757. https://doi.org/10.3390/nano15100757
Chicago/Turabian StyleAstanina, Marina S., Nikita S. Gibanov, Igor V. Miroshnichenko, Egor A. Tarasov, and Mikhail A. Sheremet. 2025. "Mathematical and Physical Description of Transport Phenomena in Heat Pipes Based on Nanofluids: A Review" Nanomaterials 15, no. 10: 757. https://doi.org/10.3390/nano15100757
APA StyleAstanina, M. S., Gibanov, N. S., Miroshnichenko, I. V., Tarasov, E. A., & Sheremet, M. A. (2025). Mathematical and Physical Description of Transport Phenomena in Heat Pipes Based on Nanofluids: A Review. Nanomaterials, 15(10), 757. https://doi.org/10.3390/nano15100757