Physical Activity and Eating Habits Are Related to Chronic Disease in the Basic Livelihood Security Program
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Population
2.2. Participants Characteristics
2.3. Chronic Disease
2.4. Dietary Habits
2.5. Physical Activity
2.6. Statistical Analysis
3. Results
3.1. Demographic Characteristics of Participants
3.2. Association of Chronic Disease and Dietary Habits
3.3. Association of Chronic Disease and Physical Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020. Available online: https://www.who.int/publications/i/item/9789241506236 (accessed on 10 November 2024).
- Schultz, W.M.; Kelli, H.M.; Lisko, J.C.; Varghese, T.; Shen, J.; Sandesara, P.; Quyyumi, A.A.; Taylor, H.A.; Gulati, M.; Harold, J.G.; et al. Socioeconomic Status and Cardiovascular Outcomes: Challenges and Interventions. Circulation 2018, 137, 2166–2178. [Google Scholar] [CrossRef] [PubMed]
- Diez Roux, A.V. Conceptual approaches to the study of health disparities. Annu. Rev. Public Health 2012, 33, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M.; Friel, S.; Bell, R.; Houweling, T.A.; Taylor, S.; Commission on Social Determinants of Health. Closing the gap in a generation: Health equity through action on the social determinants of health. Lancet 2008, 372, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Braveman, P.; Egerter, S.; Williams, D.R. The social determinants of health: Coming of age. Annu. Rev. Public Health 2011, 32, 381–398. [Google Scholar] [CrossRef]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef]
- Walker, R.E.; Keane, C.R.; Burke, J.G. Disparities and access to healthy food in the United States: A review of food deserts literature. Health Place 2010, 16, 876–884. [Google Scholar] [CrossRef]
- Sallis, J.F.; Floyd, M.F.; Rodriguez, D.A.; Saelens, B.E. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation 2012, 125, 729–737. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.N.; Balde, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef]
- Chung, J.; Choi, H.-M.; Jung, J.-H.; Kong, M.G. Association between Socioeconomic Status and Metabolic Syndrome in Korean Adults: Data from the Korean National Health and Nutrition Examination Survey. CardioMetabolic Syndr. J. 2021, 1, 168. [Google Scholar] [CrossRef]
- Su, K.; Kim, Y.; Park, Y. Prevalence of Metabolic Syndrome Based on Activity Type and Dietary Habits in Extremely Low-Income Individuals. Nutrients 2024, 16, 1677. [Google Scholar] [CrossRef]
- Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. Korean J. Fam. Med. 2020, 41, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef]
- Park, S.; Ahn, J.; Lee, B.K. Self-rated Subjective Health Status Is Strongly Associated with Sociodemographic Factors, Lifestyle, Nutrient Intakes, and Biochemical Indices, but Not Smoking Status: KNHANES 2007-2012. J. Korean Med. Sci. 2015, 30, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Stringhini, S.; Carmeli, C.; Jokela, M.; Avendano, M.; Muennig, P.; Guida, F.; Ricceri, F.; d’Errico, A.; Barros, H.; Bochud, M.; et al. Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: A multicohort study and meta-analysis of 1.7 million men and women. Lancet 2017, 389, 1229–1237. [Google Scholar] [CrossRef]
- Cutler, D.M.; Lleras-Muney, A. Understanding differences in health behaviors by education. J. Health Econ. 2010, 29, 1–28. [Google Scholar] [CrossRef]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef]
- Slavin, J.L. Dietary fiber and body weight. Nutrition 2005, 21, 411–418. [Google Scholar] [CrossRef]
- Hulshof, K.F.; Brussaard, J.H.; Kruizinga, A.G.; Telman, J.; Lowik, M.R. Socio-economic status, dietary intake and 10 y trends: The Dutch National Food Consumption Survey. Eur. J. Clin. Nutr. 2003, 57, 128–137. [Google Scholar] [CrossRef]
- Drewnowski, A.; Darmon, N. The economics of obesity: Dietary energy density and energy cost. Am. J. Clin. Nutr. 2005, 82, 265S–273S. [Google Scholar] [CrossRef]
- James, W.P.; Nelson, M.; Ralph, A.; Leather, S. Socioeconomic determinants of health. The contribution of nutrition to inequalities in health. BMJ 1997, 314, 1545–1549. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.; Cannon, G. Increasing consumption of ultra-processed foods and likely impact on human health: Evidence from Brazil. Public Health Nutr. 2011, 14, 5–13. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Kingwell, B.A.; Larsen, R.; Healy, G.N.; Cerin, E.; Hamilton, M.T.; Shaw, J.E.; Bertovic, D.A.; Zimmet, P.Z.; Salmon, J.; et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 2012, 35, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Tarp, J.; Steene-Johannessen, J.; Hansen, B.H.; Jefferis, B.; Fagerland, M.W.; Whincup, P.; Diaz, K.M.; Hooker, S.P.; Chernofsky, A.; et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ 2019, 366, l4570. [Google Scholar] [CrossRef]
- Matthews, C.E.; Keadle, S.K.; Troiano, R.P.; Kahle, L.; Koster, A.; Brychta, R.; Van Domelen, D.; Caserotti, P.; Chen, K.Y.; Harris, T.B.; et al. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults. Am. J. Clin. Nutr. 2016, 104, 1424–1432. [Google Scholar] [CrossRef]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef]
- Sun, Y.; Byon, C.H.; Yang, Y.; Bradley, W.E.; Dell’Italia, L.J.; Sanders, P.W.; Agarwal, A.; Wu, H.; Chen, Y. Dietary potassium regulates vascular calcification and arterial stiffness. JCI Insight 2017, 2, e94920. [Google Scholar] [CrossRef]
- Giannakopoulou, S.P.; Antonopoulou, S.; Chrysohoou, C.; Barkas, F.; Tsioufis, C.; Pitsavos, C.; Liberopoulos, E.; Sfikakis, P.P.; Panagiotakos, D. The Impact of Dietary Carbohydrates on Inflammation-Related Cardiovascular Disease Risk: The ATTICA Study (2002–2022). Nutrients 2024, 16, 2051. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, H.; Li, C. Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods 2021, 10, 1854. [Google Scholar] [CrossRef]
- Kapuku, G.L.; Treiber, F.A.; Davis, H.C. Relationships among socioeconomic status, stress induced changes in cortisol, and blood pressure in African American males. Ann. Behav. Med. 2002, 24, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Mbiydzenyuy, N.E.; Qulu, L.A. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab. Brain Dis. 2024, 39, 1613–1636. [Google Scholar] [CrossRef] [PubMed]
- Baek, T.H.; Lee, H.Y.; Lim, N.K.; Park, H.Y. Gender differences in the association between socioeconomic status and hypertension incidence: The Korean Genome and Epidemiology Study (KoGES). BMC Public Health 2015, 15, 852. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Stamler, J.; Dyer, A.R.; Appel, L.; Dennis, B.; Kesteloot, H.; Ueshima, H.; Okayama, A.; Chan, Q.; Garside, D.B.; et al. Association between protein intake and blood pressure: The INTERMAP Study. Arch. Intern. Med. 2006, 166, 79–87. [Google Scholar] [CrossRef]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef]
- Ludwig, D.S. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 2002, 287, 2414–2423. [Google Scholar] [CrossRef]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Howard, B.; Healy, G.N.; Owen, N. Too much sitting—A health hazard. Diabetes Res. Clin. Pract. 2012, 97, 368–376. [Google Scholar] [CrossRef]
- Adams, N.T.; Paterson, C.; Poles, J.; Higgins, S.; Stoner, L. The Effect of Sitting Duration on Peripheral Blood Pressure Responses to Prolonged Sitting, With and Without Interruption: A Systematic Review and Meta-Analysis. Sports Med. 2024, 54, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too much sitting: The population health science of sedentary behavior. Exerc. Sport Sci. Rev. 2010, 38, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Healy, G.N.; Dunstan, D.W.; Salmon, J.; Cerin, E.; Shaw, J.E.; Zimmet, P.Z.; Owen, N. Breaks in sedentary time: Beneficial associations with metabolic risk. Diabetes Care 2008, 31, 661–666. [Google Scholar] [CrossRef]
- Rizka, M.; Laksmi Ambardini, R.; Adhi Virama, L.O.; Yudhistira, D. The Effect of Walking Exercise on Blood Pressure and Blood Glucose in the Elderly. Int. J. Kinesiol. Sports Sci. 2022, 10, 30–35. [Google Scholar] [CrossRef]
- Bauman, A.E.; Reis, R.S.; Sallis, J.F.; Wells, J.C.; Loos, R.J.; Martin, B.W.; Lancet Physical Activity Series Working Group. Correlates of physical activity: Why are some people physically active and others not? Lancet 2012, 380, 258–271. [Google Scholar] [CrossRef]
Non-BLS (n = 13,439, 89.3%) | BLS (n = 1583, 10.5%) | p-Value | |
---|---|---|---|
Age, years | 73.6 ± 5.1 | 73.8 ± 4.9 | 0.321 a |
Sex, female | 7453 (55.5) | 1063 (67.2) c | <0.001 b |
Systolic blood pressure, mmHg | 121.5 ± 17.2 | 132.9 ± 17.6 | <0.001 a |
Diastolic blood pressure, mmHg | 72.5 ± 9.6 | 81.5 ± 10.1 | <0.001 a |
Weight, kg | 60.4 ± 10.1 | 58.4 ± 10.2 | <0.001 a |
BMI, kg/m2 | 24.0 ± 3.1 | 24.2 ± 3.4 | 0.173 a |
Education Status | <0.001 b | ||
To elementary school | 6405 (54.3) | 992 (74.1) c | |
To middle school | 1856 (15.7) | 167 (12.5) d | |
To high school | 2249 (19.1) | 124 (9.3) d | |
Above college | 1281 (10.9) | 55 (4.1) d | |
Marital Status | <0.001 b | ||
With spouse | 13,389 (99.6) | 1521 (96.1) d | |
Not married | 49 (0.4) | 62 (3.9) c | |
Smoking History | <0.001 b | ||
Never or past | 11,466 (90.7) | 1268 (87.1) d | |
Current | 1173 (9.3) | 188 (12.9) c | |
Hypertension, yes | 7088 (55.3) | 942 (62.9) c | <0.001 b |
Diabetes mellitus, yes | 2782 (21.7) | 414 (27.7) c | <0.001 b |
Fasting blood glucose, mg/dL | 107.7 ± 26.0 | 110.4 ± 32.2 | <0.001 a |
Hemoglobin A1c, % | 6.0 ± 0.8 | 6.1 ± 0.9 | <0.001 a |
Total cholesterol, mg/dL | 181.5 ± 39.4 | 180.1 ± 39.4 | 0.187 a |
Triglycerides, mg/dL | 129.9 ± 77.4 | 134.7 ± 86.3 | 0.031 a |
Energy intake, Kcal | 1637.4 ± 669.4 | 1397.4 ± 632.6 | <0.001 a |
Protein, g | 55.5 ± 28.5 | 44.9 ± 26.1 | <0.001 a |
Fat, g | 28.4 ± 21.7 | 21.4 ± 20.3 | <0.001 a |
Carbohydrates, g | 279.1 ± 113.3 | 246.7 ± 110.1 | <0.001 a |
Dietary fiber, g | 26.1 ± 14.7 | 20.3 ± 12.4 | <0.001 a |
Vitamin C, mg | 69.1 ± 85.3 | 48.5 ± 61.6 | <0.001 a |
Sedentary Time | <0.001 b | ||
5 h or less per day | 2952 (26.1) | 276 (21.9) d | |
6–8 h per day | 3206 (28.4) | 326 (25.9) d | |
9–11 h per day | 2746 (24.3) | 267 (21.2) d | |
12 h or more per day | 2403 (21.3) | 392 (31.1) c | |
Walking habits | <0.001 b | ||
None or 1 day per week | 3458 (29.4) | 510 (38.2) c | |
2–4 days per week | 2998 (25.5) | 323 (24.2) | |
5 days or more per week | 5299 (45.1) | 501 (37.6) d |
Variables | Classification | Non-BLS OR of Hypertension (CI) | BLS OR of Hypertension (CI) |
---|---|---|---|
Energy intake | Above average | 1 | 1.197 (0.973–1.471) |
Below average | 1.056 (0.972–1.146) | 1.346 (1.148–1.578) | |
Protein | Above average | 1 | 1.331 (1.051–1.685) |
Below average | 1.063(0.978–1.156) | 1.294 (1.110–1.509) | |
Fat | Above average | 1 | 1.279 (0.989–1.654) |
Below average | 1.102 (1.012–1.200) | 1.362 (1.169–1.586) | |
Carbohydrates | Above average | 1 | 1.081 (0.896–1.304) |
Below average | 1.037 (0.957–1.124) | 1.441 (1.221–1.702) | |
Dietary fiber | Above average | 1 | 1.270 (1.051–1.535) |
Below average | 1.060 (0.976–1.151) | 1.300 (1.104–1.532) | |
Vitamin C | Above average | 1 | 1.346 (1.044–1.736) |
Below average | 1.040 (0.972–1.163) | 1.325 (1.139–1.540) |
Variables | Classification | Non-BLS OR of Diabetes (CI) | BLS OR of Diabetes (CI) |
---|---|---|---|
Energy intake | Above average | 1 | 1.260 (0.997–1.592) |
Below average | 1.208 (1.095–1.334) | 1.553 (1.307–1.845) | |
Protein | Above average | 1 | 1.423 (1.100–1.842) |
Below average | 1.126 (1.018–1.245) | 1.401 (1.182–1.661) | |
Fat | Above average | 1 | 1.283 (0.960–1.715) |
Below average | 1.115 (1.005–1.236) | 1.443 (1.219–1.708) | |
Carbohydrates | Above average | 1 | 1.243 (1.004–1.538) |
Below average | 1.150 (1.045–1.265) | 1.511 (1.265–1.804) | |
Dietary fiber | Above average | 1 | 1.344 (1.094–1.650) |
Below average | 0.936 (0.849–1.033) | 1.209 (1.010–1.446) | |
Vitamin C | Above average | 1 | 1.479 (1.119–1.954) |
Below average | 1.184 (1.070–1.309) | 1.461 (1.235–1.728) |
Variables | Classification | Non-BLS OR of Hypertension (CI) | BLS OR of Hypertension (CI) |
---|---|---|---|
Sedentary time per day | 5 h or less | 1 | 1.235 (0.958–1.593) |
6–8 h | 1.132 (1.022–1.253) | 1.434 (1.129–1.822) | |
9–11 h | 1.259 (1.131–1.400) | 1.420 (1.092–1.847) | |
12 h or more | 1.240 (1.109–1.387) | 1.542 (1.230–1.933) | |
Number of walking days per week | 5 days or more | 1 | 1.140 (0.903–1.438) |
2–4 days | 1.038 (0.947–1.137) | 1.321 (1.090–1.601) | |
1 day or less | 1.131 (1.033–1.238) | 1.510 (1.237–1.842) |
Variables | Classification | Non-BLS OR of Diabetes (CI) | BLS OR of Diabetes (CI) |
---|---|---|---|
Sedentary time per day | 5 h or less | 1 | 1.160 (0.973–1.427) |
6–8 h | 1.133 (0.998–1.287) | 1.407 (1.072–1.846) | |
9–11 h | 1.308 (1.149–1.490) | 1.336 (1.070–1.803) | |
12 h or more | 1.438 (1.257–1.644) | 2.045 (1.614–2.591) | |
Number of walking days per week | 5 days or more | 1 | 1.101 (0.958–1.532) |
2–4 days | 1.100 (0.985–1.228) | 1.374 (1.060–1.781) | |
1 day or less | 1.138 (1.023–1.267) | 1.469 (1.190–1.813) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, S.; Park, H. Physical Activity and Eating Habits Are Related to Chronic Disease in the Basic Livelihood Security Program. Nutrients 2025, 17, 462. https://doi.org/10.3390/nu17030462
Bae S, Park H. Physical Activity and Eating Habits Are Related to Chronic Disease in the Basic Livelihood Security Program. Nutrients. 2025; 17(3):462. https://doi.org/10.3390/nu17030462
Chicago/Turabian StyleBae, Seongryu, and Hyuntae Park. 2025. "Physical Activity and Eating Habits Are Related to Chronic Disease in the Basic Livelihood Security Program" Nutrients 17, no. 3: 462. https://doi.org/10.3390/nu17030462
APA StyleBae, S., & Park, H. (2025). Physical Activity and Eating Habits Are Related to Chronic Disease in the Basic Livelihood Security Program. Nutrients, 17(3), 462. https://doi.org/10.3390/nu17030462