Diffusion and Spectroscopy of H2 in Myoglobin
Abstract
:1. Introduction
2. Material and Methods
2.1. Molecular Dynamics Simulations and Analysis
2.2. The Energy Function
2.3. Electronic Structure Calculations
2.4. MDCM Model for H2
3. Results
3.1. H2 Interaction with Heme
3.2. Structural Dynamics and H2 Diffusion
3.3. H2 Vibrational Spectra
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Austin, R.H.; Beeson, K.; Eisenstein, L.; Frauenfelder, H.; Gunsalus, I. Dynamics of ligand binding to myoglobin. Biochemistry 1975, 14, 5355–5373. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, P.; Hochstrasser, R.; Steele, A. Ultrafast relaxation in picosecond photolysis of nitrosylhemoglobin. J. Mol. Biol. 1983, 163, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Migus, A.; Poyart, C.; Lecarpentier, Y.; Astier, R.; Antonetti, A. Femtosecond photolysis of CO-ligated protoheme and hemoproteins: Appearance of deoxy species with a 350-fsec time constant. Proc. Natl. Acad. Sci. USA 1983, 80, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, P.J.; Ansari, A.; Berendzen, J.; Braunstein, D.; Chu, K.; Cowen, B.R.; Ehrenstein, D.; Frauenfelder, H.; Johnson, J.B. Ligand binding to heme proteins: Connection between dynamics and function. Biochemistry 1991, 30, 3988–4001. [Google Scholar] [CrossRef] [PubMed]
- Schotte, F.; Lim, M.; Jackson, T.A.; Smirnov, A.V.; Soman, J.; Olson, J.S.; Phillips, G.N., Jr.; Wulff, M.; Anfinrud, P.A. Watching a protein as it functions with 150-ps time-resolved x-ray crystallography. Science 2003, 300, 1944–1947. [Google Scholar] [CrossRef]
- Barends, T.R.; Foucar, L.; Ardevol, A.; Nass, K.; Aquila, A.; Botha, S.; Doak, R.B.; Falahati, K.; Hartmann, E.; Hilpert, M.; et al. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 2015, 350, 445–450. [Google Scholar] [CrossRef]
- Barends, T.R.; Gorel, A.; Bhattacharyya, S.; Schirò, G.; Bacellar, C.; Cirelli, C.; Colletier, J.P.; Foucar, L.; Grünbein, M.L.; Hartmann, E.; et al. Influence of pump laser fluence on ultrafast myoglobin structural dynamics. Nature 2024, 626, 905–911. [Google Scholar] [CrossRef]
- Nutt, D.R.; Meuwly, M. CO migration in native and mutant myoglobin: Atomistic simulations for the understanding of protein function. Proc. Natl. Acad. Sci. USA 2004, 101, 5998–6002. [Google Scholar] [CrossRef]
- Meuwly, M.; Becker, O.M.; Stote, R.; Karplus, M. NO rebinding to myoglobin: A reactive molecular dynamics study. Biophys. Chem. 2002, 98, 183–207. [Google Scholar] [CrossRef]
- Soloviov, M.; Meuwly, M. Reproducing kernel potential energy surfaces in biomolecular simulations: Nitric oxide binding to myoglobin. J. Chem. Phys. 2015, 143, 105103. [Google Scholar] [CrossRef]
- Soloviov, M.; Das, A.K.; Meuwly, M. Structural Interpretation of Metastable States in Myoglobin–NO. Angew. Chem. Int. Ed. 2016, 55, 10126–10130. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Arkhipov, A.; Braun, R.; Schulten, K. Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. Biophys. J. 2006, 91, 1844–1857. [Google Scholar] [CrossRef]
- Tilton, R.F., Jr.; Kuntz, I.D., Jr.; Petsko, G.A. Cavities in proteins: Structure of a metmyoglobin xenon complex solved to 1.9. ANG. Biochemistry 1984, 23, 2849–2857. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.S.; Soman, J.; Phillips, G., Jr. Ligand pathways in myoglobin: A review of Trp cavity mutations. IUBMB Life 2007, 59, 552–562. [Google Scholar] [CrossRef]
- Turan, H.T.; Boittier, E.; Meuwly, M. Interaction at a distance: Xenon migration in Mb. J. Chem. Phys. 2023, 158, 125103. [Google Scholar] [CrossRef]
- Milani, M.; Pesce, A.; Ouellet, Y.; Dewilde, S.; Friedman, J.; Ascenzi, P.; Guertin, M.; Bolognesi, M. Heme-ligand tunneling in group I truncated hemoglobins. J. Biol. Chem. 2004, 279, 21520–21525. [Google Scholar] [CrossRef] [PubMed]
- Cazade, P.A.; Meuwly, M. Oxygen Migration Pathways in NO-bound Truncated Hemoglobin. Chem. Phys. Chem. 2012, 13, 4276–4286. [Google Scholar] [CrossRef] [PubMed]
- Brunori, M.; Vallone, B. Neuroglobin, seven years after. Cell. Mol. Life Sci. 2007, 64, 1259–1268. [Google Scholar] [CrossRef]
- Lutz, S.; Nienhaus, K.; Nienhaus, G.U.; Meuwly, M. Ligand migration between internal docking sites in photodissociated carbonmonoxy neuroglobin. J. Phys. Chem. B 2009, 113, 15334–15343. [Google Scholar] [CrossRef]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.i.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694. [Google Scholar] [CrossRef]
- Dole, M.; Wilson, F.R.; Fife, W.P. Hyperbaric hydrogen therapy: A possible treatment for cancer. Science 1975, 190, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zou, P.; Feng, S.; Zhu, L.; Li, F.; Liu, T.C.Y.; Duan, R.; Yang, L. Molecular hydrogen: An emerging therapeutic medical gas for brain disorders. Mol. Neur. 2023, 60, 1749–1765. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Zhang, J.; Zhang, Y. Role of Molecular Hydrogen in Ageing and Ageing-Related Diseases. Oxid. Med. Cell Longev. 2022, 2022, 2249749. [Google Scholar] [CrossRef] [PubMed]
- Szabó, C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug. Disc. 2007, 6, 917–935. [Google Scholar] [CrossRef]
- Kajimura, M.; Fukuda, R.; Bateman, R.M.; Yamamoto, T.; Suematsu, M. Interactions of multiple gas-transducing systems: Hallmarks and uncertainties of CO, NO, and H2S gas biology. Antiox. Red. Sig. 2010, 13, 157–192. [Google Scholar] [CrossRef]
- Nakao, A.; Kaczorowski, D.J.; Wang, Y.; Cardinal, J.S.; Buchholz, B.M.; Sugimoto, R.; Tobita, K.; Lee, S.; Toyoda, Y.; Billiar, T.R.; et al. Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both. J. Heart Lung Transp. 2010, 29, 544–553. [Google Scholar] [CrossRef]
- Li, Y.; Xie, K.; Chen, H.; Wang, G.; Yu, Y. Hydrogen gas inhibits high-mobility group box 1 release in septic mice by upregulation of heme oxygenase 1. J. Surg. Res. 2015, 196, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Orcutt, R.H. Influence of Molecular Quadrupole Moments on the Second Virial Coefficient. J. Chem. Phys. 1963, 39, 605–608. [Google Scholar] [CrossRef]
- Maroulis, G. Accurate higher electric multipole moments for carbon monoxide. Chem. Phys. Lett. 2001, 334, 214–219. [Google Scholar] [CrossRef]
- Lim, M.; Jackson, T.A.; Anfinrud, P.A. Mid-infrared vibrational spectrum of CO after photodissociation from heme: Evidence of a docking site in the heme pocket of hemoglobin and myoglobin. J. Chem. Phys. 1995, 102, 4355. [Google Scholar] [CrossRef]
- Nutt, D.R.; Meuwly, M. Theoretical investigation of infrared spectra and pocket dynamics of photodissociated carbonmonoxy myoglobin. Biophys. J. 2003, 85, 3612–3623. [Google Scholar] [CrossRef] [PubMed]
- Plattner, N.; Meuwly, M. The Role of Higher CO-Multipole Moments in Understanding the Dynamics of Photodissociated Carbonmonoxide in Myoglobin. Biophys. J. 2008, 94, 2505–2515. [Google Scholar] [CrossRef] [PubMed]
- Nienhaus, K.; Lutz, S.; Meuwly, M.; Nienhaus, G.U. Structural Identification of Spectroscopic Substates in Neuroglobin. Chem. Phys. Chem. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Koner, D.; Salehi, S.M.; Mondal, P.; Meuwly, M. Non-conventional force fields for applications in spectroscopy and chemical reaction dynamics. J. Chem. Phys. 2020, 153, 010901. [Google Scholar] [CrossRef]
- Ditler, E.; Luber, S. Vibrational spectroscopy by means of first-principles molecular dynamics simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1605. [Google Scholar] [CrossRef]
- Brooks, B.R.; Brooks, C.L., III; MacKerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The Biomolecular Simulation Program. J. Comp. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef]
- Hwang, W.; Austin, S.L.; Blondel, A.; Boittier, E.D.; Boresch, S.; Buck, M.; Karplus, M. CHARMM at 45: Enhancements in accessibility, functionality, and speed. J. Phys. Chem. B 2024. in print. [Google Scholar] [CrossRef]
- Kuriyan, J.; Wilz, S.; Karplus, M.; Petsko, G.A. X-ray structure and refinement of carbon-monoxy (Fe II)-myoglobin at 1.5 Å resolution. J. Mol. Biol. 1986, 192, 133–154. [Google Scholar] [CrossRef]
- Plattner, N.; Meuwly, M. Quantifying the importance of protein conformation on ligand migration in myoglobin. Biophys. J. 2012, 102, 333–341. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Gunsteren, W.V.; Berendsen, H. Algorithms for Macromolecular Dynamics and Constraint Dynamics. Mol. Phys. 1997, 34, 1311–1327. [Google Scholar] [CrossRef]
- Steinbach, P.J.; Brooks, B.R. New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation. J. Comput. Chem. 1994, 15, 667–683. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, J.; Meuwly, M. Molecular dynamics simulations of CN− dynamics and spectroscopy in myoglobin. Comput. Phys. Commun. 2007, 8, 1077–1084. [Google Scholar] [CrossRef]
- Salehi, S.M.; Koner, D.; Meuwly, M. Dynamics and infrared spectrocopy of monomeric and dimeric wild type and mutant insulin. J. Phys. Chem. B 2020, 124, 11882–11894. [Google Scholar] [CrossRef]
- Salehi, S.M.; Meuwly, M. Site-selective dynamics of azidolysozyme. J. Chem. Phys. 2021, 154, 165101. [Google Scholar] [CrossRef]
- Salehi, S.M.; Meuwly, M. Site-selective dynamics of ligand-free and ligand-bound azidolysozyme. J. Chem. Phys. 2022, 156, 105105. [Google Scholar] [CrossRef]
- Ramírez, R.; López-Ciudad, T.; Kumar P, P.; Marx, D. Quantum corrections to classical time-correlation functions: Hydrogen bonding and anharmonic floppy modes. J. Chem. Phys. 2004, 121, 3973–3983. [Google Scholar] [CrossRef]
- Lammers, S.; Meuwly, M. Investigating the relationship between infrared spectra of shared protons in different chemical environments: A comparison of protonated diglyme and protonated water dimer. J. Phys. Chem. A 2007, 111, 1638–1647. [Google Scholar] [CrossRef]
- Gaigeot, M.P.; Martinez, M.; Vuilleumier, R. Infrared spectroscopy in the gas and liquid phase from first principle molecular dynamics simulations: Application to small peptides. Mol. Phys. 2007, 105, 2857–2878. [Google Scholar] [CrossRef]
- Upadhyay, M.; Meuwly, M. CO2 and NO2 formation on amorphous solid water. Astron. Astroph. 2024, 689, A319. [Google Scholar] [CrossRef]
- Guvench, O.; Mallajosyula, S.S.; Raman, E.P.; Hatcher, E.; Vanommeslaeghe, K.; Foster, T.J.; Jamison, F.W., II; MacKerell, A.D., Jr. CHARMM Additive All-Atom Force Field for Carbohydrate Derivatives and Its Utility in Polysaccharide and Carbohydrate-Protein Modeling. J. Chem. Theo. Comp. 2011, 7, 3162–3180. [Google Scholar] [CrossRef] [PubMed]
- Savelyev, A.; MacKerell, A.D.J. Competition among Li+, Na+, K+, and Rb+ Monovalent Ions for DNA in Molecular Dynamics Simulations Using the Additive CHARMM36 and Drude Polarizable Force Fields. J. Phys. Chem. B 2015, 119, 4428–4440. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision C.09; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Wang, S.; Hou, K.; Heinz, H. Accurate and Compatible Force Fields for Molecular Oxygen, Nitrogen, and Hydrogen to Simulate Gases, Electrolytes, and Heterogeneous Interfaces. J. Chem. Theo. Comp. 2021, 17, 5198–5213. [Google Scholar] [CrossRef] [PubMed]
- Stoicheff, B.P. High Resolution Raman Spectroscopy of gases: IX. Spectra of H2, HD, and D2. Can. J. Phys. 1957, 35, 730–741. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122. [Google Scholar] [CrossRef]
- Unke, O.T.; Devereux, M.; Meuwly, M. Minimal distributed charges: Multipolar quality at the cost of point charge electrostatics. J. Chem. Phys. 2017, 147, 161712. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Lumry, R.; Keyes, M.H.; Falley, M. Heme proteins. II. Preparation and thermodynamic properties of sperm whale myoglobin. J. Am. Chem. Soc. 1971, 93, 2035–2040. [Google Scholar] [CrossRef] [PubMed]
- Nutt, D.R.; Karplus, M.; Meuwly, M. Potential energy surface and molecular dynamics of MbNO: Existence of an unsuspected FeON minimum. J. Phys. Chem. B 2005, 109, 21118–21125. [Google Scholar] [CrossRef] [PubMed]
- Kubas, G.J. Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem. Rev. 2007, 107, 4152–4205. [Google Scholar] [CrossRef] [PubMed]
- Bossa, C.; Amadei, A.; Daidone, I.; Anselmi, M.; Vallone, B.; Brunori, M.; Di Nola, A. Molecular Dynamics Simulation of Sperm Whale Myoglobin: Effects of Mutations and Trapped CO on the Structure and Dynamics of Cavities. Biophys. J. 2005, 89, 465–474. [Google Scholar] [CrossRef]
- Banushkina, P.; Meuwly, M. Diffusive dynamics on multidimensional rough free energy surfaces. J. Chem. Phys. 2007, 127, 13501. [Google Scholar] [CrossRef]
- Banushkina, P.; Meuwly, M. Free-energy barriers in MbCO rebinding. J. Phys. Chem. B 2005, 109, 16911–16917. [Google Scholar] [CrossRef]
- Lim, M.; Jackson, T.A.; Anfinrud, P.A. Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin. Nat. Struct. Biol. 1997, 4, 209–214. [Google Scholar] [CrossRef]
- Merchant, K.A.; Noid, W.G.; Thompson, D.E.; Akiyama, R.; Loring, R.F.; Fayer, M.D. Structural assignments and dynamics of the A substates of MbCO: Spectrally resolved vibrational echo experiments and molecular dynamics simulations. J. Phys. Chem. B 2003, 107, 4–7. [Google Scholar] [CrossRef]
- Meuwly, M. On the Influence of the Local Environment on the CO Stretching Frequencies in Native Myoglobin: Assignment of the B-States in MbCO. Chem. Phys. Chem. 2006, 7, 2061–2063. [Google Scholar] [CrossRef]
- Graham, C.; Imrie, D.A.; Raab, R.E. Measurement of the electric quadrupole moments of CO2, CO, N2, Cl2 and BF3. Mol. Phys. 1998, 93, 49–56. [Google Scholar] [CrossRef]
- Mao, W.L.; Mao, H.K.; Goncharov, A.F.; Struzhkin, V.V.; Guo, Q.; Hu, J.; Shu, J.; Hemley, R.J.; Somayazulu, M.; Zhao, Y. Hydrogen clusters in clathrate hydrate. Science 2002, 297, 2247–2249. [Google Scholar] [CrossRef] [PubMed]
- Plattner, N.; Meuwly, M. The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates. J. Chem. Phys. 2014, 140, 024311. [Google Scholar] [CrossRef] [PubMed]
- Teal, G.K.; MacWood, G.E. The Raman spectra of the isotopic molecules H2, HD, and D2. J. Chem. Phys. 1935, 3, 760–764. [Google Scholar] [CrossRef]
- Hu, S.; Smith, K.M.; Spiro, T.G. Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin. J. Am. Chem. Soc. 1996, 118, 12638–12646. [Google Scholar] [CrossRef]
- Aydin, S.; Salehi, S.M.; Töpfer, K.; Meuwly, M. SCN as a local probe of protein structural dynamics. J. Chem. Phys. 2024, 161, 055101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Käser, J.; Töpfer, K.; Meuwly, M. Diffusion and Spectroscopy of H2 in Myoglobin. Oxygen 2024, 4, 389-401. https://doi.org/10.3390/oxygen4040024
Käser J, Töpfer K, Meuwly M. Diffusion and Spectroscopy of H2 in Myoglobin. Oxygen. 2024; 4(4):389-401. https://doi.org/10.3390/oxygen4040024
Chicago/Turabian StyleKäser, Jiri, Kai Töpfer, and Markus Meuwly. 2024. "Diffusion and Spectroscopy of H2 in Myoglobin" Oxygen 4, no. 4: 389-401. https://doi.org/10.3390/oxygen4040024
APA StyleKäser, J., Töpfer, K., & Meuwly, M. (2024). Diffusion and Spectroscopy of H2 in Myoglobin. Oxygen, 4(4), 389-401. https://doi.org/10.3390/oxygen4040024