Susceptibility to Postbiotic Substances-Enterocins of the Strains Enterococcus thailandicus from Beavers (Castor fiber)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Treatment
2.2. Species Taxonomic Identification Using Sequence Analysis
2.3. Strains’ Growth on Different Agar Media
2.4. Biofilm-Forming Ability of E. thailandicus Strains
2.5. Detection of Virulence Factor Genes—Gelatinase (gelE), Esp, and Agg
2.6. Susceptibility of E. thailandicus Strains to Enterocins (Postbiotic Substances)
3. Results
3.1. Sequence Analysis Taxonomic Allotment
3.2. Detection of Virulence Factor Genes Among E. thailandicus Strains and Their Grown on Different Media
3.3. E. thailandicus Strains’ Susceptibility to Enterocins (Postbiotic Substances)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maas, M.; Glorie, J.; Dam-Deisz, C.; de Vries, A.; Fransen, F.F.J.; Jaarsma, R.I.; Hengeveld, P.D.; Dierikx, C.M.; van der Giessen, J.W.B.; Opsteegh, M. Zoonotic pathogens in Eurasian beavers (Castor fiber) in the Netherlands. J. Wildl. Dis. 2022, 58, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Sting, R.; Polzelbauer, C.; Eisenberg, T.; Bonke, R.; Blazey, B.; Peters, M.; Risse, K.; Sing, A.; Berger, A.; Dangle, A.; et al. Corynebacterium ulcerans infections in Eurasian beavers (Castor fiber). Pathogens 2023, 12, 979. [Google Scholar] [CrossRef]
- Janiszewski, P.; Hanzal, V. Restoration of European beaver Castor fiber in Poland-a proper or wrong lesson of active protection for other European countries? J. Wildl. Biodiver. 2021, 5, 40–52. [Google Scholar]
- Gogola, W.; Gizejewski, K.Z.; Demaszkiewicz, A.W.; Lachowicz, J.; Miltko, R.; Kowalik, B.; Belzecki, G. Preliminary studies on the activity of microorganisms inhabiting the lower gut of the beaver (Castor fiber). In Proceedings of the 7th International Symposium on Anaerobic Microbiology, ISAM, Smolenice Castle, Slovakia, 15–18 June 2011; p. 81. [Google Scholar]
- Lauková, A.; Kandričáková, A.; Imrichová, J.; Strompfová, V.; Miltko, R.; Kowalik, B.; Belzecki, G. Properties of Enterococcus thailandicus isolates from beavers. Afr. J. Microbiol. Res. 2013, 7, 3569–3574. [Google Scholar]
- Lauková, A.; Strompfová, V.; Kandričáková, A.; Ščerbová, J.; Semedo-Lemsaddek, T.; Miltko, R.; Belzecki, G. Virulence factors genes in enterococci isolated from beavers (Castor fiber). Folia Microbiol. 2015, 60, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Tanasupawat, S.; Sukontasing, S.; Lee, J.-S. Enterococcus thailandicus sp. nov., isolated from fermented sausage (mum) in Thailand. Int. J. Syst. Evol. Microbiol. 2008, 58, 1630–1634. [Google Scholar] [CrossRef]
- Wu, X.; Wu, B.; Li, Y.; Jin, X.; Wang, X. Identification and safety assessment of Enterococcus thailandicus TC1 isolated from healthy pigs. PLoS ONE 2021, 16, e0254081. [Google Scholar] [CrossRef]
- Wigmore, S.H.; Greenhill, A.R.; Bean, D.C. Isolation and characterization of enterococci from poultry reveals high incidence of Enterococcus thailandicus in Victoria, Australia. J. Appl. Microbiol. 2024, 135, lxae194. [Google Scholar] [CrossRef]
- Ybazeta, G.; Douglas, L.; Graham, J.; Fraleigh, N.L.; Murad, Y.; Perez, J.; Diaz-Mitoma, F.; Tilbe, K.; Nokhbeh, R. Complete genome sequence of Enterococcus thailandicus strain a523 isolated from urban raw sewage. Genome Announc. 2017, 5, e01298-17. [Google Scholar] [CrossRef]
- Mbouche, P.; Blairon, L.; Cupaiolo, R.; Zaouak, J.; Hainaux, B.; Beukinga, I.; Tré-Hardy, M. Enterococcus thailandicus, an anusual pathogen in humans encountered in an intra-abdominal infections. New Micro. New Infect. 2023, 53, 101137. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastrointest. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Mosca, A.; Abreu YAbreu, A.T.; Gwee, K.A.; Ianiro, G.; Tack, J.; Nguyen, T.V.H.; Hill, C. The clinical evidence for postbiotics as microbial therapeutics. Gut Microbes 2022, 14, e2117508. [Google Scholar] [CrossRef] [PubMed]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Kandričáková, A.; Ščerbová, J.; Strompfová, V.; Gancarčíková, S.; Plachá, I.; Žitňan, R. Effect of enterocin M and durancin ED26E/7 supplementation on blood parameters, immune response and jejunal morphometry in rabbits. J. Anim. Physiol. Anim. Nutr. 2022, 106, 378–386. [Google Scholar] [CrossRef]
- Vargová, M.; Revajová, V.; Lauková, A.; Hurníková, Z.; Dvorožňáková, E. Modulatory effect of beneficial enterococci and their enterocins on the blood phagocytes in murine experimental trichinellosis. Life 2023, 13, 1930. [Google Scholar] [CrossRef]
- Liang, B.; Xing, D. The current and future perspectives of postbiotics. Prob. Antimicrob. Prot. 2023, 15, 1626–1643. [Google Scholar] [CrossRef]
- Al-Madboly, L.A.; El-Deeb, N.M.; Kabbash, A.; Nael, M.A.; Kenawy, A.M.; Ragab, A.E. Purification, characterization, identification, and anticancer activity of a circular bacteriocin from Enterococcus thailandicus. Front. Bioeng. Biotechnol. 2020, 8, 450. [Google Scholar] [CrossRef]
- Focková, V.; Styková, E.; Pogány Simonová, M.; Vargová, M.; Dvorožňáková, E.; Lauková, A. Safety assessment of fecal, bacteriocin-producing strains Enterococcus mundtii from horses. Austin J. Vet. Sci. Anim. Husb. 2022, 9, 1097. [Google Scholar]
- Chaieb, K.; Chehab, O.; Zmantar, T.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. In vitro effect of pH and ethanol on biofilm formation by clinically-positive Staphylococcus epidermidis strains. Ann. Microbiol. 2007, 57, 431–437. [Google Scholar] [CrossRef]
- Focková, V.; Styková, E.; Pogány Simonová, M.; Maďar, M.; Kačírová, J.; Lauková, A. Horses as a source of bioactive fecal strains Enterococcus mundtii. Vet. Res. Com. 2022, 46, 739–747. [Google Scholar] [CrossRef]
- Kubašová, I.; Strompfová, V.; Lauková, A. Safety assessment of commensal enterococci from dogs. Folia Microbiol. 2017, 62, 491–498. [Google Scholar] [CrossRef]
- Baelae, M.; Chiers, K.; Devriese, L.A.; Smith, H.E.; Wisselink, H.J.; Vancechoutte, M.; Haesebrouck, F. The Gram-positive tonsillar and nasal flora of piglets before and after weaning. J. Appl. Microbiol. 2001, 91, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Mareková, M.; Lauková, A.; De Vuyst, L.; Skaugen, M.; Nes, I.F. Partial characterization of bacteriocins produced by environmental strain Enterococcus faecium EK13. J. Appl. Microbiol. 2003, 94, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Mareková, M.; Lauková, A.; Skaugen, M.; Nes, I. Isolation and characterization of a new bacteriocin termed enterocin M, produced by the environmental isolate Enterococcus faecium AL41. J.Ind. Microbiol. Biotechnol. 2007, 34, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Simonová, M.; Strompfová, V.; Štyriak, I.; Ouwehand, A.C.; Várady, M. Potential of enterococci isolated from horses. Anaerobe 2008, 14, 234–236. [Google Scholar] [CrossRef]
- Lauková, A.; Mareková, M.; Javorský, P. Detection and antimicrobial spectrum of a bacteriocin-like substance produced by Enterococcus faecium CCM 4231. Lett. Appl. Microbiol. 1993, 16, 257–260. [Google Scholar] [CrossRef]
- Strompfová, V.; Lauková, A. In vitro study on bacteriocin production of enterococci associated with chickens. Anaerobe 2007, 13, 228–237. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Strompfová, V.; Faix, Š.; Vasilková, Z.; Ondruška, Ľ.; Jurčík, R.; Rafay, J. Enterococcus faecium CCM7420, a bacteriocin PPB CCM7420 and their effect in the digestive tract of rabbits. Czech J. Anim. Sci. 2009, 54, 376–386. [Google Scholar] [CrossRef]
- Lauková, A.; Strompfová, V.; Szabóová, R.; Kmeť, V.; Tomáška, M. Bioactive strains of Enterococcus durans isolated from ewes lump cheese. Slovak Vet. J. 2012, 37, 277–278. (In Slovak) [Google Scholar]
- Nes, I.F.; Diep, D.B.; Ike, Y. Enterococcal bacteriocins and antimicrobial proteins that contribute to niche control. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- De Vuyst, L.; Callewaert, R.; Pot, B. Characterization of antagonistic activity of Lactobacillus amylovorus DCE471 and large-scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 1, 9–20. [Google Scholar] [CrossRef]
- Sanschagrin, S.; Yergeau, E. Next-generation sequencing of 16S ribosomal RNA gene amplicons. J. Visual. Exp. 2014, 51709. [Google Scholar] [CrossRef]
- Cibulková, V. Kmene Enterococcus thailandicus živočíšneho pôvodu, ich antibakteriálny a aplikačný potenciál (The strains E. thailandicus, of animal origin, their antibacterial and application potential). Master’s Thesis, University of Pavel Jozef Šafárik in Košice, Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences in Košice, Košice, Slovakia, 2021; pp. 1–60. [Google Scholar]
- Lauková, A.; Várady, M. Gram-negative microbiota from horses and their sensitivity to antimicrobials, phyto-additives and enterocins. Folia Vet. 2011, 55, 137–143. [Google Scholar]
- Pogány Simonová, M.; Maďar, M.; Lauková, A. Effect of enterocins against methicillin-resistant animal-derived staphylococci. Vet. Res. Com. 2021, 45, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Hammami, R.; Cotter, P.D.; Rebuffat, S.; Said, L.B.; Gaudreau, H.; Bédard, F.; Biron, E.; Drider, D.; Fliss, I. Bacteriocins as a new generation of antimicrobials:toxicity aspects and regulations. FEMS Microbiol. Rev. 2021, 45, fuaa039. [Google Scholar] [CrossRef]
- Schofs, L.; Sparo, M.D.; Sánchez Bruni, S.F. Gram-positive Bacteriocins:usage as antimicrobial agents in veterinary medicine. Vet. Res. Com. 2020, 44, 89–100. [Google Scholar] [CrossRef]
- Santos, V.L.; Nardi Drummod, R.M.; Dias-Souza, M.M. Bacteriocins and antimicrobial and antibiofilm agents. In Current Development in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 16; pp. 403–433. [Google Scholar]
E. thailandicus | MALDI-TOF MS Score | % Abundance (BLASTn Analysis) |
---|---|---|
ET10/1 | 2.337 | 99.60% (NR_114015.1) |
ET10/2 | 1.862 | 99.61% (NR_114015.1) |
ET12/1 | 2.137 | 99.82% (NR_114015.1) |
ET12/2 | 2.143 | 99.72% (NR_114015.1) |
ETr10/1 | 1.981 | 99.60% (NR_114015.1) |
ETr10/2 | 1.869 | 100.0% (NR_114015.1) |
E. thailandicus | gelE Gene | Biofilm (±SD) |
---|---|---|
ET10/1 | - | 0.131 ± 0.36 |
ET10/2 | - | 0.137 ± 0.37 |
ET12/1 | + | 0.162 ± 0.40 |
ET12/2 | + | 0.126 ± 0.36 |
ETr10/1 | - | 0.415 ± 0.65 |
ETr10/2 | - | 0.257 ± 0.50 |
E. thailandicus | Ent A/P | Ent M | Ent 412 | Ent 4231 | Ent 55 | Ent 2019 | DurED26E/7 |
---|---|---|---|---|---|---|---|
ET10/1 | 25,600 | 25,600 | 25,600 | 12,800 | 25,600 | 25,600 | 6400 |
ET10/2 | 25,600 | 25,600 | 25,600 | 12,800 | 25,600 | 25,600 | 6400 |
ET12/1 | 25,600 | 25,600 | 25,600 | 12,800 | 25,600 | 25,600 | 6400 |
ET12/2 | 25,600 | 25,600 | 25,600 | 12,800 | 25,600 | 25,600 | 6400 |
ETr10/1 | 25,600 | 25,600 | 25,600 | 12,800 | 25,600 | 25,600 | 6400 |
ETr10/2 | 25,600 | 25,600 | 25,600 | 12,800 | 25,600 | 25,600 | 6400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauková, A.; Focková, V.; Maďar, M.; Miltko, R.; Pogány Simonová, M. Susceptibility to Postbiotic Substances-Enterocins of the Strains Enterococcus thailandicus from Beavers (Castor fiber). Pathogens 2025, 14, 269. https://doi.org/10.3390/pathogens14030269
Lauková A, Focková V, Maďar M, Miltko R, Pogány Simonová M. Susceptibility to Postbiotic Substances-Enterocins of the Strains Enterococcus thailandicus from Beavers (Castor fiber). Pathogens. 2025; 14(3):269. https://doi.org/10.3390/pathogens14030269
Chicago/Turabian StyleLauková, Andrea, Valentína Focková, Marián Maďar, Renata Miltko, and Monika Pogány Simonová. 2025. "Susceptibility to Postbiotic Substances-Enterocins of the Strains Enterococcus thailandicus from Beavers (Castor fiber)" Pathogens 14, no. 3: 269. https://doi.org/10.3390/pathogens14030269
APA StyleLauková, A., Focková, V., Maďar, M., Miltko, R., & Pogány Simonová, M. (2025). Susceptibility to Postbiotic Substances-Enterocins of the Strains Enterococcus thailandicus from Beavers (Castor fiber). Pathogens, 14(3), 269. https://doi.org/10.3390/pathogens14030269