Non-Viral Delivery Systems to Transport Nucleic Acids for Inherited Retinal Disorders
Abstract
:1. Introduction
2. Eye Anatomy and Physiology
3. Challenges in Ocular Gene Delivery
3.1. Ocular Surface Drug Depletion
3.2. Lacrimal Fluid Barriers
3.3. Blood–Ocular Barriers
4. Common Inherited Retinal Disorders
4.1. Leber Congenital Amaurosis
4.2. Retinitis Pigmentosa
4.3. Usher Syndrome
4.4. Macular Dystrophies
4.5. Choroideremia
5. Current Therapeutic Approaches for Inherited Retinal Disorders
5.1. Neuroprotective Agents
5.2. Cellular Therapy
5.3. Gene Therapy
6. Nucleic Acids for Inherited Retinal Diseases
6.1. DNA Therapies
6.1.1. Gene Augmentation
6.1.2. Genome Editing
6.2. RNA Therapies
6.2.1. Splicing Modulation
6.2.2. Post-Transcriptional Gene Silencing
7. Limitations of Current Therapies
8. Nanostructures Used in Nucleic Acid Delivery
8.1. Liposomes
8.2. Solid Lipid Nanoparticles (SLNs)
8.3. Micelles
8.4. Dendrimers
8.5. Polymersomes
8.6. Niosomes
8.7. Inorganic Nanocarriers
9. Limitations of Nanocarrier Systems for Ocular Gene Therapy and Their Comparative Evaluation
10. Current Progress in Clinical Trials of Gene Therapy for Retinal Disorders
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AAV | adeno-associated viruses |
AAV2-REP1 | adeno-associated viral vector 2-Rab escort protein 1 |
ABCA4 | ATP-binding cassette subfamily A member 4 |
ADRP | autosomal dominant retinitis pigmentosa |
AONs | antisense oligonucleotides |
ARRP | autosomal recessive retinitis pigmentosa |
BAB | blood–aqueous barrier |
BCVA | best-correlated visual activity |
BD | best disease BD |
BRB | blood–retina barrier |
CERKL | ceramide kinase-like |
CHM | choroideremia |
CMC | critical micellar concentration |
CNGB3 | cyclic nucleotide-gated channel subunit beta 3 |
CRB1 | crumbs family member 1 |
DDAB | dimethyl dioctadecyl ammonium bromide |
DSBs | double-stranded breaks |
EGFP | enhanced green fluorescent protein |
ERG | electroretinogram |
ETDRS | early treatment diabetic retinopathy study |
EYS | eyes shut homolog |
GUCA1B | guanylate cyclase activator 1B |
GUCY2D | guanylate cyclase 2D |
hESCs | human embryonic stem cells |
hhRz | hammerhead ribozymes |
hiPSCs | human-induced pluripotent stem cells |
IMPDH1 | inosine monophosphate dehydrogenase 1 |
IRDs | inherited retinal disorders |
KLHL7 | Kelch-like family member 7 |
LCA | Leber congenital amaurosis |
LCA1 | Leber congenital amaurosis 1 |
LLVA | low-luminescence visual activity |
LogMAR | logarithm of the minimum angle of resolution |
NR2E3 | nuclear receptor subfamily 2 group E member 3 |
PDE6A | phosphodiesterase 6A |
PDE6B | phosphodiesterase 6B |
pDNA | plasmid DNA |
PEO-PPO-PEO | poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) |
PLGA | poly(lactic-co-glycolic) acid |
PRPF8 | pre-mRNA processing factor 8 |
PRPH2 | peripherin 2 |
rAAV | recombinant adeno-associated viruses |
RHO | rhodopsin |
RP | retinitis pigmentosa |
RP1 | retinitis pigmentosa 1 |
RPE | retinal pigment epithelium |
RPE65 | retinal pigment epithelium 65 |
RPGR | retinitis pigmentosa GTPase regulator |
SAG | S-antigen visual arrestin |
SEMA4A | Semaphorin 4a |
siRNA | short interference RNA |
SLNs | solid lipid nanoparticles |
SNRNP200 | small nuclear ribonucleoprotein 200 |
STGD | Stargardt disease |
TALENs | transcription activator-like effector nucleases |
TMAG | N-(α-trimethylammonioacetyl)-distearoyl-D-glutamate chloride |
USH2A | Usher syndrome 2A |
XLRP | X-linked retinitis pigmentosa. |
ZFNs | zinc finger nucleases |
References
- Sengillo, J.D.; Justus, S.; Tsai, Y.-T.; Cabral, T.; Tsang, S.H. Gene and Cell-Based Therapies for Inherited Retinal Disorders: An Update. Am. J. Med. Genet. Part C Semin. Med. Genet. 2016, 172, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Sohocki, M.M.; Daiger, S.P.; Bowne, S.J.; Rodriquez, J.A.; Northrup, H.; Heckenlively, J.R.; Birch, D.G.; Mintz-Hittner, H.; Ruiz, R.S.; Lewis, R.A.; et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum. Mutat. 2001, 17, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Moraru, A.D.; Costin, D.; Iorga, R.E.; Munteanu, M.; Moraru, R.L.; Branisteanu, D.C. Current Trends in Gene Therapy for Retinal Diseases (Review). Exp. Ther. Med. 2022, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Nuzbrokh, Y.; Ragi, S.D.; Tsang, S.H. Gene Therapy for Inherited Retinal Diseases. Ann. Transl. Med. 2021, 9, 1278. [Google Scholar] [CrossRef]
- Bordet, T.; Behar-Cohen, F. Ocular Gene Therapies in Clinical Practice: Viral Vectors and Nonviral Alternatives. Drug Discov. Today 2019, 24, 1685–1693. [Google Scholar] [CrossRef]
- Corsi, K.; Chellat, F.; Yahia, L.; Fernandes, J.C. Mesenchymal Stem Cells, MG63 and HEK293 Transfection Using Chitosan-DNA Nanoparticles. Biomaterials 2003, 24, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Romano, G.; Micheli, P.; Pacilio, C.; Giordano, A. Latest Developments in Gene Transfer Technology: Achievements, Perspectives, and Controversies over Therapeutic Applications. Stem Cells 2000, 18, 19–39. [Google Scholar] [CrossRef]
- Glover, D.J.; Lipps, H.J.; Jans, D.A. Towards Safe, Non-Viral Therapeutic Gene Expression in Humans. Nat. Rev. Genet. 2005, 6, 299–310. [Google Scholar] [CrossRef]
- Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular Drug Delivery. AAPS J. 2010, 12, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.F.; Joo, K.; Kemp, J.A.; Fialho, S.L.; Cunha, A.d.S.; Woo, S.J.; Kwon, Y.J. Molecular Genetics and Emerging Therapies for Retinitis Pigmentosa: Basic Research and Clinical Perspectives. Prog. Retin. Eye Res. 2018, 63, 107–131. [Google Scholar] [CrossRef]
- Retina. American Academy of Ophthalmology. Available online: https://www.aao.org/eye-health/anatomy/retina-103 (accessed on 17 November 2023).
- Swaroop, A.; Kim, D.; Forrest, D. Transcriptional Regulation of Photoreceptor Development and Homeostasis in the Mammalian Retina. Nat. Rev. Neurosci. 2010, 11, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Koirala, A.; Conley, S.M.; Makkia, R.; Liu, Z.; Cooper, M.J.; Sparrow, J.R.; Naash, M.I. Persistence of Non-Viral Vector Mediated RPE65 Expression: Case for Viability as a Gene Transfer Therapy for RPE-Based Diseases. J. Control. Release 2013, 172, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Slijkerman, R.W.N.; Song, F.; Astuti, G.D.N.; Huynen, M.A.; van Wijk, E.; Stieger, K.; Collin, R.W.J. The Pros and Cons of Vertebrate Animal Models for Functional and Therapeutic Research on Inherited Retinal Dystrophies. Prog. Retin. Eye Res. 2015, 48, 137–159. [Google Scholar] [CrossRef]
- Akhter, M.H.; Ahmad, I.; Alshahrani, M.Y.; Al-Harbi, A.I.; Khalilullah, H.; Afzal, O.; Altamimi, A.S.A.; Ullah, S.N.M.N.; Ojha, A.; Karim, S. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 2022, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Urtti, A. Challenges and Obstacles of Ocular Pharmacokinetics and Drug Delivery. Adv. Drug Deliv. Rev. 2006, 58, 1131–1135. [Google Scholar] [CrossRef]
- Urtti, A.; Salminen, L. Minimizing Systemic Absorption of Topically Administered Ophthalmic Drugs. Surv. Ophthalmol. 1993, 37, 435–456. [Google Scholar] [CrossRef]
- Urtti, A.; Salminen, L.; Miinalainen, O. Systemic Absorption of Ocular Pilocarpine Is Modified by Polymer Matrices. Int. J. Pharm. 1985, 23, 147–161. [Google Scholar] [CrossRef]
- Urtti, A.; Rouhiainen, H.; Kaila, T.; Saano, V. Controlled Ocular Timolol Delivery: Systemic Absorption and Intraocular Pressure Effects in Humans. Pharm. Res. 1994, 11, 1278–1282. [Google Scholar] [CrossRef]
- Maurice, D.M.; Mishima, S. Ocular Pharmacokinetics. In Pharmacology of the Eye; Sears, M.L., Ed.; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 1984; pp. 19–116. [Google Scholar] [CrossRef]
- Hornof, M.; Toropainen, E.; Urtti, A. Cell Culture Models of the Ocular Barriers. Eur. J. Pharm. Biopharm. 2005, 60, 207–225. [Google Scholar] [CrossRef]
- Lach, J.L.; Huang, H.-S.; Schoenwald, R.D. Corneal Penetration Behavior of β-Blocking Agents II: Assessment of Barrier Contributions. J. Pharm. Sci. 1983, 72, 1272–1279. [Google Scholar] [CrossRef]
- Geroski, D.H.; Edelhauser, H.F. Transscleral Drug Delivery for Posterior Segment Disease. Adv. Drug Deliv. Rev. 2001, 52, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Nayak, K.; Choudhari, M.V.; Bagul, S.; Chavan, T.A.; Misra, M. Chapter 24—Ocular Drug Delivery Systems. In Drug Delivery Devices and Therapeutic Systems; Chappel, E., Ed.; Developments in Biomedical Engineering and Bioelectronics; Academic Press: Cambridge, MA, USA, 2021; pp. 515–566. [Google Scholar] [CrossRef]
- Kang-Mieler, J.J.; Rudeen, K.M.; Liu, W.; Mieler, W.F. Advances in Ocular Drug Delivery Systems. Eye 2020, 34, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, S.; Peynshaert, K.; Lajunen, T.; Devoldere, J.; del Amo, E.M.; Ruponen, M.; De Smedt, S.C.; Remaut, K.; Urtti, A. Ocular Barriers to Retinal Delivery of Intravitreal Liposomes: Impact of Vitreoretinal Interface. J. Control. Release 2020, 328, 952–961. [Google Scholar] [CrossRef]
- Duncan, J.L.; Pierce, E.A.; Laster, A.M.; Daiger, S.P.; Birch, D.G.; Ash, J.D.; Iannaccone, A.; Flannery, J.G.; Sahel, J.A.; Zack, D.J.; et al. Inherited Retinal Degenerations: Current Landscape and Knowledge Gaps. Transl. Vis. Sci. Technol. 2018, 7, 6. [Google Scholar] [CrossRef]
- Koenekoop, R.K. An Overview of Leber Congenital Amaurosis: A Model to Understand Human Retinal Development. Surv. Ophthalmol. 2004, 49, 379–398. [Google Scholar] [CrossRef]
- Redmond, T.M. Focus on Molecules: RPE65, the Visual Cycle Retinol Isomerase. Exp. Eye Res. 2009, 88, 846–847. [Google Scholar] [CrossRef]
- Chacon-Camacho, O.F.; Zenteno, J.C. Review and Update on the Molecular Basis of Leber Congenital Amaurosis. World J. Clin. Cases 2015, 3, 112–124. [Google Scholar] [CrossRef]
- Verbakel, S.K.; van Huet, R.A.C.; Boon, C.J.F.; den Hollander, A.I.; Collin, R.W.J.; Klaver, C.C.W.; Hoyng, C.B.; Roepman, R.; Klevering, B.J. Non-Syndromic Retinitis Pigmentosa. Prog. Retin. Eye Res. 2018, 66, 157–186. [Google Scholar] [CrossRef] [PubMed]
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis Pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef] [PubMed]
- Berger, W.; Kloeckener-Gruissem, B.; Neidhardt, J. The Molecular Basis of Human Retinal and Vitreoretinal Diseases. Prog. Retin. Eye Res. 2010, 29, 335–375. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Di Iorio, E.; Barbaro, V.; Ponzin, D.; Sorrentino, F.S.; Parmeggiani, F. Retinitis Pigmentosa: Genes and Disease Mechanisms. Curr. Genom. 2011, 12, 238–249. [Google Scholar] [CrossRef]
- Daiger, S.P.; Sullivan, L.S.; Bowne, S.J. Genes and mutations causing retinitis pigmentosa. Clin. Genet. 2013, 84, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Fahim, A.T.; Daiger, S.P.; Weleber, R.G. Nonsyndromic Retinitis Pigmentosa Overview. In GeneReviews®; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Branham, K.; Othman, M.; Brumm, M.; Karoukis, A.J.; Atmaca-Sonmez, P.; Yashar, B.M.; Schwartz, S.B.; Stover, N.B.; Trzupek, K.; Wheaton, D.; et al. Mutations in RPGR and RP2 Account for 15% of Males with Simplex Retinal Degenerative Disease. Investig. Ophthalmol. Vis. Sci. 2012, 53, 8232–8237. [Google Scholar] [CrossRef]
- Fuster-García, C.; García-García, G.; Jaijo, T.; Fornés, N.; Ayuso, C.; Fernández-Burriel, M.; la Morena, A.S.-D.; Aller, E.; Millán, J.M. High-Throughput Sequencing for the Molecular Diagnosis of Usher Syndrome Reveals 42 Novel Mutations and Consolidates CEP250 as Usher-like Disease Causative. Sci. Rep. 2018, 8, 17113. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Yang, J. Usher Syndrome: Hearing Loss, Retinal Degeneration and Associated Abnormalities. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2015, 1852, 406–420. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.M.; Aller, E.; Jaijo, T.; Blanco-Kelly, F.; Gimenez-Pardo, A.; Ayuso, C. An Update on the Genetics of Usher Syndrome. J. Ophthalmol. 2011, 2011, 417217. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, M.; Fujinami, K.; Michaelides, M. Inherited Retinal Diseases: Therapeutics, Clinical Trials and End Points—A Review. Clin. Exp. Ophthalmol. 2021, 49, 270–288. [Google Scholar] [CrossRef] [PubMed]
- Tanna, P.; Georgiou, M.; Strauss, R.W.; Ali, N.; Kumaran, N.; Kalitzeos, A.; Fujinami, K.; Michaelides, M. Cross-Sectional and Longitudinal Assessment of the Ellipsoid Zone in Childhood-Onset Stargardt Disease. Transl. Vis. Sci. Technol. 2019, 8, 1. [Google Scholar] [CrossRef]
- Khan, K.N.; Kasilian, M.; Mahroo, O.A.R.; Tanna, P.; Kalitzeos, A.; Robson, A.G.; Tsunoda, K.; Iwata, T.; Moore, A.T.; Fujinami, K.; et al. Early Patterns of Macular Degeneration in ABCA4-Associated Retinopathy. Ophthalmology 2018, 125, 735–746. [Google Scholar] [CrossRef]
- Fujinami, K.; Sergouniotis, P.I.; Davidson, A.E.; Wright, G.; Chana, R.K.; Tsunoda, K.; Tsubota, K.; Egan, C.A.; Robson, A.G.; Moore, A.T.; et al. Clinical and Molecular Analysis of Stargardt Disease With Preserved Foveal Structure and Function. Am. J. Ophthalmol. 2013, 156, 487–501.e1. [Google Scholar] [CrossRef]
- Fujinami, K.; Zernant, J.; Chana, R.K.; Wright, G.A.; Tsunoda, K.; Ozawa, Y.; Tsubota, K.; Robson, A.G.; Holder, G.E.; Allikmets, R.; et al. Clinical and Molecular Characteristics of Childhood-Onset Stargardt Disease. Ophthalmology 2015, 122, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Tanna, P.; Georgiou, M.; Aboshiha, J.; Strauss, R.W.; Kumaran, N.; Kalitzeos, A.; Weleber, R.G.; Michaelides, M. Cross-Sectional and Longitudinal Assessment of Retinal Sensitivity in Patients With Childhood-Onset Stargardt Disease. Transl. Vis. Sci. Technol. 2018, 7, 10. [Google Scholar] [CrossRef]
- Gill, J.S.; Georgiou, M.; Kalitzeos, A.; Moore, A.T.; Michaelides, M. Progressive Cone and Cone-Rod Dystrophies: Clinical Features, Molecular Genetics and Prospects for Therapy. Br. J. Ophthalmol. 2019, 103, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.; Georgiou, M.; Khan, K.N.; Michaelides, M. Macular Dystrophies: Clinical and Imaging Features, Molecular Genetics and Therapeutic Options. Br. J. Ophthalmol. 2020, 104, 451–460. [Google Scholar] [CrossRef]
- Petrukhin, K.; Koisti, M.J.; Bakall, B.; Li, W.; Xie, G.; Marknell, T.; Sandgren, O.; Forsman, K.; Holmgren, G.; Andreasson, S.; et al. Identification of the Gene Responsible for Best Macular Dystrophy. Nat. Genet. 1998, 19, 241–247. [Google Scholar] [CrossRef]
- Pennesi, M.E.; Birch, D.G.; Duncan, J.L.; Bennett, J.; Girach, A. Choroideremia: Retinal degeneration with an unmet need. Retina 2019, 39, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- van den Hurk, J.A.J.M.; van de Pol, T.J.R.; Molloy, C.M.; Brunsmann, F.; Rüther, K.; Zrenner, E.; Pinckers, A.J.L.G.; Pawlowitzki, I.H.; Bleeker-Wagemakers, E.M.; Wieringa, B.; et al. Detection and Characterization of Point Mutations in the Choroideremia Candidate Gene by PCR-SSCP Analysis and Direct DNA Sequencing. Am. J. Hum. Genet. 1992, 50, 1195–1202. [Google Scholar] [PubMed]
- MacDonald, I.M.; Russell, L.; Chan, C.-C. Choroideremia: New Findings from Ocular Pathology and Review of Recent Literature. Surv. Ophthalmol. 2009, 54, 401–407. [Google Scholar] [CrossRef]
- Zinkernagel, M.S.; MacLaren, R.E. Recent Advances and Future Prospects in Choroideremia. Clin. Ophthalmol. 2015, 9, 2195–2200. [Google Scholar] [CrossRef]
- Ou, K.; Li, Y.; Liu, L.; Li, H.; Cox, K.; Wu, J.; Liu, J.; Dick, A.D. Recent Developments of Neuroprotective Agents for Degenerative Retinal Disorders. Neural Regen. Res. 2022, 17, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Wubben, T.J.; Zacks, D.N.; Besirli, C.G. Retinal Neuroprotection: Current Strategies and Future Directions. Curr. Opin. Ophthalmol. 2019, 30, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Kutluer, M.; Huang, L.; Marigo, V. Targeting Molecular Pathways for the Treatment of Inherited Retinal Degeneration. Neural Regen. Res. 2020, 15, 1784. [Google Scholar] [CrossRef]
- Hill, D.; Compagnoni, C.; Cordeiro, M.F. Investigational Neuroprotective Compounds in Clinical Trials for Retinal Disease. Expert Opin. Investig. Drugs 2021, 30, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Mohand-Said, S.; Danan, A.; Simonutti, M.; Fontaine, V.; Clerin, E.; Picaud, S.; Léveillard, T.; Sahel, J.-A. Functional Cone Rescue by RdCVF Protein in a Dominant Model of Retinitis Pigmentosa. Mol. Ther. 2009, 17, 787–795. [Google Scholar] [CrossRef]
- Bush, R.A.; Kononen, L.; Machida, S.; Sieving, P.A. The Effect of Calcium Channel Blocker Diltiazem on Photoreceptor Degeneration in the Rhodopsin Pro23His Rat. Investig. Opthalmology Vis. Sci. 2000, 41, 2697–2701. [Google Scholar]
- Bessant, D.A.R.; Ali, R.R.; Bhattacharya, S.S. Molecular Genetics and Prospects for Therapy of the Inherited Retinal Dystrophies. Curr. Opin. Genet. Dev. 2001, 11, 307–316. [Google Scholar] [CrossRef]
- Battu, R.; Ratra, D.; Gopal, L. Newer Therapeutic Options for Inherited Retinal Diseases: Gene and Cell Replacement Therapy. Indian J. Ophthalmol. 2022, 70, 2316–2325. [Google Scholar] [CrossRef]
- Chen, X.; Xu, N.; Li, J.; Zhao, M.; Huang, L. Stem Cell Therapy for Inherited Retinal Diseases: A Systematic Review and Meta-Analysis. Stem Cell Res. Ther. 2023, 14, 286. [Google Scholar] [CrossRef]
- Gonçalves, G.A.R.; Paiva, R.d.M.A. Gene Therapy: Advances, Challenges and Perspectives. Einstein 2017, 15, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.L.; Edwards, T.L.; O’Hare, F.; Hickey, D.G.; Wang, J.-H.; Liu, Z.; Ayton, L.N. Gene Therapy for Inherited Retinal Diseases: Progress and Possibilities. Clin. Exp. Optom. 2021, 104, 444–454. [Google Scholar] [CrossRef]
- Michalakis, S.; Gerhardt, M.; Rudolph, G.; Priglinger, S.; Priglinger, C. Gene Therapy for Inherited Retinal Disorders: Update on Clinical Trials. Klin. Monatsblätter Für Augenheilkd. 2021, 238, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Lewin, A.S.; Rossmiller, B.; Mao, H. Gene Augmentation for adRP Mutations in RHO. Cold Spring Harb. Perspect. Med. 2014, 4, a017400. [Google Scholar] [CrossRef] [PubMed]
- Rowe-Rendleman, C.L.; Durazo, S.A.; Kompella, U.B.; Rittenhouse, K.D.; Di Polo, A.; Weiner, A.L.; Grossniklaus, H.E.; Naash, M.I.; Lewin, A.S.; Horsager, A.; et al. Drug and Gene Delivery to the Back of the Eye: From Bench to Bedside. Investig. Opthalmology Vis. Sci. 2014, 55, 2714–2730. [Google Scholar] [CrossRef]
- Wilson, J.H.; Wensel, T.G. The Nature of Dominant Mutations of Rhodopsin and Implications for Gene Therapy. Mol. Neurobiol. 2003, 28, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Farrar, G.J.; Millington-Ward, S.; Chadderton, N.; Humphries, P.; Kenna, P.F. Gene-Based Therapies for Dominantly Inherited Retinopathies. Gene Ther. 2012, 19, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Domínguez, I.; Garanto, A.; Collin, R.W.J. Molecular Therapies for Inherited Retinal Diseases—Current Standing, Opportunities and Challenges. Genes 2019, 10, 654. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F. ZFN, TALEN, and CRISPR/Cas-Based Methods for Genome Engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Wang, X.; Hu, X.; Liu, Z.; Liu, J.; Zhou, H.; Shen, X.; Wei, Y.; Huang, Z.; Ying, W.; et al. Homology-Mediated End Joining-Based Targeted Integration Using CRISPR/Cas9. Cell Res. 2017, 27, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, D.L.; Cashman, S.M.; Kumar-Singh, R. Engineered Zinc Finger Nuclease–Mediated Homologous Recombination of the Human Rhodopsin Gene. Investig. Opthalmology Vis. Sci. 2010, 51, 6374–6380. [Google Scholar] [CrossRef]
- Low, B.E.; Krebs, M.P.; Joung, J.K.; Tsai, S.Q.; Nishina, P.M.; Wiles, M.V. Correction of the Crb1rd8 Allele and Retinal Phenotype in C57BL/6N Mice Via TALEN-Mediated Homology-Directed Repair. Investig. Opthalmology Vis. Sci. 2014, 55, 387–395. [Google Scholar] [CrossRef]
- Arbabi, A.; Liu, A.; Ameri, H. Gene Therapy for Inherited Retinal Degeneration. J. Ocul. Pharmacol. Ther. 2019, 35, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.M.; Zack, D.J. Alternative Splicing and Retinal Degeneration. Clin. Genet. 2013, 84, 142–149. [Google Scholar] [CrossRef]
- Hammond, S.M.; Wood, M.J.A. Genetic Therapies for RNA Mis-Splicing Diseases. Trends Genet. 2011, 27, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.H.; Lim, S.; Wong, W.F. Antisense Oligonucleotides: From Design to Therapeutic Application. Clin. Exp. Pharmacol. Physiol. 2006, 33, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Vitravene Study Group. Safety of Intravitreous Fomivirsen for Treatment of Cytomegalovirus Retinitis in Patients with AIDS. Am. J. Ophthalmol. 2002, 133, 484–498. [Google Scholar] [CrossRef]
- Vitravene Study Group. Randomized Dose-Comparison Studies of Intravitreous Fomivirsen for Treatment of Cytomegalovirus Retinitis That Has Reactivated or Is Persistently Active despite Other Therapies in Patients with AIDS. Am. J. Ophthalmol. 2002, 133, 475–483. [Google Scholar] [CrossRef]
- Tanner, G.; Glaus, E.; Barthelmes, D.; Ader, M.; Fleischhauer, J.; Pagani, F.; Berger, W.; Neidhardt, J. Therapeutic Strategy to Rescue Mutation-Induced Exon Skipping in Rhodopsin by Adaptation of U1 snRNA. Hum. Mutat. 2009, 30, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Glaus, E.; Schmid, F.; Costa, R.D.; Berger, W.; Neidhardt, J. Gene Therapeutic Approach Using Mutation-Adapted U1 snRNA to Correct a RPGR Splice Defect in Patient-Derived Cells. Mol. Ther. 2011, 19, 936–941. [Google Scholar] [CrossRef]
- Ryoo, N.-K.; Lee, J.; Lee, H.; Hong, H.K.; Kim, H.; Lee, J.B.; Woo, S.J.; Park, K.H.; Kim, H. Therapeutic Effects of a Novel siRNA-Based Anti-VEGF (siVEGF) Nanoball for the Treatment of Choroidal Neovascularization. Nanoscale 2017, 9, 15461–15469. [Google Scholar] [CrossRef]
- Yau, E.H.; Butler, M.C.; Sullivan, J.M. A Cellular High-Throughput Screening Approach for Therapeutic Trans-Cleaving Ribozymes and RNAi against Arbitrary mRNA Disease Targets. Exp. Eye Res. 2016, 151, 236–255. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.A. Treating Disease at the RNA Level with Oligonucleotides. N. Engl. J. Med. 2019, 380, 57–70. [Google Scholar] [CrossRef]
- Xia, J.; Gu, L.; Pan, Q. The Landscape of Basic Gene Therapy Approaches in Inherited Retinal Dystrophies. Front. Ophthalmol. 2023, 3, 1193595. [Google Scholar] [CrossRef] [PubMed]
- Wubben, T.J.; Besirli, C.G.; Johnson, M.W.; Zacks, D.N. Retinal Neuroprotection: Overcoming the Translational Roadblocks. Am. J. Ophthalmol. 2018, 192, xv–xxii. [Google Scholar] [CrossRef]
- Hinkle, J.W.; Mahmoudzadeh, R.; Kuriyan, A.E. Cell-Based Therapies for Retinal Diseases: A Review of Clinical Trials and Direct to Consumer “Cell Therapy” Clinics. Stem Cell Res. Ther. 2021, 12, 538. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health (NIH). Gene Therapy for Eye Disease Shows Benefits and Limitations. Available online: https://www.nih.gov/news-events/nih-research-matters/gene-therapy-eye-disease-shows-benefits-limitations (accessed on 12 November 2023).
- Luo, D.; Saltzman, W.M. Synthetic DNA Delivery Systems. Nat. Biotechnol. 2000, 18, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Drag, S.; Dotiwala, F.; Upadhyay, A.K. Gene Therapy for Retinal Degenerative Diseases: Progress, Challenges, and Future Directions. Investig. Opthalmology Vis. Sci. 2023, 64, 39. [Google Scholar] [CrossRef]
- Pouton, C.W.; Seymour, L.W. Key Issues in Non-Viral Gene Delivery. Adv. Drug Deliv. Rev. 1998, 34, 3–19. [Google Scholar] [CrossRef]
- Caplen, N.J.; Alton, E.W.F.W.; Mddleton, P.G.; Dorin, J.R.; Stevenson, B.J.; Gao, X.; Durham, S.R.; Jeffery, P.K.; Hodson, M.E.; Coutelle, C.; et al. Liposome-Mediated CFTR Gene Transfer to the Nasal Epithelium of Patients with Cystic Fibrosis. Nat. Med. 1995, 1, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Feigner, P.L. Cationic Lipid/Polynucleotide Condensates for in Vitro and in Vivo Polynucleotide Delivery—The Cytofectins. J. Liposome Res. 1993, 3, 3–16. [Google Scholar] [CrossRef]
- Mao, H.-Q.; Roy, K.; Troung-Le, V.L.; Janes, K.A.; Lin, K.Y.; Wang, Y.; August, J.T.; Leong, K.W. Chitosan-DNA Nanoparticles as Gene Carriers: Synthesis, Characterization and Transfection Efficiency. J. Control. Release 2001, 70, 399–421. [Google Scholar] [CrossRef]
- Rehman, A.U.; Akram, S.; Seralin, A.; Vandamme, T.; Anton, N. Chapter 21—Lipid Nanocarriers: Formulation, Properties, and Applications. In Smart Nanocontainers; Nguyen-Tri, P., Do, T.-O., Nguyen, T.A., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 355–382. [Google Scholar] [CrossRef]
- Khiev, D.; Mohamed, Z.A.; Vichare, R.; Paulson, R.; Bhatia, S.; Mohapatra, S.; Lobo, G.P.; Valapala, M.; Kerur, N.; Passaglia, C.L.; et al. Emerging Nano-Formulations and Nanomedicines Applications for Ocular Drug Delivery. Nanomaterials 2021, 11, 173. [Google Scholar] [CrossRef]
- Rajala, A.; Wang, Y.; Zhu, Y.; Ranjo-Bishop, M.; Ma, J.-X.; Mao, C.; Rajala, R.V.S. Nanoparticle-Assisted Targeted Delivery of Eye-Specific Genes to Eyes Significantly Improves the Vision of Blind Mice In Vivo. Nano Lett. 2014, 14, 5257–5263. [Google Scholar] [CrossRef]
- Toualbi, L.; Toms, M.; Moosajee, M. The Landscape of Non-Viral Gene Augmentation Strategies for Inherited Retinal Diseases. Int. J. Mol. Sci. 2021, 22, 2318. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rajala, A.; Cao, B.; Ranjo-Bishop, M.; Agbaga, M.-P.; Mao, C.; Rajala, R.V.S. Cell-Specific Promoters Enable Lipid-Based Nanoparticles to Deliver Genes to Specific Cells of the Retina In Vivo. Theranostics 2016, 6, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Veroniaina, H.; Su, N.; Sha, K.; Jiang, F.; Wu, Z.; Qi, X. Applications and Developments of Gene Therapy Drug Delivery Systems for Genetic Diseases. Asian J. Pharm. Sci. 2021, 16, 687–703. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bolinger, J.; Yu, Y.; Glass, Z.; Shi, N.; Yang, L.; Wang, M.; Xu, Q. Intracellular Delivery and Biodistribution Study of CRISPR/Cas9 Ribonucleoprotein Loaded Bioreducible Lipidoid Nanoparticles. Biomater. Sci. 2019, 7, 596–606. [Google Scholar] [CrossRef]
- Masuda, I.; Matsuo, T.; Yasuda, T.; Matsuo, N. Gene Transfer with Liposomes to the Intraocular Tissues by Different Routes of Administration. Investig. Opthalmology Vis. Sci. 1996, 37, 1914–1920. [Google Scholar]
- Bochot, A.; Fattal, E.; Gulik, A.; Couarraze, G.; Couvreur, P. Liposomes Dispersed Within a Thermosensitive Gel: A New Dosage Form for Ocular Delivery of Oligonucleotides. Pharm. Res. 1998, 15, 1364–1369. [Google Scholar] [CrossRef] [PubMed]
- Kachi, S.; Oshima, Y.; Esumi, N.; Kachi, M.; Rogers, B.; Zack, D.J.; Campochiaro, P.A. Nonviral Ocular Gene Transfer. Gene Ther. 2005, 12, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Basha, G.; Novobrantseva, T.I.; Rosin, N.; Tam, Y.Y.C.; Hafez, I.M.; Wong, M.K.; Sugo, T.; Ruda, V.M.; Qin, J.; Klebanov, B.; et al. Influence of Cationic Lipid Composition on Gene Silencing Properties of Lipid Nanoparticle Formulations of siRNA in Antigen-Presenting Cells. Mol. Ther. 2011, 19, 2186–2200. [Google Scholar] [CrossRef] [PubMed]
- Rehman, Z.U.; Zuhorn, I.S.; Hoekstra, D. How Cationic Lipids Transfer Nucleic Acids into Cells and across Cellular Membranes: Recent Advances. J. Control. Release 2013, 166, 46–56. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ray, S.; Thakur, R.S. Solid Lipid Nanoparticles: A Modern Formulation Approach in Drug Delivery System. Indian J. Pharm. Sci. 2009, 71, 349–358. [Google Scholar] [CrossRef]
- Carrillo, C.; Sánchez-Hernández, N.; García-Montoya, E.; Pérez-Lozano, P.; Suñé-Negre, J.M.; Ticó, J.R.; Suñé, C.; Miñarro, M. DNA Delivery via Cationic Solid Lipid Nanoparticles (SLNs). Eur. J. Pharm. Sci. 2013, 49, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Bae, K.H.; Yang, H.; Lee, S.J.; Kim, H.; Kim, Y.; Joo, K.M.; Seo, S.W.; Park, T.G.; Nam, D.-H. In Vivo Specific Delivery of C-Met siRNA to Glioblastoma Using Cationic Solid Lipid Nanoparticles. Bioconjugate Chem. 2011, 22, 2568–2572. [Google Scholar] [CrossRef] [PubMed]
- Montana, G.; Bondì, M.L.; Carrotta, R.; Picone, P.; Craparo, E.F.; San Biagio, P.L.; Giammona, G.; Di Carlo, M. Employment of Cationic Solid-Lipid Nanoparticles as RNA Carriers. Bioconjugate Chem. 2007, 18, 302–308. [Google Scholar] [CrossRef]
- Delgado, D.; del Pozo-Rodríguez, A.; Solinís, M.Á.; Avilés-Triqueros, M.; Weber, B.H.F.; Fernández, E.; Gascón, A.R. Dextran and Protamine-Based Solid Lipid Nanoparticles as Potential Vectors for the Treatment of X-Linked Juvenile Retinoschisis. Hum. Gene Ther. 2012, 23, 345–355. [Google Scholar] [CrossRef]
- del Pozo-Rodríguez, A.; Delgado, D.; Solinís, M.A.; Gascón, A.R.; Pedraz, J.L. Solid Lipid Nanoparticles for Retinal Gene Therapy: Transfection and Intracellular Trafficking in RPE Cells. Int. J. Pharm. 2008, 360, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, M.; Chen, F.; Goldberg, J.L.; Sabel, B.A. Nanomedicine and Drug Delivery to the Retina: Current Status and Implications for Gene Therapy. Naunyn. Schmiedebergs Arch. Pharmacol. 2022, 395, 1477–1507. [Google Scholar] [CrossRef] [PubMed]
- Cholkar, K.; Patel, A.; Dutt Vadlapudi, A.; Mitra, A.K. Novel Nanomicellar Formulation Approaches for Anterior and Posterior Segment Ocular Drug Delivery. Recent Pat. Nanomed. 2012, 2, 82–95. [Google Scholar] [CrossRef]
- Vadlapudi, A.D.; Mitra, A.K. Nanomicelles: An Emerging Platform for Drug Delivery to the Eye. Ther. Deliv. 2013, 4, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Liaw, J.; Chang, S.-F.; Hsiao, F.-C. In Vivo Gene Delivery into Ocular Tissues by Eye Drops of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) (PEO-PPO-PEO) Polymeric Micelles. Gene Ther. 2001, 8, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.-C.; Chang, S.-F.; Liu, C.-Y.; Kao, W.W.-Y.; Huang, C.H.; Liaw, J. Eye Drop Delivery of Nano-Polymeric Micelle Formulated Genes with Cornea-Specific Promoters. J. Gene Med. 2007, 9, 956–966. [Google Scholar] [CrossRef]
- Ideta, R.; Yanagi, Y.; Tamaki, Y.; Tasaka, F.; Harada, A.; Kataoka, K. Effective accumulation of polyion complex micelle to experimental choroidal neovascularization in rats. FEBS Lett. 2004, 557, 21–25. [Google Scholar] [CrossRef]
- Tong, Y.-C.; Chang, S.-F.; Kao, W.W.-Y.; Liu, C.-Y.; Liaw, J. Polymeric Micelle Gene Delivery of Bcl-xL via Eye Drop Reduced Corneal Apoptosis Following Epithelial Debridement. J. Control. Release 2010, 147, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Tomalia, D.A. Birth of a New Macromolecular Architecture: Dendrimers as Quantized Building Blocks for Nanoscale Synthetic Polymer Chemistry. Prog. Polym. Sci. 2005, 30, 294–324. [Google Scholar] [CrossRef]
- Tomalia, D.A. Interview: An architectural journey: From trees, dendrons/dendrimers to nanomedicine. Nanomedicine 2012, 7, 953–956. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Christensen, J.B.; Boas, U. Dendrimers, Dendrons, and Dendritic Polymers: Discovery, Applications, and the Future; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Hu, J.; Xu, T.; Cheng, Y. NMR Insights into Dendrimer-Based Host–Guest Systems. Chem. Rev. 2012, 112, 3856–3891. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Q.; Chang, H.; Cheng, Y. Surface-Engineered Dendrimers in Gene Delivery. Chem. Rev. 2015, 115, 5274–5300. [Google Scholar] [CrossRef]
- Eichman, J.D.; Bielinska, A.U.; Kukowska-Latallo, J.F.; Baker, J.R. The Use of PAMAM Dendrimers in the Efficient Transfer of Genetic Material into Cells. Pharm. Sci. Technol. Today 2000, 3, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Caminade, A.-M.; Turrin, C.-O.; Majoral, J.-P. Dendrimers and DNA: Combinations of Two Special Topologies for Nanomaterials and Biology. Chem. A Eur. J. 2008, 14, 7422–7432. [Google Scholar] [CrossRef]
- Qamhieh, K.; Nylander, T.; Black, C.F.; Attard, G.S.; Dias, R.S.; Ainalem, M.-L. Complexes Formed between DNA and Poly(Amido Amine) Dendrimers of Different Generations—Modelling DNA Wrapping and Penetration. Phys. Chem. Chem. Phys. 2014, 16, 13112–13122. [Google Scholar] [CrossRef] [PubMed]
- Pavan, G.M.; Danani, A.; Pricl, S.; Smith, D.K. Modeling the Multivalent Recognition between Dendritic Molecules and DNA: Understanding How Ligand “Sacrifice” and Screening Can Enhance Binding. J. Am. Chem. Soc. 2009, 131, 9686–9694. [Google Scholar] [CrossRef] [PubMed]
- Shcharbin, D.; Pedziwiatr, E.; Bryszewska, M. How to Study Dendriplexes I: Characterization. J. Control. Release 2009, 135, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Shcharbin, D.; Pedziwiatr, E.; Blasiak, J.; Bryszewska, M. How to Study Dendriplexes II: Transfection and Cytotoxicity. J. Control. Release 2010, 141, 110–127. [Google Scholar] [CrossRef]
- Shcharbin, D.; Janaszewska, A.; Klajnert-Maculewicz, B.; Ziemba, B.; Dzmitruk, V.; Halets, I.; Loznikova, S.; Shcharbina, N.; Milowska, K.; Ionov, M.; et al. How to Study Dendrimers and Dendriplexes III. Biodistribution, Pharmacokinetics and Toxicity in Vivo. J. Control. Release 2014, 181, 40–52. [Google Scholar] [CrossRef]
- Hudde, T.; Rayner, S.A.; Comer, R.M.; Weber, M.; Isaacs, J.D.; Waldmann, H.; Larkin, D.F.P.; George, A.J.T. Activated Polyamidoamine Dendrimers, a Non-Viral Vector for Gene Transfer to the Corneal Endothelium. Gene Ther. 1999, 6, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Shaunak, S.; Thomas, S.; Gianasi, E.; Godwin, A.; Jones, E.; Teo, I.; Mireskandari, K.; Luthert, P.; Duncan, R.; Patterson, S.; et al. Polyvalent Dendrimer Glucosamine Conjugates Prevent Scar Tissue Formation. Nat. Biotechnol. 2004, 22, 977–984. [Google Scholar] [CrossRef]
- Liao, H.-W.; Yau, K.-W. In Vivo Gene Delivery in the Retina Using Polyethylenimine. BioTechniques 2007, 42, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Massignani, M.; Lomas, H.; Battaglia, G. Polymersomes: A Synthetic Biological Approach to Encapsulation and Delivery. In Modern Techniques for Nano-and Microreactors/-Reactions; Caruso, F., Ed.; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 115–154. [Google Scholar] [CrossRef]
- Lee, J.S.; Feijen, J. Polymersomes for Drug Delivery: Design, Formation and Characterization. J. Control. Release 2012, 161, 473–483. [Google Scholar] [CrossRef]
- Lomas, H.; Canton, I.; MacNeil, S.; Du, J.; Armes, S.P.; Ryan, A.J.; Lewis, A.L.; Battaglia, G. Biomimetic pH Sensitive Polymersomes for Efficient DNA Encapsulation and Delivery. Adv. Mater. 2007, 19, 4238–4243. [Google Scholar] [CrossRef]
- Pangburn, T.O.; Petersen, M.A.; Waybrant, B.; Adil, M.M.; Kokkoli, E. Peptide- and Aptamer-Functionalized Nanovectors for Targeted Delivery of Therapeutics. J. Biomech. Eng. 2009, 131, 74005. [Google Scholar] [CrossRef]
- Christian, D.A.; Cai, S.; Bowen, D.M.; Kim, Y.; Pajerowski, J.D.; Discher, D.E. Polymersome Carriers: From Self-Assembly to siRNA and Protein Therapeutics. Eur. J. Pharm. Biopharm. 2009, 71, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Meeuwissen, S.A.; Nolte, R.J.M.; van Hest, J.C.M. Smart Nanocontainers and Nanoreactors. Nanoscale 2010, 2, 844–858. [Google Scholar] [CrossRef]
- Lomas, H.; Du, J.; Canton, I.; Madsen, J.; Warren, N.; Armes, S.P.; Lewis, A.L.; Battaglia, G. Efficient Encapsulation of Plasmid DNA in pH-Sensitive PMPC–PDPA Polymersomes: Study of the Effect of PDPA Block Length on Copolymer–DNA Binding Affinity. Macromol. Biosci. 2010, 10, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ma, S.; Li, S.; Cheng, R.; Meng, F.; Liu, H.; Zhong, Z. The Highly Efficient Delivery of Exogenous Proteins into Cells Mediated by Biodegradable Chimaeric Polymersomes. Biomaterials 2010, 31, 7575–7585. [Google Scholar] [CrossRef]
- Sousa, F.; Ferreira, D.; Reis, S.; Costa, P. Current Insights on Antifungal Therapy: Novel Nanotechnology Approaches for Drug Delivery Systems and New Drugs from Natural Sources. Pharmaceuticals 2020, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Blenner, M.; Alexander-Bryant, A.; Larsen, J. Polymersomes for Therapeutic Delivery of Protein and Nucleic Acid Macromolecules: From Design to Therapeutic Applications. Biomacromolecules 2020, 21, 1327–1350. [Google Scholar] [CrossRef] [PubMed]
- Mitra, R.N.; Han, Z.; Merwin, M.; Al Taai, M.; Conley, S.M.; Naash, M.I. Synthesis and Characterization of Glycol Chitosan DNA Nanoparticles for Retinal Gene Delivery. ChemMedChem 2014, 9, 189–196. [Google Scholar] [CrossRef]
- Koirala, A.; Makkia, R.S.; Conley, S.M.; Cooper, M.J.; Naash, M.I. S/MAR-Containing DNA Nanoparticles Promote Persistent RPE Gene Expression and Improvement in RPE65-Associated LCA. Hum. Mol. Genet. 2013, 22, 1632–1642. [Google Scholar] [CrossRef]
- Han, Z.; Conley, S.M.; Makkia, R.S.; Cooper, M.J.; Naash, M.I. DNA Nanoparticle-Mediated ABCA4 Delivery Rescues Stargardt Dystrophy in Mice. J. Clin. Investig. 2012, 122, 3221–3226. [Google Scholar] [CrossRef]
- Cai, X.; Nash, Z.; Conley, S.M.; Fliesler, S.J.; Cooper, M.J.; Naash, M.I. A Partial Structural and Functional Rescue of a Retinitis Pigmentosa Model with Compacted DNA Nanoparticles. PLoS ONE 2009, 4, e5290. [Google Scholar] [CrossRef]
- Cai, X.; Conley, S.M.; Nash, Z.; Fliesler, S.J.; Cooper, M.J.; Naash, M.I. Gene Delivery to Mitotic and Postmitotic Photoreceptors via Compacted DNA Nanoparticles Results in Improved Phenotype in a Mouse Model of Retinitis Pigmentosa. FASEB J. 2010, 24, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Mahale, N.B.; Thakkar, P.D.; Mali, R.G.; Walunj, D.R.; Chaudhari, S.R. Niosomes: Novel Sustained Release Nonionic Stable Vesicular Systems—An Overview. Adv. Colloid Interface Sci. 2012, 183–184, 46–54. [Google Scholar] [CrossRef]
- Ojeda, E.; Agirre, M.; Villate-Beitia, I.; Mashal, M.; Puras, G.; Zarate, J.; Pedraz, J.L. Elaboration and Physicochemical Characterization of Niosome-Based Nioplexes for Gene Delivery Purposes. In Non-Viral Gene Delivery Vectors: Methods and Protocols; Candiani, G., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; pp. 63–75. [Google Scholar] [CrossRef]
- Moghassemi, S.; Hadjizadeh, A.; Omidfar, K. Formulation and Characterization of Bovine Serum Albumin-Loaded Niosome. AAPS PharmSciTech 2017, 18, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Farmoudeh, A.; Akbari, J.; Saeedi, M.; Ghasemi, M.; Asemi, N.; Nokhodchi, A. Methylene Blue-Loaded Niosome: Preparation, Physicochemical Characterization, and in Vivo Wound Healing Assessment. Drug Deliv. Transl. Res. 2020, 10, 1428–1441. [Google Scholar] [CrossRef]
- Mashal, M.; Attia, N.; Puras, G.; Martínez-Navarrete, G.; Fernández, E.; Pedraz, J.L. Retinal Gene Delivery Enhancement by Lycopene Incorporation into Cationic Niosomes Based on DOTMA and Polysorbate 60. J. Control. Release 2017, 254, 55–64. [Google Scholar] [CrossRef]
- Mashal, M.; Attia, N.; Martínez-Navarrete, G.; Soto-Sánchez, C.; Fernández, E.; Grijalvo, S.; Eritja, R.; Puras, G.; Pedraz, J.L. Gene Delivery to the Rat Retina by Non-Viral Vectors Based on Chloroquine-Containing Cationic Niosomes. J. Control. Release 2019, 304, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Villate-Beitia, I.; Gallego, I.; Martínez-Navarrete, G.; Zárate, J.; López-Méndez, T.; Soto-Sánchez, C.; Santos-Vizcaíno, E.; Puras, G.; Fernández, E.; Pedraz, J.L. Polysorbate 20 Non-Ionic Surfactant Enhances Retinal Gene Delivery Efficiency of Cationic Niosomes after Intravitreal and Subretinal Administration. Int. J. Pharm. 2018, 550, 388–397. [Google Scholar] [CrossRef]
- Durak, S.; Rad, M.E.; Yetisgin, A.A.; Sutova, H.E.; Kutlu, O.; Cetinel, S.; Zarrabi, A. Niosomal Drug Delivery Systems for Ocular Disease—Recent Advances and Future Prospects. Nanomaterials 2020, 10, 1191. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Zhao, G.; Liu, J.-X. Silver Nanoparticles Affect Lens Rather than Retina Development in Zebrafish Embryos. Ecotoxicol. Environ. Saf. 2018, 163, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Karakoçak, B.B.; Raliya, R.; Davis, J.T.; Chavalmane, S.; Wang, W.-N.; Ravi, N.; Biswas, P. Biocompatibility of Gold Nanoparticles in Retinal Pigment Epithelial Cell Line. Toxicol. Vitr. 2016, 37, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Trigueros, S.; Domènech, E.B.; Toulis, V.; Marfany, G. In Vitro Gene Delivery in Retinal Pigment Epithelium Cells by Plasmid DNA-Wrapped Gold Nanoparticles. Genes 2019, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-W.; Lu, D.-W.; Yeh, M.-K.; Shiau, C.-Y.; Chiang, C.-H. Novel RGD-Lipid Conjugate-Modified Liposomes for Enhancing siRNA Delivery in Human Retinal Pigment Epithelial Cells. Int. J. Nanomed. 2011, 6, 2567–2580. [Google Scholar] [CrossRef]
- Chen, C.-W.; Yeh, M.-K.; Shiau, C.-Y.; Chiang, C.-H.; Lu, D.-W. Efficient Downregulation of VEGF in Retinal Pigment Epithelial Cells by Integrin Ligand-Labeled Liposome-Mediated siRNA Delivery. Int. J. Nanomed. 2013, 8, 2613–2627. [Google Scholar]
- Templeton, N.S. Liposomal Delivery of Nucleic Acids In Vivo. DNA Cell Biol. 2002, 21, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Saffari, M.; Moghimi, H.R.; Dass, C.R. Barriers to Liposomal Gene Delivery: From Application Site to the Target. Iran. J. Pharm. Res. IJPR 2016, 15, 3–17. [Google Scholar] [PubMed]
- Wang, Y.; Rajala, A.; Rajala, R.V.S. Lipid Nanoparticles for Ocular Gene Delivery. J. Funct. Biomater. 2015, 6, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Novel Drug Delivery Systems: Applications, Advantages and Disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar] [CrossRef]
- Biswas, S.; Torchilin, V.P. Dendrimers for siRNA Delivery. Pharmaceuticals 2013, 6, 161–183. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, D.; Liu, X.; Peng, L. Amphiphilic Dendrimer Vectors for RNA Delivery: State-of-the-Art and Future Perspective. Acc. Mater. Res. 2022, 3, 484–497. [Google Scholar] [CrossRef] [PubMed]
- Chis, A.A.; Dobrea, C.M.; Rus, L.-L.; Frum, A.; Morgovan, C.; Butuca, A.; Totan, M.; Juncan, A.M.; Gligor, F.G.; Arseniu, A.M. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021, 26, 5976. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Naeem, A.; Xiao, S.; Hu, L.; Zhang, J.; Zheng, Q. Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022, 14, 1292. [Google Scholar] [CrossRef] [PubMed]
- Tagami, T.; Nakamura, K.; Shimizu, T.; Yamazaki, N.; Ishida, T.; Kiwada, H. CpG Motifs in pDNA-Sequences Increase Anti-PEG IgM Production Induced by PEG-Coated pDNA-Lipoplexes. J. Control. Release 2010, 142, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, J.; Xiao, J.; Du, J. Dually Gated Polymersomes for Gene Delivery. Nano Lett. 2018, 18, 5562–5568. [Google Scholar] [CrossRef]
- Matoori, S.; Leroux, J.-C. Twenty-Five Years of Polymersomes: Lost in Translation? Mater. Horiz. 2020, 7, 1297–1309. [Google Scholar] [CrossRef]
- Guo, C.; Yuan, H.; Zhang, Y.; Yin, T.; He, H.; Gou, J.; Tang, X. Asymmetric Polymersomes, from the Formation of Asymmetric Membranes to the Application on Drug Delivery. J. Control. Release 2021, 338, 422–445. [Google Scholar] [CrossRef]
- AL Qtaish, N.; Gallego, I.; Villate-Beitia, I.; Sainz-Ramos, M.; López-Méndez, T.B.; Grijalvo, S.; Eritja, R.; Soto-Sánchez, C.; Martínez-Navarrete, G.; Fernández, E.; et al. Niosome-Based Approach for In Situ Gene Delivery to Retina and Brain Cortex as Immune-Privileged Tissues. Pharmaceutics 2020, 12, 198. [Google Scholar] [CrossRef]
- Adewale, O.B.; Davids, H.; Cairncross, L.; Roux, S. Toxicological Behavior of Gold Nanoparticles on Various Models: Influence of Physicochemical Properties and Other Factors. Int. J. Toxicol. 2019, 38, 357–384. [Google Scholar] [CrossRef] [PubMed]
- Assiri, A.A.; Glover, K.; Mishra, D.; Waite, D.; Vora, L.K.; Thakur, R.R.S. Block Copolymer Micelles as Ocular Drug Delivery Systems. Drug Discov. Today 2024, 29, 104098. [Google Scholar] [CrossRef]
- Reichel, F.F.; Michalakis, S.; Wilhelm, B.; Zobor, D.; Muehlfriedel, R.; Kohl, S.; Weisschuh, N.; Sothilingam, V.; Kuehlewein, L.; Kahle, N.; et al. Three-Year Results of Phase I Retinal Gene Therapy Trial for CNGA3-Mutated Achromatopsia: Results of a Non Randomised Controlled Trial. Br. J. Ophthalmol. 2022, 106, 1567–1572. [Google Scholar] [CrossRef]
- Nielsen, J.; MacLaren, R.E.; Heier, J.S.; Steel, D.; Ivanova, T.; Sivaprasad, S.; Stanga, P.; Bailey, C.; Charbel Issa, P.; Mendonca, L.; et al. Preliminary Results from a First-in-Human Phase I/II Gene Therapy Study (FOCUS) of Subretinally Delivered GT005, an Investigational AAV2 Vector, in Patients with Geographic Atrophy Secondary to Age-Related Macular Degeneration. Investig. Opthalmology Vis. Sci. 2022, 63, 1504. [Google Scholar]
- Khanani, A.M.; Boyer, D.S.; Wykoff, C.C.; Regillo, C.D.; Busbee, B.G.; Pieramici, D.; Danzig, C.J.; Joondeph, B.C.; Major, J.C.; Turpcu, A.; et al. Safety and Efficacy of Ixoberogene Soroparvovec in Neovascular Age-Related Macular Degeneration in the United States (OPTIC): A Prospective, Two-Year, Multicentre Phase 1 Study. EClinicalMedicine 2024, 67, 102394. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Pardon, L.P.; Ho, A.C.; Lauer, A.K.; Yoon, D.; Boye, S.E.; Boye, S.L.; Roman, A.J.; Wu, V.; Garafalo, A.V.; et al. Safety and Efficacy of ATSN-101 in Patients with Leber Congenital Amaurosis Caused by Biallelic Mutations in GUCY2D: A Phase 1/2, Multicentre, Open-Label, Unilateral Dose Escalation Study. Lancet 2024, 404, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Pierce, E.A.; Aleman, T.S.; Jayasundera, K.T.; Ashimatey, B.S.; Kim, K.; Rashid, A.; Jaskolka, M.C.; Myers, R.L.; Lam, B.L.; Bailey, S.T.; et al. Gene Editing for CEP290-Associated Retinal Degeneration. N. Engl. J. Med. 2024, 390, 1972–1984. [Google Scholar] [CrossRef]
- Bennett, J.; Wellman, J.; Marshall, K.A.; McCague, S.; Ashtari, M.; DiStefano-Pappas, J.; Elci, O.U.; Chung, D.C.; Sun, J.; Wright, J.F.; et al. Safety and Durability of Effect of Contralateral-Eye Administration of AAV2 Gene Therapy in Patients with Childhood-Onset Blindness Caused by RPE65 Mutations: A Follow-on Phase 1 Trial. Lancet 2016, 388, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.; Bennett, J.; Wellman, J.A.; Chung, D.C.; Yu, Z.-F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and Safety of Voretigene Neparvovec (AAV2-hRPE65v2) in Patients with RPE65-Mediated Inherited Retinal Dystrophy: A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet 2017, 390, 849–860. [Google Scholar] [CrossRef]
- Feuer, W.J.; Schiffman, J.C.; Davis, J.L.; Porciatti, V.; Gonzalez, P.; Koilkonda, R.D.; Yuan, H.; Lalwani, A.; Lam, B.L.; Guy, J. Gene Therapy for Leber Hereditary Optic Neuropathy: Initial Results. Ophthalmology 2016, 123, 558–570. [Google Scholar] [CrossRef]
- Boyer, D.S.; Bergstrom, L.; Emanuelli, A.; Gonzalez, V.H.; Wykoff, C.C.; Gupta, S.; Liao, D.S.; Zak, V.; Chavala, S.H.; Mohanty, S.; et al. Efficacy and Safety of MCO-010 Optogenetic Therapy for Vision Restoration in Patients with Severe Vision Loss Due to Retinitis Pigmentosa: A Phase 2b Randomized, Sham-Controlled, Multi-Center, Multi-Dose, Double-Masked Clinical Trial (RESTORE). Investig. Opthalmology Vis. Sci. 2023, 64, 5443. [Google Scholar]
- Reichel, F.F.L.; Michalakis, S.; Fischer, D.M.; Kuehlewein, L.; Peters, T.; Kohl, S.; Bartz-Schmidt, K.-U.; Ueffing, M.; Zrenner, E.; Biel, M.; et al. Safety and Vision Outcomes of Subretinal Gene Supplementation Therapy in PDE6A-Associated Retinitis Pigmentosa. Investig. Opthalmology Vis. Sci. 2023, 64, 782. [Google Scholar]
- Pennesi, M.E.; Yang, P.; Birch, D.G.; Weng, C.Y.; Moore, A.T.; Iannaccone, A.; Comander, J.I.; Jayasundera, T.; Chulay, J.; Halliman, D.; et al. Intravitreal Delivery of rAAV2tYF-CB-hRS1 Vector for Gene Augmentation Therapy in Patients with X-Linked Retinoschisis: 1-Year Clinical Results. Ophthalmol. Retin. 2022, 6, 1130–1144. [Google Scholar] [CrossRef]
- Cukras, C.; Wiley, H.E.; Jeffrey, B.G.; Sen, H.N.; Turriff, A.; Zeng, Y.; Vijayasarathy, C.; Marangoni, D.; Ziccardi, L.; Kjellstrom, S.; et al. Retinal AAV8-RS1 Gene Therapy for X-Linked Retinoschisis: Initial Findings from a Phase I/IIa Trial by Intravitreal Delivery. Mol. Ther. 2018, 26, 2282–2294. [Google Scholar] [CrossRef]
- Gonzalez, V.H.; Lam, B.L.; Zak, V.; Mohanty, S.; bataybal, S.; Chang, J.; Ayyagari, A.; Chavala, S.H.; Piltz-Seymour, J.; Koester, J.; et al. MCO-010 Intravitreal Optogenetic Therapy in Stargardt Disease. 6-Month Outcomes from the Phase 2 STARLIGHT Trial. Investig. Opthalmology Vis. Sci. 2023, 64, 3546. [Google Scholar]
Sr No. | Name of Non-Viral Gene Delivery System | Specific Advantages | Nucleic Acid Used for Delivery | Limitations |
---|---|---|---|---|
1. | Liposomes | Biocompatibility, natural degradation, enhanced permeability by annexin-5-mediated endocytosis, and ease of introducing surface functionalizing for active targeting. | siRNA [162,163] and pDNA [164] | Immunogenicity, short residence time on eye surface [165] |
2. | Solid lipid nanoparticles (SLNs) | Sustained drug release, high stability in vivo, and cost-effective scale-up. | pDNA, siRNA and mRNA [111] | Initial burst release, low drug loading efficiency, possibility of crystallization during storage [166,167] |
3. | Micelles | Large gene loading capacity, simplicity of synthesis. | pDNA [115,117,118,119,120] | High tear clearance, swift disintegration upon dilution in body fluids and immunogenicity [116] |
4. | Dendrimers | Versatility in synthesis as per need, high loading capacity and customizable synthesis (based on number of generations). | Antisense oligonucleotides [168], pDNA [126,127], mRNA, and siRNA [168,169] | Intrinsic toxicity of traditional dendrimer ingredients, complexity of synthesis [170,171] |
5. | Polymersomes | Stimuli responsive drug release and reduced cytotoxic effects. | pDNA [172,173] | Low drug loading efficiency, irregular shape (unruly self-assembly), possibility of aggregation [174,175] |
6. | Niosomes | High stability, long circulation half-life, and release kinetics similar to liposomes. | pDNA [155,156,157] | Low entrapment efficiency (compared to liposomes), possibility of cargo leakage, high possibility of fusion events [176] |
7. | Inorganic nanocarriers (AuNPs) | Large surface area, ease of surface modification, and customizable features. | pDNA [160,161] | Clearance issues, toxicity at higher concentrations, and non-specific targeting [177] |
Condition | Description | Vector | Clinical Phase | NCT Numbers | Safety Results |
---|---|---|---|---|---|
Achromatopsia | Non-randomized, open-label CLARITY clinical trial with treatment being recombinant adeno-associated virus vector expressing CNGB3 administered via subretinal injection route. | rAAV2 | 1/2 | NCT02599922 | No official data posted (as of January 2025). |
Non-randomized, open-label interventional clinical trial with treatment AGTC-402 administered to one eye by subretinal injection. | rAAV2 | 1/2 | NCT02935517 | Phase 1 study showcased a good safety profile [179]. | |
Age-related macular degeneration | Non-randomized, interventional multicenter trial with treatment GT005 administered as a single subretinal injection (3 doses) in genetically defined subjects with macular atrophy. | rAAV | 1/2 | NCT03846193 | In phase I study, mild ocular inflammation events were observed in some patients. Study has been terminated [180]. |
Open-label prospective multicenter trial with treatment ixo-vec via intravitreal route. | AAV.7m8 | 2 | NCT05536973 | Intraocular inflammation was observed in some patients but were manageable with topical corticosteroids [181]. | |
Randomized, partially masked, interventional parallel assignment trial with RGX-314 gene therapy given via an outpatient surgical procedure. | AAV8 | 2/3 | NCT04704921 | Results not posted (as of January 2025). | |
Non-randomized, open label interventional clinical trial with sequential assignment. Treatment RGX-314 administered via subretinal delivery (2 doses) | NCT04832724 | Trial is completed but results are not officially posted (as of January 2025). | |||
Randomized, partially masked interventional study with parallel assignment. Treatment RGX-314 given as single subretinal injection with in two different doses in different treatment arms. | NCT05407636 | No data posted yet (in recruiting stage as of January 2025). | |||
Randomized, open-label, controlled masked expansion clinical trial with sequential assignment. Treatment 4D-150 given via intravitreal injection in multiple dose groups. | AAV | 3 | NCT05197270 | No official data posted yet (in recruiting stage as of January 2025). | |
Choroideremia | Non-randomized, long-term safety and efficacy follow-up study for AAV2-REP1 treatment for patients with chloridemia and AAV8-RPGR treatment for X-linked retinitis pigmentosa, both given via subretinal injections. | AAV2 | 3 | NCT03584165 | No data posted yet (in recruiting via invitation as of January 2025). As predecessor study, reported inflammation and surgery related adverse events (NCT02407678). |
Diabetic macular edema | Randomized, double-masked, multicenter, controlled interventional clinical trial with parallel assignment. Treatment ADVM-022 given by one-time intravitreal injection. | AAV.7m8 | 2 | NCT04418427 | No official data posted (as of January 2025). |
Diabetic retinopathy | Randomized, partially masked dose-escalation, observational controlled clinical trial with parallel assignment. Treatment RGX-314 given via single suprachoroidal space (SCS) injections. | AAV8 | 2 | NCT04567550 | No data posted (recruiting as of January 2025). |
Long term follow-up prospective observational study (no intervention). | NCT05296447 | No available data (enrolling as of January 2025). | |||
Autosomal recessive Leber’s congenital amaurosis | Non-randomized, open label-controlled dose-escalation interventional study. Treatment ATSN-101 administered as unilateral subretinal injection. | AAV5 | 1/2 | NCT03920007 | AEs ranging from ocular discomfort and conjunctival hemorrhage to infections in various ocular tissues; however, the product was overall considered tolerable [182]. |
Leber’s congenital amaurosis (LCA) | Non-randomized, open-label single ascending dose interventional study with sequential assignment. Treatment EDIT-101 administered via subretinal injection to multiple dose groups. | AAV5 | 1/2 | NCT03872479 | No SAEs or dose-limiting toxicity events observed [183]. |
Long term follow-up prospective observational study (no intervention). | AAV2/5 | Follow-up | NCT02946879 | No available data despite study completion. | |
Follow-on dose escalation and safety intervention study with multiple dosing groups. Treatment was given as a single-dose unilateral subretinal injection. | AAV2 | 1/2; 3; follow-up | NCT01208389 | No adverse events related to AAV reported [184]. | |
Post-authorization long term (5-year), multicenter, longitudinal observational patient registry with cohorts. Original treatment was a vector, AAV2-hRPE65v2, given subretinally. | NCT03597399 | No results posted (as of January 2025). | |||
Randomized, open-label interventional study at 2 sites. Treatment AAV2-hRPE65v2 (voretigene neparvovec-rzyl) was administered subrationally. | NCT00999609 | No treatment-related SAEs or serious immune responses observed [185]. | |||
Long-term follow-up prospective observational study in cohorts previously subretinally administered with (AAV2-hRPE65v2, voretigene neparvovec-rzyl). | NCT03602820 | No data posted (expected to be completed by 2030). | |||
Leber hereditary optic neuropathy | Prospective open-label proof of concept study conducted on 5 participants. Vector given via intravitreal injection. | AAV2 | 1 | NCT02161380 | No serious safety problems observed [186]. |
Randomized, double-masked multicenter placebo-controlled interventional study. Treatment GS010 was administered via intravitreal injection. | rAAV2/2 | 3 | NCT03293524 | No official data available. | |
Retinitis pigmentosa | Non-randomized, open-label dose-escalation clinical trial with sequential assignment. Treatment GS030 administered as a single intravitreal injection. | AAV2 | 1/2 | NCT03326336 | No official data posted. Study yet to be completed (as of January 2025). |
Non-randomized, open-label dose-escalation clinical trial with sequential assignment. Treatment BS01 was given via intravitreal injection. | rAAV | 1/2 | NCT04278131 | No official data available (as of January 2025). | |
Non-randomized, open-label monocentric interventional study with sequential arrangement. Treatment HORA-PDE6B was given as a unilateral subretinal injection. | AAV2/5 | 1/2 | NCT03328130 | No official data posted (as of January 2025). | |
Randomized, triple-masked, sham-controlled interventional study with sequential assignment. Treatment MCO-010 (optogenetic therapy) was given as an intravitreal injection. | AAV2/5 | 2 | NCT04945772 | As per the first 52-week data on 16 patients, no treatment-related SAEs were observed [187]. | |
Non-randomized, open-label clinical trial with sequential assignment. Treatment OCU400 given via single-dose subretinal injection in multiple dosing groups. | AAV5 | 1/2 | NCT05203939 | No official data posted (as of January 2025). | |
Open-label interventional study with sequential assignment. Treatment rAAV.hPDE6A given via subretinal injection. | rAAV8 | 1/2 | NCT04611503 | Preliminary results reported that the treatment is well tolerated; however, some patients experienced vision loss [188]. | |
Non-randomized, open-label, quadruple-masked dose-escalation intervention study with single group assignment. Treatment rAAV2tYF-GRK1-RPGR administered subrationally. | rAAV2 | 1/2 | NCT03316560 | No published data (as of January 2025). | |
Randomized, partially masked controlled interventional study with parallel assignment. Treatment AAV5-hRKp.RPGR given as a bilateral subretinal injection. | AAV5 | 3 | NCT04671433 | Study is completed but results are not yet published (as of January 2025). | |
X-linked retinoschisis | Non-randomized, open-label, multicenter dose-escalation intervention study. Treatment rAAV2tYF-CB-hRS1 vector given via intravitreal delivery. | rAAV2 | 1/2 | NCT02416622 | The gene augmentation therapy was generally safe and well tolerated [189]. |
Non-randomized, prospective monocentric interventional study with single group assignment. Treatment AAV-RS1 vector was administered as intravitreal injection. | AAV8 | 1/2 | NCT02317887 | Mild ocular inflammation events that could be treated with corticosteroids/oral prednisone. One patient experienced a non-treatment-related SAE [190]. | |
Stargardt disease | Open-label, multicenter interventional study with single group assignment. Treatment vMCO-010 (optogenetic therapy) given as single intravitreal injection. | AAV2 | 2 | NCT05417126 | The trial is completed, but official study data are not yet published (as of January 2025) [191]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jony, M.J.; Joshi, A.; Dash, A.; Shukla, S. Non-Viral Delivery Systems to Transport Nucleic Acids for Inherited Retinal Disorders. Pharmaceuticals 2025, 18, 87. https://doi.org/10.3390/ph18010087
Jony MJ, Joshi A, Dash A, Shukla S. Non-Viral Delivery Systems to Transport Nucleic Acids for Inherited Retinal Disorders. Pharmaceuticals. 2025; 18(1):87. https://doi.org/10.3390/ph18010087
Chicago/Turabian StyleJony, Md Jobair, Ameya Joshi, Alekha Dash, and Surabhi Shukla. 2025. "Non-Viral Delivery Systems to Transport Nucleic Acids for Inherited Retinal Disorders" Pharmaceuticals 18, no. 1: 87. https://doi.org/10.3390/ph18010087
APA StyleJony, M. J., Joshi, A., Dash, A., & Shukla, S. (2025). Non-Viral Delivery Systems to Transport Nucleic Acids for Inherited Retinal Disorders. Pharmaceuticals, 18(1), 87. https://doi.org/10.3390/ph18010087