Biological Activities of Mikania glomerata and Mikania laevigata: A Scoping Review and Evidence Gap Mapping
Abstract
:1. Introduction
2. Results
2.1. Mikania glomerata
2.2. Mikania laevigata
3. Discussion
4. Materials and Methods
4.1. Literature Selection
4.2. Data Extraction and Quality Assessment
4.3. Data Synthesis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CHL | chloroform |
DCM | dichloromethane |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl radical |
EtOAc | ethyl acetate |
EtOH | ethanol |
HEX | Hexane |
MDBK | Madin-Darby bovine kidney |
MeOH | methanol |
NA | not applicable |
n-BU | n-butanol |
NR | not reported |
RCT | Randomized clinical trial |
ROB 2.0 | Cochrane Risk of Bias tool for randomized trials |
References
- Napimoga, M.H.; Yatsuda, R. Scientific evidence for Mikania laevigata and Mikania glomerata as a pharmacological tool. J. Pharm. Pharmacol. 2010, 62, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.C.O.; Borghi, A.A.; Mayer, J.L.S.; Sawaya, A. Comparison of the Morphology, Anatomy, and Chemical Profile of Mikania glomerata and Mikania laevigata. Planta Med. 2018, 84, 191–200. [Google Scholar] [CrossRef]
- Vieira, R.F.; da Silveira Agostini-Costa, T.; de Belem das Neves Alves, R.; Rennó Azevedo, V.C.; Figueira, G.M.; da Silva Gomes, I.; Inglis, P.W.; Pozzobon, M.T.; Peñaloza, A.d.P.d.S.; Ritter, M.R.; et al. Chemical and phylogenetic characterization of Guaco (Mikania laevigata; M. glomerata) germplasm. Biochem. Syst. Ecol. 2020, 90, 104029. [Google Scholar] [CrossRef]
- Gasparetto, J.C.; Campos, F.R.; Budel, J.M.; Pontarolo, R. Mikania glomerata Spreng. e M. laevigata Sch. Bip. ex Baker, Asteraceae: Estudos agronômicos, genéticos, morfoanatômicos, químicos, farmacológicos, toxicológicos e uso nos programas de fitoterapia do Brasil. Rev. Bras. De Farmacogn. 2010, 20, 627–640. [Google Scholar] [CrossRef]
- Hussain, M.K.; Khatoon, S.; Khan, M.F.; Akhtar, M.S.; Ahamad, S.; Saquib, M. Coumarins as versatile therapeutic phytomolecules: A systematic review. Phytomedicine 2024, 134, 155972. [Google Scholar] [CrossRef]
- Rufatto, L.C.; Finimundy, T.C.; Roesch-Ely, M.; Moura, S. Mikania laevigata: Chemical characterization and selective cytotoxic activity of extracts on tumor cell lines. Phytomedicine 2013, 20, 883–889. [Google Scholar] [CrossRef]
- World Health Organization. WHO Traditional Medicine Strategy. 2014–2023; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Aboy, A.L.; Ortega, G.G.; Petrovick, P.R.; Langeloh, A.; Bassani, V.L. Antispasmodic activity of leaf extracts of Mikania glomerata sprengel (guaco). Acta Farm. Bonaer. 2002, 21, 185–191. [Google Scholar]
- Alves, C.F.; Alves, V.B.; de Assis, I.P.; Clemente-Napimoga, J.T.; Uber-Bucek, E.; Dal-Secco, D.; Cunha, F.Q.; Rehder, V.L.; Napimoga, M.H. Anti-inflammatory activity and possible mechanism of extract from Mikania laevigata in carrageenan-induced peritonitis. J. Pharm. Pharmacol. 2009, 61, 1097–1104. [Google Scholar] [CrossRef]
- Baratto, L.; Lang, K.L.; Vanz, D.C.; Reginatto, F.H.; Oliveira, J.B.; Falkenberg, M. Investigation of the allelopathic and antimicrobial activities of Mikania laevigata (Asteraceae) obtained in hydroponic and traditional cultivars. Rev. Bras. Farmacogn. 2008, 18, 577–582. [Google Scholar] [CrossRef]
- Barbieri Holetz, F.; Ueda-Nakamura, T.; Dias Filho, B.P.; Garcia Cortez, D.A.; Palazzo Mello, J.C.; Vataru Nakamura, C. Effect of plant extracts used in folk medicine on cell growth and differentiation of Herpetomonas samuelpessoai (kinetoplastida, trypanosomatidae) cultivated in defined medium. Acta Sci. Biol. Health Sci. 2002, 24, 657–662. [Google Scholar]
- Barbosa, L.C.; de Morais, M.; de Paula, C.A.; da Silva Ferreira, M.C.; Jordao, A.A.; e Silva, M.L.; Kenupp Bastos, J.; da Silva Filho, A.A.; de Oliveira Cecchi, A. Mikania glomerata Sprengel (Asteraceae) influences the mutagenicity induced by doxorubicin without altering liver lipid peroxidation or antioxidant levels. J. Toxicol. Environ. Health A 2012, 75, 1102–1109. [Google Scholar] [CrossRef]
- Benatti, B.B.; Campos-Júnior, J.C.; Silva-Filho, V.J.; Alves, P.M.; Rodrigues, I.R.; Uber-Bucek, E.; Vieira, S.M.; Napimoga, M.H. Effects of a Mikania laevigata extract on bone resorption and RANKL expression during experimental periodontitis in rats. J. Appl. Oral. Sci. 2012, 20, 340–346. [Google Scholar] [CrossRef]
- Bertol, G.; Cobre, A.d.F.; Campos, M.L.; Pontarolo, R. Safety evaluation of Mikania glomerata and Mikania laevigata in healthy volunteers: A randomized, open label and multiple dose phase I clinical trial. J. Ethnopharmacol. 2024, 318, 117018. [Google Scholar] [CrossRef]
- Bighetti, A.E.; Antônio, M.A.; Kohn, L.K.; Rehder, V.L.; Foglio, M.A.; Possenti, A.; Vilela, L.; Carvalho, J.E. Antiulcerogenic activity of a crude hydroalcoholic extract and coumarin isolated from Mikania laevigata Schultz Bip. Phytomedicine 2005, 12, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Borghi, A.A.; Minatel, E.; Mizobuti, D.S.; de Lourenço, C.C.; Fernandes de Araújo, F.; Maria Pastore, G.; Hewitson, P.; Ignatova, S.; Chf Sawaya, A. Antioxidant and Anti-inflammatory Activity of Mikania glomerata and Mikania laevigata Extracts. Pharmacogn. Res. 2023, 15, 128–137. [Google Scholar] [CrossRef]
- Bouzada, M.L.M.; Fabri, R.L.; Nogueira, M.; Konno, T.U.P.; Duarte, G.G.; Scio, E. Antibacterial, cytotoxic and phytochemical screening of some traditional medicinal plants in Brazil. Pharm. Biol. 2009, 47, 44–52. [Google Scholar] [CrossRef]
- Chagas-Paula, D.; Oliveira, T.; Faleiro, D.; Oliveira, R.; Da Costa, F. Outstanding Anti-inflammatory Potential of Selected Asteraceae Species through the Potent Dual Inhibition of Cyclooxygenase-1 and 5-Lipoxygenase. Planta Medica 2015, 81, 1296–1307. [Google Scholar] [CrossRef]
- Chaves, P.F.P.; Adami, E.R.; Corso, C.R.; Milani, L.; de Oliveira, N.M.T.; da Silva, L.C.M.; Acco, A.; Iacomini, M.; Cordeiro, L.M.C. Carbohydrates from Mikania glomerata Spreng tea: Chemical characterization and hepatoprotective effects. Bioact. Carbohydr. Diet. Fibre 2020, 24, 100227. [Google Scholar] [CrossRef]
- Collaço Rde, C.; Cogo, J.C.; Rodrigues-Simioni, L.; Rocha, T.; Oshima-Franco, Y.; Azzo-Moura, P. Protection by Mikania laevigata (guaco) extract against the toxicity of Philodryas olfersii snake venom. Toxicon 2012, 60, 614–622. [Google Scholar] [CrossRef]
- Costa Rde, J.; Diniz, A.; Mantovani, M.S.; Jordão, B.Q. In vitro study of mutagenic potential of Bidens pilosa Linné and Mikania glomerata Sprengel using the comet and micronucleus assays. J. Ethnopharmacol. 2008, 118, 86–93. [Google Scholar] [CrossRef]
- da Silveira e Śa, R.C.; Leite, M.N.; de Almeida, R.N. Toxicological screening of Mikania glomerata Spreng., Asteraceae, extract in male Wistar rats reproductive system, sperm production and testosterone level after chronic treatment. Rev. Bras. Farmacogn. 2010, 20, 718–723. [Google Scholar]
- da Silveira e Sá Rde, C.; Leite, M.N.; Reporedo Mde, M.; de Almeida, R.N. Evaluation of long-term exposure to Mikania glomerata (Sprengel) extract on male Wistar rats' reproductive organs, sperm production and testosterone level. Contraception 2003, 67, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Dalla Nora, G.; Pastori, T.; Laughinghouse HDt Do Canto-Dorow, T.S.; Tedesco, S.B. Antiproliferative and genotoxic effects of Mikania glomerata (Asteraceae). Biocell 2010, 34, 95–101. [Google Scholar] [PubMed]
- de Moura, R.; Costa, S.S.; Jansen, J.M.; Silva, C.A.; Lopes, C.S.; Bernardo-Filho, M.; da Silva, V.; Criddle, D.N.; Portela, B.N.; Rubenich, L.M.S.; et al. Bronchodilator activity of Mikania glomerata Sprengel on human bronchi and guinea-pig trachea. J. Pharm. Pharmacol. 2002, 54, 249–256. [Google Scholar] [CrossRef]
- de Souza, B.A.; da Silva, L.C.; Chicarino, E.D.; Bessa, E.C.A. Phytochemical and molluscicidal activity of Mikania glomerata Sprengel (Asteraceae) in different lifestages of Subulina octona (Mollusca, Subulinidade). Braz. Arch. Biol. Technol. 2014, 57, 261–268. [Google Scholar] [CrossRef]
- Della Pasqua, C.D.P.; Antunes, E.; Sawaya, A.; Campos, R.; Ucci, E.C.T. Beneficial effects of aqueous extracts of Mikania glomerata Sprengel and Mikania laevigata Schultz Bip ex Baker on the inflammatory response in rats with acute pancreatitis. FASEB J. 2019, 33, 505.21. [Google Scholar]
- dos Santos, R.R.; Turra, B.; Simon, K.; Damiani, A.P.; Strapazzon, G.; Leandro, R.T.; Vilela, T.C.; Peterson, M.; de Andrade, V.M.; Amaral, P.D.A. Evaluation of genotoxicity and coumarin production in conventional and organic cultivation systems of Mikania glomerata Spreng. J. Environ. Sci. Health Part. B Pestic. Food Contam. Agric. Wastes 2019, 54, 866–874. [Google Scholar] [CrossRef]
- dos Santos, S.C.; Krueger, C.L.; Steil, A.A.; Kreuger, M.R.; Biavatti, M.W.; Wisniewski Junior, A. LC characterisation of guaco medicinal extracts, Mikania laevigata and M. glomerata, and their effects on allergic pneumonitis. Planta Med. 2006, 72, 679–684. [Google Scholar] [CrossRef]
- Duarte, M.C.; Figueira, G.M.; Sartoratto, A.; Rehder, V.L.; Delarmelina, C. Anti-Candida activity of Brazilian medicinal plants. J. Ethnopharmacol. 2005, 97, 305–311. [Google Scholar] [CrossRef]
- Fern es, J.B.; Vargas, V.M. Mutagenic and antimutagenic potential of the medicinal plants M. laevigata and C. xanthocarpa. Phytother. Res. 2003, 17, 269–273. [Google Scholar]
- Fierro, I.M.; Borges Da Silva, A.C.; Da Silva Lopes, C.; Soares De Moura, R.; Barja-Fidalgo, C. Studies on the anti-allergic activity of Mikania glomerata. J. Ethnopharmacol. 1999, 66, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Floriano, R.S.; Nogueira, R.M.; Sakate, M.; Laposy, C.B.; da Motta, Y.P.; Sangiorgio, F.; David, H.C.; Nabas, J.M. Effect of Mikania glomerata (Asteraceae) leaf extract combined with anti-venom serum on experimental Crotalus durissus (Squamata: Viperidae) envenomation in rats. Rev. Biol. Trop. 2009, 57, 929–937. [Google Scholar] [CrossRef]
- Freitas, T.P.; Heuser, V.D.; Tavares, P.; Leffa, D.D.; da Silva, G.A.; Citadini-Zanette, V.; Romão, P.R.; Pinho, R.A.; Streck, E.L.; Andrade, V.M. Genotoxic evaluation of Mikania laevigata extract on DNA damage caused by acute coal dust exposure. J. Med. Food 2009, 12, 654–660. [Google Scholar] [CrossRef]
- Freitas, T.P.; Silveira, P.C.; Rocha, L.G.; Rezin, G.T.; Rocha, J.; Citadini-Zanette, V.; Romão, P.T.; Dal-Pizzol, F.; Pinho, R.A.; Andrade, V.M.; et al. Effects of Mikania glomerata Spreng. and Mikania laevigata Schultz Bip. ex Baker (Asteraceae) extracts on pulmonary inflammation and oxidative stress caused by acute coal dust exposure. J. Med. Food 2008, 11, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.G.; Leonart, L.P.; Lenzi, L.; Bertol, G.; Gasparetto, J.C.; Barros, J.A.; Pontarolo, R. Evaluation of the Bronchodilator Effect of Guaco Syrup: A Randomized, Double-blind, Crossover Clinical Trial. Rev. Bras. Farmacogn. 2020, 30, 111–117. [Google Scholar] [CrossRef]
- Graça, C.; Baggio, C.H.; Freitas, C.S.; Rattmann, Y.D.; de Souza, L.M.; Cipriani, T.R.; Sassaki, G.L.; Rieck, L.; Pontarolo, R.; da Silva-Santos, J.E.; et al. In vivo assessment of safety and mechanisms underlying in vitro relaxation induced by Mikania laevigata Schultz Bip. ex Baker in the rat trachea. J. Ethnopharmacol. 2007, 112, 430–439. [Google Scholar] [CrossRef]
- Graça, C.; Freitas, C.S.; Baggio, C.H.; Dalsenter, P.R.; Marques, M.C. Mikania laevigata syrup does not induce side effects on reproductive system of male Wistar rats. J. Ethnopharmacol. 2007, 111, 29–32. [Google Scholar] [CrossRef]
- Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.; Nakamura, C.V.; Filho, B.P. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz 2002, 97, 1027–1031. [Google Scholar] [CrossRef]
- Kaziyama, V.M.; Fernandes, M.J.B.; Simoni, I.C. Antiviral activity of commercially available medicinal plants on suid and bovine herpesviruses. Rev. Bras. Plantas Med. 2012, 14, 522–528. [Google Scholar] [CrossRef]
- Leite, P.M.; Miranda, A.P.N.; Amorim, J.M.; Duarte, R.C.F.; Bertolucci, S.K.V.; Carvalho, M.D.G.; Castilho, R.O. In Vitro Anticoagulant Activity of Mikania laevigata: Deepening the Study of the Possible Interaction Between Guaco and Anticoagulants. J. Cardiovasc. Pharmacol. 2019, 74, 574–583. [Google Scholar] [CrossRef]
- Lessa, F.C.R.; Grillo, C.H.B.; Pinto, F.E.; Lorençon, B.B.; Martins, J.D.L.; Bertolucci, S.K.V.; Pinto, J.E.B.P.; Endringer, D.C. Efficacy of guaco mouthwashes (Mikania glomerata and Mikania laevigata) on the disinfection of toothbrushes. Rev. Bras. Farmacogn. 2012, 22, 1330–1337. [Google Scholar] [CrossRef]
- Luize, P.S.; Tiuman, T.S.; Morello, L.G.; Maza, P.K.; Ueda-Nakamura, T.; Dias Filho, B.P.; Cortez, D.A.G.; De Mello, J.C.P.; Nakamura, C.V. Effects of medicinal plant extracts on growth of Leishmania (L.) amazonensis and Trypanosoma cruzi. Rev. Bras. Cienc. Farm./Braz. J. Pharm. Sci. 2005, 41, 85–94. [Google Scholar] [CrossRef]
- Maiorano, V.A.; Marcussi, S.; Daher, M.A.; Oliveira, C.Z.; Couto, L.B.; Gomes, O.A.; França, S.C.; Soares, A.M.; Pereira, P.S. Antiophidian properties of the aqueous extract of Mikania glomerata. J. Ethnopharmacol. 2005, 102, 364–370. [Google Scholar] [CrossRef]
- Massunari, L.; Souza, A.C.A.; Domingues, P.F.K.; Scardelato, J.A.; Sacramento, L.V.S.; Dezan-Junior, E.; Duque, C. Inhibitory activity of varronia curassavica and Mikania laevigata fractions against pathogens associated with persistent dental infections. Rev. Cienc. Farm. Basica E Apl. 2020, 41, 1–10. [Google Scholar] [CrossRef]
- Medeiros Mazzorana, D.; Nicolau, V.; Moreira, J.; de Aguiar Amaral, P.; de Andrade, V.M. Influence of Mikania laevigata Extract over the Genotoxicity Induced by Alkylating Agents. ISRN Toxicol. 2013, 2013, 521432. [Google Scholar] [CrossRef]
- Melo, R.S.; Farrapo, N.M.; Junior, D.S.R.; Silva, M.G.; Cogo, J.C.; Belo, C.A.D.; Rodrigues-Simioni, L.; Groppo, F.C.; Oshima-Franco, Y. Antiophidian mechanisms of medicinal plants. In Flavonoids: Biosynthesis, Biological Effects and Dietary Sources; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 249–262. [Google Scholar]
- Moraes, V.L.; Santos, L.F.; Castro, S.B.; Loureiro, L.H.; Lima, O.A.; Souza, M.L.; Yien, L.M.; Rossi-Bergmann, B.; Costa, S.S. Inhibition of lymphocyte activation by extracts and fractions of Kalanchoe, Alternanthera, Paullinia and Mikania species. Phytomedicine 1994, 1, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.R.; Souza, A.B.; Soares, S.; Bianchi, T.C.; De Souza Eugênio, D.; Lemes, D.C.; Martins, C.H.G.; Da Silva Moraes, T.; Tavares, D.C.; Ferreira, N.H.; et al. ent-Kaurenoic acid-rich extract from Mikania glomerata: In vitro activity against bacteria responsible for dental caries. Fitoterapia 2016, 112, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Moreti, D.L.C.; Leandro, L.F.; da Silva Moraes, T.; Moreira, M.R.; Sola Veneziani, R.C.; Ambrosio, S.R.; Figueiredo Almeida Gomes, B.P.; Martins, C.H.G. Mikania glomerata Sprengel extract and its major compound ent-kaurenoic acid display activity against bacteria present in endodontic infections. Anaerobe 2017, 47, 201–208. [Google Scholar] [CrossRef]
- Mourão, V.B.; Giraldi, G.M.; Neves, L.M.G.; de Gaspari de Gaspi, F.O.; Rodrigues, R.A.F.; Alves, A.A.; Esquisatto, M.A.M.; Mazzi, M.V.; Mendonça, F.A.S.; Santos, G.M.T.D. Anti-hemorrhagic effect of hydro-alcoholic extract of the leaves of Mikania glomerata in lesions induced by Bothrops jararaca venom in rats. Acta Cir. Bras. 2014, 29, 30–37. [Google Scholar] [CrossRef]
- Pedroso, A.P.D.; Santos, S.C.; Steil, A.A.; Deschamps, F.; Barison, A.; Campos, F.; Biavatti, M.W. Isolation of syringaldehyde from Mikania laevigata medicinal extract and its influence on the fatty acid profile of mice. Rev. Bras. Farmacogn. 2008, 18, 63–69. [Google Scholar] [CrossRef]
- Pinto, M.; Oliveira, E.; Martins, J.; De Paula, J.; Costa, E.; Da Conceição, E.; Bara, M. Obtaining a Dry Extract from the Mikania laevigata Leaves with Potential for Antiulcer Activity. Pharmacogn. Mag. 2017, 13, 76. [Google Scholar]
- Ruppelt, B.M.; Pereira, E.F.R.; Goncalves, L.C.; Pereira, N.A. Pharmacological screening of plants recommended by folk medicine as anti snake venom. I-Analgesic and anti-inflammatory activities. Rev. Bras. Farm. 1990, 71, 54–56. [Google Scholar] [CrossRef]
- Sá, R.D.C.D.S.; Leite, M.N.; Peters, V.M.; Guerra, M.D.O.; De Almeida, R.N. Absence of mutagenic effect of Mikania glomerata hydroalcoholic extract on adult wistar rats in vivo. Braz. Arch. Biol. Technol. 2006, 49, 599–604. [Google Scholar] [CrossRef]
- Santana, E.A.; Rodrigues, R.F.; de Almeida, F.B.; Oliveira, A.E.M.d.F.M.; Cruz, R.A.S.; França, H.S.; Batitucci, M.d.C.P.; Dutra, J.C.V.; da Silva Ferreira, P.; Amado, J.R.R.; et al. Simultaneous extraction and obtention of a novel nano-dispersion from Mikania glomerata Spreng: Monitoring coumarin content and increasing the biological and industrial potential of a classical cultivated herb. Ind. Crops Prod. 2019, 135, 49–56. [Google Scholar] [CrossRef]
- Santana, L.C.L.R.; Brito, M.R.M.; Oliveira, G.L.S.; Citó, A.M.G.L.; Alves, C.Q.; David, J.P.; David, J.M.; De Freitas, R.M. Mikania glomerata: Phytochemical, Pharmacological, and Neurochemical Study. Evid.-Based Complement. Altern. Med. Ecam 2014, 2014, 710410. [Google Scholar] [CrossRef] [PubMed]
- Santana, L.C.L.R.; Brito, M.R.M.; Sousa, G.F.; Freitas, R.M. Physicochemical properties and acute toxicity evaluation of ethanol extract of the leaves from Mikania glomerata Sprengel. Rev. Bras. Plantas Med. 2014, 15, 742–750. [Google Scholar] [CrossRef]
- Silva, M.E.; Vilela, F.M.P.; Mir a, M.A.; Húngaro, H.M.; Ferreira, F.M.; Yamamoto, C.H.; Cavalcanti, J.F.; Romanos, M.T.V.; Amaral, M.P.H. Mikania glomerata extract inhibits herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2). Rev. Bras. Plantas Med. 2016, 18, 732–737. [Google Scholar]
- Suyenaga, E.S.; Reche, E.; Farias, F.M.; Schapoval, E.E.; Chaves, C.G.; Henriques, A.T. Antiinflammatory investigation of some species of Mikania. Phytother. Res. 2002, 16, 519–523. [Google Scholar] [CrossRef]
- Yatsuda, R.; Rosalen, P.L.; Cury, J.A.; Murata, R.M.; Rehder, V.L.; Melo, L.V.; Koo, H. Effects of Mikania genus plants on growth and cell adherence of mutans streptococci. J. Ethnopharmacol. 2005, 97, 183–189. [Google Scholar] [CrossRef]
- Zamprogno, T.T.; Garcia Lopes, A.D.C.; Lacerda, T.; Hiura, E.; Da Fonseca, L.A.; Senna, T.; Soares, F.E.F.; Endringer, D.C.; Araujo, J.V.; Braga, F.R. Activity of Euterpe edulis martius, Mikania glomerata spreng, and Mikania laevigata schultz bip. Extracts on gastrointestinal nematodes toxocara canis and Ancylostoma caninum. Arch. Clin. Infect. Dis. 2015, 10, e27495. [Google Scholar] [CrossRef]
- Slomp, L.; Pereira, P.S.; De Castro França, S.; Zingaretti, S.; Beleboni, R.O. In vitro nematocidal effects of medicinal plants from são paulo state, brazil. Pharm. Biol. 2009, 47, 230–235. [Google Scholar] [CrossRef]
- Rostom, B.; Karaky, R.; Kassab, I.; Sylla-Iyarreta Veitía, M. Coumarins derivatives and inflammation: Review of their effects on the inflammatory signaling pathways. Eur. J. Pharmacol. 2022, 922, 174867. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int. J. Mol. Sci. 2020, 21, 4618. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Cruz-Martins, N.; Lopez-Jornet, P.; Lopez, E.P.; Harun, N.; Yeskaliyeva, B.; Beyatli, A.; Sytar, O.; Shaheen, S.; Sharopov, F.; et al. Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms. Oxid. Med. Cell Longev. 2021, 2021, 6492346. [Google Scholar] [CrossRef]
- Bertolucci, S.K.V.; Pereira, A.B.D.; Pinto, J.E.B.P.; Oliveira, A.B.; Braga, F.C. Seasonal Variation on the Contents of Coumarin and Kaurane-Type Diterpenes in Mikania laevigata and M. glomerata Leaves under Different Shade Levels. Chem. Biodivers. 2013, 10, 288–295. [Google Scholar] [CrossRef]
- Gasparetto, J.C.; Peccinini, R.G.; de Francisco, T.M.; Cerqueira, L.B.; Campos, F.R.; Pontarolo, R. A kinetic study of the main guaco metabolites using syrup formulation and the identification of an alternative route of coumarin metabolism in humans. PLoS ONE 2015, 10, e0118922. [Google Scholar] [CrossRef]
- Torequl Islam, M.; Quispe, C.; Herrera-Bravo, J.; Rahaman, M.M.; Hossain, R.; Sarkar, C.; Raihan, M.A.; Chowdhury, M.M.; Uddin, S.J.; Shilpi, J.A.; et al. Activities and Molecular Mechanisms of Diterpenes, Diterpenoids, and Their Derivatives in Rheumatoid Arthritis. Evid.-Based Complement. Altern. Med. 2022, 2022, 1–20. [Google Scholar] [CrossRef]
- Quintans, J.S.S.; Shanmugam, S.; Heimfarth, L.; Araújo, A.A.S.; Almeida, J.R.G.d.S.; Picot, L.; Quintans-Júnior, L.J. Monoterpenes modulating cytokines—A review. Food Chem. Toxicol. 2019, 123, 233–257. [Google Scholar] [CrossRef]
- Lasoń, E. Topical Administration of Terpenes Encapsulated in Nanostructured Lipid-Based Systems. Molecules 2020, 25, 5758. [Google Scholar] [CrossRef]
- Del Prado-Audelo, M.L.; Cortés, H.; Caballero-Florán, I.H.; González-Torres, M.; Escutia-Guadarrama, L.; Bernal-Chávez, S.A.; Giraldo-Gomez, D.M.; Magaña, J.J.; Leyva-Gómez, G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front. Pharmacol. 2021, 12, 704197. [Google Scholar] [CrossRef]
- Greay, S.J.; Hammer, K.A. Recent developments in the bioactivity of mono- and diterpenes: Anticancer and antimicrobial activity. Phytochem. Rev. 2011, 14, 1–6. [Google Scholar] [CrossRef]
- Konuk, H.B.; Erguden, B. Phenolic -OH group is crucial for the antifungal activity of terpenoids via disruption of cell membrane integrity. Folia Microbiol (Praha) 2020, 65, 775–783. [Google Scholar] [CrossRef]
- Saha, P.; Rahman, F.I.; Hussain, F.; Rahman, S.M.A.; Rahman, M.M. Antimicrobial Diterpenes: Recent Development From Natural Sources. Front. Pharmacol. 2021, 12, 820312. [Google Scholar] [CrossRef]
- Citarella, A.; Vittorio, S.; Dank, C.; Ielo, L. Syntheses, reactivity, and biological applications of coumarins. Front. Chem. 2024, 12, 1362992. [Google Scholar] [CrossRef]
- de Melo, L.V.; Sawaya, A.C.H.F. UHPLC–MS quantification of coumarin and chlorogenic acid in extracts of the medicinal plants known as guaco (Mikania glomerata and Mikania laevigata). Rev. Bras. De Farmacogn. 2015, 25, 105–110. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Godfrey, C.M.; Khalil, H.; McInerney, P.; Parker, D.; Soares, C.B. Guidance for conducting systematic scoping reviews. Int. J. Evid. Based Healthc. 2015, 13, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, 4898. [Google Scholar] [CrossRef]
Biological Activity | Method | Model | Solvent | Related Compound | Probable Mechanism of Action | Ref. |
---|---|---|---|---|---|---|
Antispasmodic | Ex vivo | Guinea pig ileum and rat jejunum | EtOH 96% and 50% | NR | Reduced acetylcholine and histamine levels | [8] |
Analgesic | In vivo | Mice on Bothropoides jararaca envenomation | Water | NR | Reduction in contortions | [54] |
Anthelmintics | In vitro | Toxocara canis and Ancylostoma caninum | EtOH 96% | Diterpenes | Prevents egg embryogenesis | [62] |
Anti-allergic | In vivo | Pleurisy in rats caused by ovalabulmin | EtOH and fraction of DCM | NR | Inhibition of granulocyte infiltration following antigen challenge; inhibition of antigen-induced mast cell degranulation and partial inhibition of PAF-induced granulocyte infiltration | [32] |
Antimicrobial | In vitro | Culture of Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella pneumoniae, Bacillus cereus and Escherichia coli | MeOH | NR | NR | [17] |
Culture of Lactobacillus casei, S. sanguinis, S. mutans, E. faecalis, S. salivarius, S. mitis, Streptococcus sobrinus | Dichloromethane | Diterpene | NR | [49] | ||
Culture of Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, P. nigrescens, P. melaninogenica, Propionibacterium acnes | DCM | Diterpenes | NR | [50] | ||
Culture of Streptococcus mutans, Streptococcus sobrinus, Streptococcus cricetus | EtOH 70% | Coumaric, cupressenic, diterpenic and kaurenoic acids | Inhibition of growth and inhibition of sucrose-dependent adherence of mutans streptococci cells to a glass surface at sub-MIC levels | [61] | ||
Culture of Streptococcus mutans | EtOH | Coumarin | NR | [42] | ||
Antibiofilm | In vitro | Streptococcus mutans biofilm | DCM | Diterpenes | NR | [49] |
EtOH | Coumarin | NR | [42] | |||
Anti-hemorrhagic | In vivo | Mice on Bothrops jararacussu, Bothrops moojeni, Bothrops alternatus, Bothrops neuwiedi envenomation | EtOH | NR | NR | [44] |
Wistars rats on Bothropoides jararaca envenomation | EtOH 70% | NR | Inhibition of metalloproteinases | [51] | ||
Anti-inflammatory | In vitro | Peripheral blood mononuclear cells | EtOH 55% | Flavonoids | Blocking the stimulation of lymphocytes | [48] |
Screening kits from Cayman Chemical’s ACE | EtOH 70% | NR | Dual inhibition of cyclooxygenase-1 and 5-lipoxygenase | [18] | ||
In vivo | Edema in mice caused by Bothropoides jararaca envenomation | Water and EtOH | NR | NR | [25] | |
Pleural oedema in rats caused by biogenic, amines, carrageenan | EtOH and a fraction of DCM | NR | Inhibited leukocyte infiltration | [32] | ||
Edema in Wistar rats caused by Crotalus durissus venom | Water | NR | NR | [33] | ||
Edema of Wistars rats on Bothropoides jararaca envenomation | EtOH 70% | Coumarin | Inhibition of inflammatory toxins (phospholipase A2) | [51] | ||
Mice on Bothropoides jararaca envenomation | Water | NR | Inhibition of inflammatory toxins (phospholipase A2) | [54] | ||
Paw edema, pleurisy, peritoneal inflammation in Wistar rats | Water | Coumarin | Inhibition of prostaglandin synthesis | [26] | ||
Pulmonary inflammation caused by coal dust in Wistar rats | EtOH 70% | NR | Protective role in the oxidation of thiol groups | [35] | ||
Antimutagenic | In vivo | Swiss albino mice treated with cyclophosphamide | EtOH 70% | Coumarin | Interact electrostatically with the DNA molecule, so it can interfere with the action of cyclophosphamide | [56] |
Antioxidant | In vitro | DPPH assay | EtOH 70% | NR | NR | [57] |
DPPH assay | Tea | NR | NR | [19] | ||
Oxygen Radical Absorbance Capacity, DPPH, and oxidative stress in dystrophic primary muscle cells of mice | EtOH 70% | Phenolic and caffeoylquinic acids | NR | [16] | ||
Antiproliferative | In vitro | Allium cepa bulb | water | Coumarin | Apoptotic mechanisms that are likely to have been activated at higher concentrations | [24] |
Antiprotozoal | In vitro | Leishmania amazonensis | EtOH 90% | NR | NR | [43] |
Anti-sedation | In vivo | Wistar rats on Crotalus durissus envenomation | Water | NR | NR | [33] |
Antiviral | In vitro | Suid alphaherpesvirus 1 and Bovine Herpesvirus type-1 | Water | NR | NR | [40] |
Human herpes simplex virus type 1 and 2 | EtOH 70% | Coumarin * | NR | [59] | ||
Anxiolytic | In vivo | Mice in light/dark box test | EtOH 70% | NR | Increases GABA levels and decreases glutamate and aspartate concentrations in the hippocampus of mice | [57] |
Bronchodilator | Ex vivo | Human bronchi and guinea-pig trachea | Water and EtOH | coumarin | Reduced histamine-induced contraction and induced a depression of the maximal response | [25] |
Cytotoxicity | In vitro | MDBK cell line | Water | NR | NR | [40] |
In vitro | Brine shrimp | MeOH | NR | NR | [17] | |
Genotoxic | In vitro | Rat hepatoma cells | EtOH 80% | NR | NR | [21] |
Allium cepa bulb | Water | Coumarin | Apoptotic mechanisms that are likely to have been activated at higher concentrations | [24] | ||
Human peripheral blood | Water | Coumarin ** | NR | [28] | ||
Haemolytic | In vitro | Sheep blood | EtOH 90% | NR | NR | [43] |
Hepato-protective | In vivo | Mice treated with carbon tetrachloride | Tea | inulin-type fructan | Protect the liver from carbon tetrachloride-induced hepatotoxicity | [19] |
Molluscicidal | In vivo | Subulina octona | Water | saponins, tannins, and flavonoids | Saponins lyse the cell and complex with steroids. Tannins complex proteins and cause them to precipitate. Flavonoids modify the cytochrome P450 enzyme | [26] |
Nematocidal | In vitro | Pratylenchus jaehni and Pratylenchus zeae | EtOH | NR | NR | [63] |
Vasodilatador | Ex vivo | Isolated rat superior mesenteric vascular bed and rat aorta | Water and EtOH | NR | NR | [25] |
Biological Activity | Method | Model | Solvent | Related Compound | Probable Mechanism of Action | Ref. |
---|---|---|---|---|---|---|
Germination inhibitory | In vitro | Lactuca sativa L. seed, Boston White variety | EtOH 96% | NR | Allelopathic activity | [10] |
Anthelmintic | In vitro | Toxocara canis and Ancylostoma caninum | EtOH 96% | Diterpenes | Prevents embryogenesis of T. canis eggs | [62] |
Antibiofilm | In vitro | Culture of Streptococcus mutans, Streptococcus sobrinus, Streptococcus cricetus | HEX, EtOAc, and n-BU: water (1:1, v/v) | NR | NR | [45] |
Culture of Streptococcus mutans | EtOH | Coumarin | NR | [42] | ||
Anticoagulant | In vitro | Human plasma | EtOH | Coumarin, diterpenes, flavonoids, phenylpropanoids | Prolongs prothrombin time and partial thromboplastin time and reduces the potential for endogenous thrombin generation | [41] |
Anti-inflammatory | In vitro | Screening kits from Cayman Chemical’s ACE | EtOH 70% | Hispidulin, 5-O-E-caffeoylquinic acid, 3-O-E-cumaroylquinic acid, cumaric acid, 3,4-di-O-E-caffeoylquinic acid, apigenin | Dual inhibition of cyclooxygenase ASE-1 and 5-lipoxygenase | [18] |
In vivo | Swiss mice treated with intraperitoneal injection of carrageenan | EtOH 70% | Coumarin | Inhibit neutrophil migration by various means, such as leukocyte-endothelium interaction (rolling and adhesion) or neutrophil transmigration, and also by decreasing vascular permeability | [9] | |
Wistar rat periodontitis | EtOH 65% | NR | Reduced RANKL expression and neutrophil migration | [13] | ||
BALB/c mice sensitized via intraperitoneal injection with ovalbumin and aluminum oxide | EtOH water 1:2 | Coumarin and o-coumaric acid | Stimulation of Docosahexaenoic acid synthesis in the liver | [52] | ||
BALB/c mice with allergic pneumonitis sensitized with ovalbumin and aluminum oxide | EtOH-water 1:2 and water | Coumarin and o-coumaric acid | Inhibition of leukocyte and eosinophil influx | [29] | ||
Carrageenin-induced paw oedema in Wistar rats | Water | Diterpenes | Reduced polymorphonuclear leukocyte migration | [60] | ||
Anti-inflammatory | In vivo | Paw edema, pleurisy, peritoneal inflammation in Wistar rats | Water | Coumarin | Inhibition of prostaglandin synthesis and decreased leukocyte migration | [26] |
Pulmonary inflammation caused by coal dust in Wistar rats | EtOH 70% | NR | Protective role in the oxidation of thiol groups | [34] | ||
Ex vivo | Chick biventer cervicis and Mouse phrenic nerve-diaphragm on Philodryas olfersii envenomation | EtOH | Coumarin | The expression of TNFa and IFNy has been attenuated | [20] | |
Antimicrobial | In vitro | Culture of E. faecalis, P. aeruginosa, A. israelii, and C. albicans | HEX, EtOAc, and n-BU: Water (1:1, v/v) | NR | NR | [45] |
Culture of S. mutans, S. sobrinus, S. cricetus | EtOH 70% | Coumaric, cupressenic, diterpenic, and kaurenoic acids | Inhibition of growth and inhibition of sucrose-dependent adherence of mutans streptococci cells to a glass surface at sub-MIC levels | [61] | ||
Culture of S. mutans | EtOH | Coumarin | NR | [42] | ||
Antimutagenic | In vitro | TA98, TA97a, TA100, and TA1535 strains of Salmonella typhimurium. | Water | Flavonoids | Cytochrome P450 system blockade | [34] |
In vivo | Mice with genotoxicity induced by methyl methanesulfonate and cyclophosphamide | EtOH 70% | Flavonoids | Alter the rate of metabolism and/or detoxification | [38] | |
Anti-neurotoxicity and Anti-myotoxic | Ex vivo | Chick biventer cervicis and Mouse phrenic nerve-diaphragm on Philodryas olfersii envenomation | EtOH | Coumarin | Eversible neuromuscular blockade and attenuated expression of TNFa and IFNy | [20] |
Mouse phrenic nerve-diaphragm muscle on Crotalus durissus terrificus or Bothrops jararacussu envenomation | EtOH 50% | Tannic acid | Formation of precipitates with toxins | [47] | ||
Antioxidant | In vitro | Oxygen Radical Absorbance Capacity, DPPH and oxidative stress in dystrophic primary muscle cells of mice | EtOH 70% | Phenolic and caffeoylquinic acids | NR | [16] |
Antitumoral | In vitro | Tumor Hep-2, HeLa cell line | HEX, EtOAc, CHL, and EtOH 50% | Coumarin, phenolic compounds | Inhibit their proliferation | [6] |
Antiulcerogenic | In vivo | Wistar rats with Indomethacin-induced ulcer | EtOH 70% | Coumarin | Induce prostaglandin production and influence parasympathetic secretion control | [15] |
Indomethacin-induced gastric lesion in mice | EtOH 80% | Coumarin and mucilage | NR | [53] | ||
Bronchodilator | Ex vivo | Isolated rat tracheal rings | EtOH 70% | Coumarin | Changes in the cell’s ability to use or mobilize intracellular calcium and direct stimulation of calcium-activated potassium channels | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, T.P.; Gorski, D.; Cobre, A.d.F.; Lazo, R.E.L.; Bertol, G.; Ferreira, L.M.; Pontarolo, R. Biological Activities of Mikania glomerata and Mikania laevigata: A Scoping Review and Evidence Gap Mapping. Pharmaceuticals 2025, 18, 552. https://doi.org/10.3390/ph18040552
Garcia TP, Gorski D, Cobre AdF, Lazo REL, Bertol G, Ferreira LM, Pontarolo R. Biological Activities of Mikania glomerata and Mikania laevigata: A Scoping Review and Evidence Gap Mapping. Pharmaceuticals. 2025; 18(4):552. https://doi.org/10.3390/ph18040552
Chicago/Turabian StyleGarcia, Thaís Pelegrin, Daniela Gorski, Alexandre de Fátima Cobre, Raul Edison Luna Lazo, Gustavo Bertol, Luana Mota Ferreira, and Roberto Pontarolo. 2025. "Biological Activities of Mikania glomerata and Mikania laevigata: A Scoping Review and Evidence Gap Mapping" Pharmaceuticals 18, no. 4: 552. https://doi.org/10.3390/ph18040552
APA StyleGarcia, T. P., Gorski, D., Cobre, A. d. F., Lazo, R. E. L., Bertol, G., Ferreira, L. M., & Pontarolo, R. (2025). Biological Activities of Mikania glomerata and Mikania laevigata: A Scoping Review and Evidence Gap Mapping. Pharmaceuticals, 18(4), 552. https://doi.org/10.3390/ph18040552