Optimization of Ultrasound-Assisted Obtention of Bluish Anthocyanin Extracts from Butterfly Pea (Clitoria ternatea) Petal Powders Using Natural Deep Eutectic Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of the NADES
2.3. Ultrasound-Assisted Extraction and Its Optimization
2.4. Evaluation of Storage Stability of the Extracts Obtained Under Optimized Conditions
2.4.1. Determination of Total Anthocyanins
2.4.2. DPPH Antioxidant Capacity
2.4.3. Objective Color Analysis and Total Color Difference (ΔE)
2.5. Statistical Evaluation
3. Results and Discussion
3.1. Optimization of the Ultrasound-Assisted Extraction Process of Anthocyanins Using the NADES
3.2. Evaluation of Stability
3.2.1. Objective Color Analysis and Total Color Difference (ΔE)
3.2.2. Total Anthocyanin Content and Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, M.; Zhang, M.; Adhikari, B.; Chang, L. Novel Strategies for Enhancing Quality Stability of Edible Flower During Processing Using Efficient Physical Fields: A Review. Food Chem. 2024, 448, 139077. [Google Scholar] [PubMed]
- Wang, Y.; Liu, T.; Xie, Y.; Li, N.; Liu, Y.; Wen, J.; Zhang, M.; Feng, W.; Huang, J.; Guo, Y.; et al. Clitoria ternatea Blue Petal Extract Protects Against Obesity, Oxidative Stress, and Inflammation Induced by a High-Fat, High-Fructose Diet in C57BL/6 Mice. Food Res. Int. 2022, 162, 112008. [Google Scholar] [PubMed]
- Kumar, R.T.; Kumar, S.R.; Rajesh Kumar, C.T. Phytochemical and Antibacterial Activities of Crude Leaf and Root Extracts of Clitoria ternatea Varieties (Fabaceae). J. Pharmacogn. Phytochem. 2017, 6, 1104–1108. [Google Scholar]
- Mehmood, A.; Ishaq, M.; Zhao, L.; Yaqoob, S.; Safdar, B.; Nadeem, M.; Munir, M.; Wang, C. Impact of Ultrasound and Conventional Extraction Techniques on Bioactive Compounds and Biological Activities of Blue Butterfly Pea Flower (Clitoria ternatea L.). Ultrason. Sonochem. 2019, 51, 12–19. [Google Scholar]
- Escher, G.B.; Marques, M.B.; do Carmo, M.A.V.; Azevedo, L.; Furtado, M.M.; Sant’Ana, A.S.; da Silva, M.C.; Genovese, M.I.; Wen, M.; Zhang, L. Clitoria ternatea L. Petal Bioactive Compounds Display Antioxidant, Antihemolytic and Antihypertensive Effects, Inhibit α-Amylase and α-Glucosidase Activities and Reduce Human LDL Cholesterol and DNA Induced Oxidation. Food Res. Int. 2020, 128, 108763. [Google Scholar]
- Nithianantham, K.; Ping, K.Y.; Latha, L.Y.; Jothy, S.L.; Darah, I.; Chen, Y.; Chew, A.L.; Sasidharan, S. Evaluation of Hepatoprotective Effect of Methanolic Extract of Clitoria ternatea (Linn.) Flower Against Acetaminophen-Induced Liver Damage. Asian Pac. J. Trop. Dis. 2013, 3, 314–319. [Google Scholar]
- Vidana Gamage, G.C.; Lim, Y.Y.; Choo, W.S. Anthocyanins from Clitoria ternatea Flower: Biosynthesis, Extraction, Stability, Antioxidant Activity, and Applications. Front. Plant Sci. 2021, 12, 792303. [Google Scholar]
- Tena, N.; Asuero, A.G. Up-to-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants 2022, 11, 286. [Google Scholar] [CrossRef]
- Lin, S.; Meng, X.; Tan, C.; Tong, Y.; Wan, M.; Wang, M.; Zhao, Y.; Deng, H.; Kong, Y.; Ma, Y. Composition and Antioxidant Activity of Anthocyanins from Aronia Melanocarpa Extracted Using an Ultrasonic-Microwave-Assisted Natural Deep Eutectic Solvent Extraction Method. Ultrason Sonochem. 2022, 89, 106102. [Google Scholar]
- Tobiszewski, M.; Namieśnik, J. Greener Organic Solvents in Analytical Chemistry. Curr. Opin. Green Sustain. Chem. 2017, 5, 1–4. [Google Scholar]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, M.; Alañón, M.E.; Arráez-Román, D.; Segura-Carretero, A. Enhanced and Green Extraction of Bioactive Compounds from Lippia citriodora by Tailor-Made Natural Deep Eutectic Solvents. Food Res. Int. 2018, 111, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jung, Y.S.; Song, N.E.; Yoo, M.; Seo, D.H.; Kim, H.S.; Nam, T.G. Ultrasound-Assisted Extraction of Major Anthocyanins in Korean Black Raspberries (Rubus coreanus Miquel) Using Natural Deep Eutectic Solvents. LWT 2024, 199, 116121. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, S.; Zhang, J.; Liu, W. Ultrasound-Assisted Natural Deep Eutectic Solvent Extraction of Anthocyanin from Vitis davidii Foex. Pomace: Optimization, Identification, Antioxidant Activity and Stability. Heliyon 2024, 10, e33066. [Google Scholar] [CrossRef]
- Aslan Türker, D.; Doğan, M. Ultrasound-Assisted Natural Deep Eutectic Solvent Extraction of Anthocyanin from Black Carrots: Optimization, Cytotoxicity, In-Vitro Bioavailability and Stability. Food Bioprod. Process. 2022, 132, 99–113. [Google Scholar] [CrossRef]
- Krgović, N.; Jovanović, M.S.; Nedeljković, S.K.; Šavikin, K.; Lješković, N.J.; Ilić, M.; Živković, J.; Menković, N. Natural Deep Eutectic Solvents Extraction of Anthocyanins—Effective Method for Valorisation of Black Raspberry (Rubus occidentalis L.) Pomace. Ind. Crops Prod. 2025, 223, 120237. [Google Scholar] [CrossRef]
- Hong, S.M.; Kamaruddin, A.H.; Nadzir, M.M. Sustainable Ultrasound-Assisted Extraction of Polyphenols from Cinnamomum cassia Bark Using Hydrophilic Natural Deep Eutectic Solvents. Process Biochem. 2023, 132, 323–336. [Google Scholar] [CrossRef]
- Galanakis, C.M. Functionality of Food Components and Emerging Technologies. Foods 2021, 10, 128. [Google Scholar] [CrossRef]
- Handayani, D.P.; Kusuma, H.S.; Timotius, D.; Sarastika, T.; Mahfud, M.; Darmokoesoemo, H. Extraction of Centella asiatica Herb Using Microwave-Assisted Solvent Extraction: Optimization of Crude Extract Using Box-Behnken Design. Green Anal. Chem. 2024, 11, 100146. [Google Scholar] [CrossRef]
- Nhut Pham, T.; Chinh Nguyen, D.; Duc Lam, T.; Van Thinh, P.; Tien Le, X.; Vo Nguyen, D.V.; Quang, H.V.; Duy Nguyen, T.; Bach, L.G. Extraction of Anthocyanins from Butterfly Pea (Clitoria ternatea L. Flowers) in Southern Vietnam: Response Surface Modeling for Optimization of the Operation Conditions. IOP Conf. Ser. Mater. Sci. Eng. 2019, 542, 012032. [Google Scholar] [CrossRef]
- Shen, Y.; Du, L.; Zeng, H.; Zhang, X.; Prinyawiwatkul, W.; Alonso-Marenco, J.R.; Xu, Z. Butterfly Pea (Clitoria ternatea) Seed and Petal Extracts Decreased HEp-2 Carcinoma Cell Viability. Int. J. Food. Sci. Technol. 2016, 51, 1860–1868. [Google Scholar] [CrossRef]
- Mahmad, N.; Taha, R.M.; Othman, R.; Abdullah, S.; Anuar, N.; Elias, H.; Rawi, N. Anthocyanin as Potential Source for Antimicrobial Activity in Clitoria ternatea L. and Dioscorea alata L. Pigment Resin Technol. 2018, 47, 490–495. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Extraction of Phenolic Compounds from Olive Pomace by Using Natural Deep Eutectic Solvents and Innovative Extraction Techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Vinatoru, M. Ultrasonically Assisted Extraction (UAE) of Natural Products Some Guidelines for Good Practice and Reporting. Ultrason. Sonochem. 2015, 25, 94–95. [Google Scholar] [CrossRef]
- Borges, L.L.R.; Freitas, V.V.; Nascimento, A.L.A.A.; Fernandes, J.G.; Kobi, H.d.B.; Eller, M.R.; Barros, F.A.R.d.; de Souza, L.Â.; Castro, G.A.D.; de Carvalho, A.F.; et al. Enhancement of Phenolic Compounds Bioaccessibility in Jabuticaba Wine Through Fermentation by Saccharomyces cerevisiae. Food Bioprod. Process. 2024, 148, 198–207. [Google Scholar] [CrossRef]
- Boroski, M.; Visentainer, J.V.; Cottica, S.M.; Morais, D.R. Antioxidantes Princípios e Métodos Analíticos; Appris: Curitiba, Brazil, 2015; ISBN 8581927300. [Google Scholar]
- Santos, L.G.; Martins, V.G. Optimization of the Green Extraction of Polyphenols from the Edible Flower Clitoria ternatea by High-Power Ultrasound: A Comparative Study with Conventional Extraction Techniques. J. Appl. Res. Med. Aromat. Plants. 2023, 34, 100458. [Google Scholar] [CrossRef]
- Ferarsa, S.; Zhang, W.; Moulai-Mostefa, N.; Ding, L.; Jaffrin, M.Y.; Grimi, N. Recovery of Anthocyanins and Other Phenolic Compounds from Purple Eggplant Peels and Pulps Using Ultrasonic-Assisted Extraction. Food Bioprod. Process. 2018, 109, 19–28. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, G.; Khan, M.A.; Yan, Z.; Beta, T. Ultrasonic-Assisted Enzymatic Extraction and Identification of Anthocyanin Components from Mulberry Wine Residues. Food Chem. 2020, 323, 126714. [Google Scholar] [CrossRef]
- Gadioli Tarone, A.; Keven Silva, E.; Dias de Freitas Queiroz Barros, H.; Baú Betim Cazarin, C.; Roberto Marostica Junior, M. High-Intensity Ultrasound-Assisted Recovery of Anthocyanins from Jabuticaba By-Products Using Green Solvents: Effects of Ultrasound Intensity and Solvent Composition on the Extraction of Phenolic Compounds. Food Res. Int. 2021, 140, 110048. [Google Scholar] [CrossRef]
- Pashazadeh, H.; Ali Redha, A.; Johnson, J.B.; Koca, I. Extraction Optimization and Microencapsulation of Anthocyanins from Okra Flowers: Utilizing Plant Waste as a Source of Bioactive Compounds. Food Biosci. 2025, 63, 105710. [Google Scholar] [CrossRef]
- Boateng, I.D.; Mustapha, A.; Kuehnel, L.; Daubert, C.R.; Kumar, R.; Agliata, J.; Flint-Garcia, S.; Wan, C.; Somavat, P. From Purple Corn Waste (Pericarp) to Polyphenol-Rich Extract with Higher Bioactive Contents and Superior Product Qualities Using Two-Step Optimization Techniques. Ind. Crops. Prod. 2023, 200, 116871. [Google Scholar]
- Stéphanie Martins de Freitas, T.; Menezes de Rodrigues, G.; Matta Fakhouri, F.; da Silva, C.; Andréa Lima Cardoso, C.; Ignacio Velasco, J.; Tostes Filgueiras, C.; Augusto dos Santos Garcia, V. Application of the Box–Behnken Experimental Design for the Extraction of Phenolic Compounds from Araçá-Roxo (Psidium myrtoides). J. Food Process. Preserv. 2021, 45, e15260. [Google Scholar]
- Li, Q.; Zhang, F.; Wang, Z.; Feng, Y.; Han, Y. Advances in the Preparation, Stability, Metabolism, and Physiological Roles of Anthocyanins: A Review. Foods 2023, 12, 3969. [Google Scholar] [CrossRef] [PubMed]
- Meenu, M.; Bansal, V.; Rana, S.; Sharma, N.; Kumar, V.; Arora, V.; Garg, M. Deep Eutectic Solvents (DESs) and Natural Deep Eutectic Solvents (NADESs): Designer Solvents for Green Extraction of Anthocyanin. Sustain. Chem. Pharm. 2023, 34, 101168. [Google Scholar]
- Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.Z.; Marrucho, I.M. Menthol-Based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustain. Chem. Eng. 2015, 3, 2469–2477. [Google Scholar]
- Sun, J.; Mei, Z.; Tang, Y.; Ding, L.; Jiang, G.; Zhang, C.; Sun, A.; Bai, W. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-Glucoside Exposed to Ultrasound Power at Low Temperature. Molecules 2016, 21, 1109. [Google Scholar] [CrossRef]
- Savi, L.K.; Dias, M.C.G.C.; Carpine, D.; Waszczynskyj, N.; Ribani, R.H.; Haminiuk, C.W.I. Natural Deep Eutectic Solvents (NADES) Based on Citric Acid and Sucrose as a Potential Green Technology: A Comprehensive Study of Water Inclusion and Its Effect on Thermal, Physical and Rheological Properties. Int. J. Food Sci. Technol. 2019, 54, 898–907. [Google Scholar]
- Milošević, S.; Bebek Markovinović, A.; Teslić, N.; Mišan, A.; Pojić, M.; Brčić Karačonji, I.; Jurica, K.; Lasić, D.; Putnik, P.; Bursać Kovačević, D.; et al. Use of Natural Deep Eutectic Solvent (NADES) as a Green Extraction of Antioxidant Polyphenols from Strawberry Tree Fruit (Arbutus unedo L.): An Optimization Study. Microchem. J. 2024, 200, 110284. [Google Scholar]
- Gerçek, Y.C.; Kutlu, N.; Çelik, S.; Bayram, S.; Kırkıncı, S.; Ecem Bayram, N. Optimized Ultrasonic-NaDES Extraction of Anthocyanins, Polyphenolics, and Organic Acids from Chokeberry Fruit with Blueness and Antimicrobial Evaluation. Microchem. J. 2025, 210, 113061. [Google Scholar]
- Dai, Y.; Rozema, E.; Verpoorte, R.; Choi, Y.H. Application of Natural Deep Eutectic Solvents to the Extraction of Anthocyanins from Catharanthus roseus with High Extractability and Stability Replacing Conventional Organic Solvents. J. Chromatogr. A 2016, 1434, 50–56. [Google Scholar]
- Verma, D.; Sharma, N.; Malhotra, U. Structural Chemistry and Stability of Anthocyanins. Pharma Innov. J. 2023, 12, 1366–1373. [Google Scholar] [CrossRef]
- Nascimento, G.K.S.; Santos, T.M.d.; Andressa, I.; Rodrigues, S.M.; Silva, L.E.P.d.; Benassi, V.M.; Schmiele, M. Aplicabilidade Da Farinha de Sabugo Roxo de Milho e Do Coquetel Rico Em Xilanase Produzido Pelo Fungo Filamentoso Fusarium sp. EA 1.3.1 Em Pães. Braz. J. Devel. 2023, 9, 8031–8050. [Google Scholar] [CrossRef]
- Bordim, J.; Marques, C.; Calegari, M.A.; Oldoni, T.L.C.; Mitterer-Daltoé, M.L. Potential Effect of Naturally Colored Antioxidants from Moringa Oleifera, Propolis, and Grape Pomace—Evaluation of Color and Shelf Life of Chicken Paté. Food Chem. Adv. 2023, 3, 100409. [Google Scholar] [CrossRef]
- Escher, G.B.; Wen, M.; Zhang, L.; Rosso, N.D.; Granato, D. Phenolic Composition by UHPLC-Q-TOF-MS/MS and Stability of Anthocyanins from Clitoria ternatea L. (Butterfly Pea) Blue Petals. Food Chem. 2020, 331, 127341. [Google Scholar] [CrossRef]
- Bu, F.; Zhao, Y.; Li, B.; Zhang, X.; Li, J. The Effect of Choline Chloride-Butanediol Based Deep Eutectic Solvents on Ultrasound-Assisted Extraction, Antioxidant Activity and Stability of Anthocyanins Extracted from Perilla frutescens (L.) Britt. Sustain. Chem. Pharm. 2023, 32, 101000. [Google Scholar] [CrossRef]
- Vahdati, M.; Tamaddon, F.; Farahmandfar, R.; Kenari, R.E.; Farbod, F. Extraction of Anthocyanin Pigments from the Iranian Jumbo Fruits by Novel Nano-Fluids Based on Hafnium Metal Organic Frameworks and Natural Deep Eutectics. J. Food Compos. Anal. 2025, 139, 107100. [Google Scholar] [CrossRef]
- Huang, H.; Guo, S.; Xu, Y.; Ettoumi, F.e.; Fang, J.; Yan, X.; Xie, Z.; Luo, Z.; Cheng, K. Valorization and Protection of Anthocyanins from Strawberries (Fragaria×ananassa Duch.) by Acidified Natural Deep Eutectic Solvent Based on Intermolecular Interaction. Food Chem. 2024, 447, 138971. [Google Scholar] [CrossRef]
- Gençdağ, E.; Özdemir, E.E.; Demirci, K.; Görgüç, A.; Yılmaz, F.M. Copigmentation and Stabilization of Anthocyanins Using Organic Molecules and Encapsulation Techniques. Curr. Plant Biol. 2022, 29, 100238. [Google Scholar] [CrossRef]
- Arruda, H.S.; Silva, E.K.; Araujo, N.M.P.; Pereira, G.A.; Pastore, G.M.; Junior, M.R.M. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021, 26, 2632. [Google Scholar] [CrossRef]
- Bi, W.; Tian, M.; Row, K.H. Evaluation of Alcohol-Based Deep Eutectic Solvent in Extraction and Determination of Flavonoids with Response Surface Methodology Optimization. J. Chromatogr. A 2013, 1285, 22–30. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of Thermal Processing on Anthocyanin Stability in Foods; Mechanisms and Kinetics of Degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Dai, Y.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents Providing Enhanced Stability of Natural Colorants from Safflower (Carthamus tinctorius). Food Chem. 2014, 159, 116–121. [Google Scholar] [CrossRef]
Variable | Factor | Level | ||
---|---|---|---|---|
X | Low (−1) | Medium (0) | High (+1) | |
Time (min) | X1 | 15 | 32.5 | 50 |
Temperature (°C) | X2 | 40 | 60 | 80 |
Petal/solvent mass ratio (m/v) | X3 | 2% | 4.5% | 7% |
Run | X1 (°C) | X2 (min) | X3 (%) | Time (min) | Temperature (°C) | Powder/ Solvent (%) | TAC Response (mg DGE/L) | TAC Predicted (mg DGE/L) |
---|---|---|---|---|---|---|---|---|
1 | −1 | −1 | 0 | 15 | 40 | 4.5% | 23.31 | 16.70 |
2 | +1 | −1 | 0 | 50 | 40 | 4.5% | 40.80 | 43.25 |
3 | −1 | +1 | 0 | 15 | 80 | 4.5% | 49.54 | 38.52 |
4 | +1 | +1 | 0 | 50 | 80 | 4.5% | 51.48 | 65.07 |
5 | −1 | 0 | −1 | 15 | 60 | 2% | 12.95 | 22.37 |
6 | +1 | 0 | −1 | 50 | 60 | 2% | 32.81 | 25.39 |
7 | −1 | 0 | +1 | 15 | 60 | 7% | 18.56 | 32.86 |
8 | +1 | 0 | +1 | 50 | 60 | 7% | 85.48 | 82.94 |
9 | 0 | −1 | −1 | 32.5 | 40 | 2% | 19.64 | 12.97 |
10 | 0 | +1 | −1 | 32.5 | 80 | 2% | 29.31 | 34.79 |
11 | 0 | −1 | +1 | 32.5 | 40 | 7% | 43.04 | 46.99 |
12 | 0 | +1 | +1 | 32.5 | 80 | 7% | 83.72 | 68.81 |
13 | 0 | 0 | 0 | 32.5 | 60 | 4.5% | 41.28 | 40.89 |
14 | 0 | 0 | 0 | 32.5 | 60 | 4.5% | 37.45 | 40.89 |
15 | 0 | 0 | 0 | 32.5 | 60 | 4.5% | 43.93 | 40.89 |
Variables | Estimate | Std. Error | t-Value | p-Value |
---|---|---|---|---|
Intercept | 40.8869 | 6.6250 | 6.1717 | 0.0016 |
X1 (L) | 13.2755 | 4.0569 | 3.2723 | 0.0221 |
X2 (L) | 10.9085 | 4.0569 | 2.6889 | 0.0433 |
X3 (L) | 17.0096 | 4.0569 | 4.1927 | 0.0086 |
X1 * X2 | −3.8855 | 5.7374 | −0.6772 | 0.5283 |
X1 * X3 | 11.7645 | 5.7374 | 2.0505 | 0.0955 |
X2 * X3 | 7.7560 | 5.7374 | 1.3518 | 0.2344 |
X12 (Q) | −3.0381 | 5.9717 | −0.5087 | 0.6326 |
X22 (Q) | 3.4348 | 5.9717 | 0.5752 | 0.5901 |
X32 (Q) | −0.3968 | 5.9717 | −0.0664 | 0.9496 |
Intercept | 40.8869 | 2.6383 | 15.4974 | 2.554 × 10−8 |
X1 (L) | 13.2755 | 3.6127 | 3.6747 | 0.0043 |
X2 (L) | 10.9085 | 3.6127 | 3.0195 | 0.0120 |
X3 (L) | 17.0096 | 3.6127 | 4.7083 | 0.0008 |
X1 * X3 | 11.7645 | 5.1091 | 2.3027 | 0.0441 |
DF | SS | MS | F-Value | p-Value | |
---|---|---|---|---|---|
X1; X2; X3 (L) | 3 | 4676.50 | 1558.83 | 14.9299 | 0.0005 |
X * X3 | 1 | 553.60 | 553.61 | 5.3023 | 0.0441 |
Residuals | 10 | 1044.10 | 104.41 | ||
Lack of fit | 8 | 1022.90 | 127.86 | 12.0712 | 0.0787 |
Pure error | 2 | 21.20 | 10.59 | ||
R2 = 0.8336 |
Factors/Interactions | Levels | Color Attribute | p > F 1 | Color Attribute | p > F 1 | ||
---|---|---|---|---|---|---|---|
L* value | c* value | ||||||
Extracting solvent | ChCl/Gly | 25.55 ± 1.09 a | <0.0001 | 1.36 ± 0.18 a | <0.0001 | ||
Water | 26.25 ± 0.91 b | 2.13 ± 0.90 b | |||||
Storage conditions | Illumination | 25.77 ± 1.37 c | <0.0001 | 1.53 ± 0.48 c | <0.0001 | ||
Lack of light | 25.93 ± 1.13 b | 2.25 ± 1.30 a | |||||
Refrigerated | 26.00 ± 0.67 a | 1.66 ± 0.34 b | |||||
Environment | 25.90 ± 1.02 b | 1.53 ± 0.35 c | |||||
Extracting solvent * Storage conditions | ChCl/Gly | Water solvent | <0.0001 | ChCl:Gly | Water solvent | <0.0001 | |
Illumination | 25.37 ± 1.64 B,c | 26.18 ± 0.93 A,c | 1.39 ± 0.24 B | 1.67 ± 0.62 A,d | |||
Lack of light | 25.31 ± 1.27 B,c | 26.54 ± 0.46 A,a | 1.38 ± 0.24 B | 3.12 ± 1.20 A,a | |||
Refrigerated | 25.68 ± 0.52 B,b | 26.33 ± 0.66 A,b | 1.36 ± 0.13 B | 1.95 ± 0.16 A,b | |||
Environment | 25.84 ± 0.56 B,a | 25.96 ± 1.36 A,d | 1.30 ± 0.12 B | 1.77 ± 0.36 A,c | |||
h* value, in degrees | ∆E | ||||||
Extracting solvent | ChCl/Gly | 343.33 ± 4.42 a | <0.0001 | 0.76 ± 0.82 b | <0.0001 | ||
Water | 346.50 ± 13.52 b | 1.05 ± 0.91 a | |||||
Storage conditions | Illumination | 342.71 ± 14.4 b | <0.0001 | 1.09 ± 1.01 a | <0.0001 | ||
Lack of light | 350.08 ± 6.90 a | 1.16 ± 1.01 a | |||||
Refrigerated | 343.75 ± 10.4 b | 0.60 ± 0.46 c | |||||
Environment | 343.11 ± 4.77 b | 0.76 ± 0.81 b | |||||
Extracting solvent * Storage conditions | CHCl:Gly solvent | Water solvent | <0.0001 | ChCl/Gly | Water solvent | <0.0001 | |
Illumination | 342.20 ± 4.24 | 343.21 ± 20.4 b | 1.15 ± 1.23 A,a | 1.03 ± 0.78 B,b | |||
Lack of light | 344.07 ± 4.10 B | 356.08 ± 1.99 A,a | 0.96 ± 0.86 B,b | 1.37 ± 1.15 A,a | |||
Refrigerated | 344.22 ± 5.57 | 343.28 ± 13.9 b | 0.45 ± 0.35 B,c | 0.75 ± 0.53 A,c | |||
Environment | 342.81 ± 3.79 | 343.41 ± 5.74 b | 0.49 ± 0.35 B,c | 1.03 ± 1.04 A,b |
Factors/Interactions | Levels | Antioxidant Capacity (µmol of Trolox Equivalent/mL Extract) | p > F 1 | TAC (mg DGE/L) | p > F 1 | ||
---|---|---|---|---|---|---|---|
Extracting solvent | ChCl/Gly | 156.43 ± 85.52 a | <0.0001 | 374.65 ± 47.21 a | <0.0001 | ||
Water | 93.01 ± 37.53 b | 211.63 ± 56.67 b | |||||
Storage conditions | Illumination | 101.08 ± 59.05 d | <0.0001 | 279.73 ± 106.0 c | <0.0001 | ||
Lack of light | 135.47 ± 80.89 b | 292.44 ± 97.50 b | |||||
Refrigerated | 140.23 ± 80.14 a | 307.60 ± 89.95 a | |||||
Environment | 121.91 ± 67.82 c | 292.79 ± 98.05 b | |||||
Extracting solvent * Storage conditions | CHCl:Gly solvent | Water solvent | <0.0001 | CHCl:Gly solvent | Water solvent | <0.0001 | |
Illumination | 114.81 ± 73.28 A,d | 87.35 ± 38.84 B,c | 365.29 ± 63.47 A,d | 194.18 ± 59.01 B,d | |||
Lack of light | 172.43 ± 93.84 A,b | 98.50 ± 43.50 B,a | 367.65 ± 55.94 A,c | 217.23 ± 66.36 B,b | |||
Refrigerated | 188.93 ± 84.89 A,a | 92.31 ± 35.19 B,ab | 389.41 ± 27.49 A,a | 225.96 ± 40.26 B,a | |||
Environment | 149.93 ± 81.20 A,c | 93.88 ± 36.19 B,ab | 376.41 ± 35.00 A,b | 209.16 ± 60.13 B,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia, N.M.A.; Andressa, I.; Cunha, J.S.; Costa, N.d.A.; Borges, L.L.R.; Fontes, E.A.F.; Oliveira, E.B.d.; Leite Júnior, B.R.d.C.; Bhering, L.L.; Saldaña, M.D.A.; et al. Optimization of Ultrasound-Assisted Obtention of Bluish Anthocyanin Extracts from Butterfly Pea (Clitoria ternatea) Petal Powders Using Natural Deep Eutectic Solvents. Plants 2025, 14, 1042. https://doi.org/10.3390/plants14071042
Maia NMA, Andressa I, Cunha JS, Costa NdA, Borges LLR, Fontes EAF, Oliveira EBd, Leite Júnior BRdC, Bhering LL, Saldaña MDA, et al. Optimization of Ultrasound-Assisted Obtention of Bluish Anthocyanin Extracts from Butterfly Pea (Clitoria ternatea) Petal Powders Using Natural Deep Eutectic Solvents. Plants. 2025; 14(7):1042. https://doi.org/10.3390/plants14071042
Chicago/Turabian StyleMaia, Nicole Marina Almeida, Irene Andressa, Jeferson Silva Cunha, Nataly de Almeida Costa, Larissa Lorrane Rodrigues Borges, Edimar Aparecida Filomeno Fontes, Eduardo Basílio de Oliveira, Bruno Ricardo de Castro Leite Júnior, Leonardo Lopes Bhering, Marleny Doris Aranda Saldaña, and et al. 2025. "Optimization of Ultrasound-Assisted Obtention of Bluish Anthocyanin Extracts from Butterfly Pea (Clitoria ternatea) Petal Powders Using Natural Deep Eutectic Solvents" Plants 14, no. 7: 1042. https://doi.org/10.3390/plants14071042
APA StyleMaia, N. M. A., Andressa, I., Cunha, J. S., Costa, N. d. A., Borges, L. L. R., Fontes, E. A. F., Oliveira, E. B. d., Leite Júnior, B. R. d. C., Bhering, L. L., Saldaña, M. D. A., & Vieira, É. N. R. (2025). Optimization of Ultrasound-Assisted Obtention of Bluish Anthocyanin Extracts from Butterfly Pea (Clitoria ternatea) Petal Powders Using Natural Deep Eutectic Solvents. Plants, 14(7), 1042. https://doi.org/10.3390/plants14071042