Identification and Specific KASP Marker Development for Durum Wheat T2DS-2AS.2AL Translocation Line YL-429 with Wax Inhibitor Gene IW2
Abstract
:1. Introduction
2. Results
2.1. Karyotype Characterization
2.2. Breakpoint Identification Through Resequencing
2.3. Identification of Specific KASP Markers
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Cytogenetic Analysis
4.3. Genome Resequencing
4.4. BSA Sequencing and Specific KASP Marker Design
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zingale, S.; Spina, A.; Ingrao, C.; Fallico, B.; Timpanaro, G.; Anastasi, U.; Guarnaccia, P. Factors affecting the nutritional, health, and technological quality of durum wheat for pasta-making: A systematic literature review. Plants 2023, 12, 530. [Google Scholar] [CrossRef] [PubMed]
- De Vita, P.; Taranto, F. Durum wheat (Triticum turgidum ssp. durum) breeding to meet the challenge of climate change. In Advances in Plant Breeding Strategies: Cereals; Springer: Cham, Switzerland, 2019; Volume 5, pp. 471–524. [Google Scholar]
- Grosse-Heilmann, M.; Cristiano, E.; Deidda, R.; Viola, F. Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects. Resour. Environ. Sustain. 2024, 17, 100170. [Google Scholar]
- Roselló, M.; Royo, C.; Álvaro, F.; Villegas, D.; Nazco, R.; Soriano, J.M. Pasta-making quality QTLome from Mediterranean durum wheat landraces. Front. Plant Sci. 2018, 9, 1512. [Google Scholar]
- Bustos, M.C.; Perez, G.T.; Leon, A.E. Structure and quality of pasta enriched with functional ingredients. RSC Adv. 2015, 5, 30780–30792. [Google Scholar]
- Petitot, M.; Abecassis, J.; Micard, V. Structuring of pasta components during processing: Impact on starch and protein digestibility and allergenicity. Trends Food Sci. Technol. 2009, 20, 521–532. [Google Scholar]
- Soh, H.N.; Sissons, M.J.; Turner, M.A. Effect of starch granule size distribution and elevated amylose content on durum dough rheology and spaghetti cooking quality. Cereal Chem. 2006, 83, 513–519. [Google Scholar]
- Tudorica, C.M.; Kuri, V.; Brennan, C.S. Nutritional and physicochemical characteristics of dietary fiber enriched pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar]
- Granfeldt, Y.; Björck, I. Glycemic response to starch in pasta: A study of mechanisms of limited enzyme availability. J. Cereal Sci. 1991, 14, 47–61. [Google Scholar]
- Xynias, I.N.; Mylonas, I.; Korpetis, E.G.; Ninou, E.; Tsaballa, A.; Avdikos, I.D.; Mavromatis, A.G. Durum wheat breeding in the Mediterranean region: Current status and future prospects. Agronomy 2020, 10, 432. [Google Scholar] [CrossRef]
- Yaniv, E.; Raats, D.; Ronin, Y.; Korol, A.B.; Grama, A.; Bariana, H.; Dubcovsky, J.; Schulman, A.H.; Fahima, T. Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Mol. Breed. 2015, 35, 43. [Google Scholar]
- Phan, H.T.; Rybak, K.; Bertazzoni, S.; Furuki, E.; Dinglasan, E.; Hickey, L.T.; Oliver, R.P.; Tan, K.C. Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies. Theor. Appl. Genet. 2018, 131, 1223–1238. [Google Scholar] [PubMed]
- Vishwakarma, M.K.; Mishra, V.K.; Gupta, P.K.; Yadav, P.S.; Kumar, H.; Joshi, A.K. Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-Gangetic Plains through marker assisted backcross breeding. Curr. Plant. Biol. 2014, 1, 60–67. [Google Scholar]
- Maccaferri, M.; Sanguineti, M.C.; Corneti, S.; Ortega, J.L.A.; Salem, M.B.; Bort, J.; DeAmbrogio, E.; Moral, L.F.G.D.; Demontis, A.; El-Ahmed, A.; et al. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 2008, 178, 489–511. [Google Scholar] [PubMed]
- Yildirim, A.; Sönmezoğlu, Ö.A.; Sayaslan, A.; Koyuncu, M.; Güleç, T.; Kandemir, N. Marker-assisted breeding of a durum wheat cultivar for γ-gliadin and LMW-glutenin proteins affecting pasta quality. Turk. J. Agric. For. 2013, 37, 527–533. [Google Scholar]
- Hassouni, E.K.; Belkadi, B.; Filali-Maltouf, A.; Tidiane-Sall, A.; Al-Abdallat, A.; Nachit, M.; Bassi, F.M. Loci controlling adaptation to heat stress occurring at the reproductive stage in durum wheat. Agronomy 2019, 9, 414. [Google Scholar] [CrossRef]
- Koch, K.; Ensikat, H.J. The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 2008, 39, 759–772. [Google Scholar]
- Jenks, M.A.; Ashworth, E.N.; Janick, J. Plant epicuticular waxes: Function, production, and genetics. Hortic. Rev. 1999, 23, 1–54. [Google Scholar]
- Eigenbrode, S.D.; Espelie, K.E. Effects of plant epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 1995, 40, 171–194. [Google Scholar]
- Kunst, L.; Samuels, A.L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 2003, 42, 51–80. [Google Scholar]
- Seo, P.J.; Lee, S.B.; Suh, M.C.; Park, M.J.; Go, Y.S.; Park, C.M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 2011, 23, 1138–1152. [Google Scholar]
- Mao, B.; Cheng, Z.; Lei, C.; Xu, F.; Gao, S.; Ren, Y.; Wang, J.; Zhang, X.; Wang, J.; Wu, F.; et al. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta 2012, 235, 39–52. [Google Scholar] [PubMed]
- Zhu, X.; Xiong, L. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proc. Natl. Acad. Sci. USA 2013, 110, 17790–17795. [Google Scholar] [PubMed]
- Johnson, D.A.; Richards, R.A.; Turner, N.C. Yield, water relations, gas exchange, and surface reflectances of near-isogenic wheat lines differing in glaucousness 1. Crop Sci. 1983, 23, 318–325. [Google Scholar]
- Richards, R.; Rawson, H.; Johnson, D. Glaucousness in wheat: Its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. Funct. Plant Biol. 1986, 13, 465–473. [Google Scholar]
- Zhang, Z.; Wang, W.; Li, W. Genetic interactions underlying the biosynthesis and inhibition of β-diketones in wheat and their impact on glaucousness and cuticle permeability. PLoS ONE 2013, 8, e54129. [Google Scholar]
- Simmonds, J.R.; Fish, L.J.; Leverington-Waite, M.A.; Wang, Y.; Howell, P.; Snape, J.W. Mapping of a gene (Vir) for a non-glaucous, viridescent phenotype in bread wheat derived from Triticum dicoccoides, and its association with yield variation. Euphytica 2008, 159, 333–341. [Google Scholar]
- Tsunewaki, K. Comparative gene analysis of common wheat and its ancestral species. II. Waxiness, growth habit and awnedness. Japan. J. Bot. 1966, 19, 175–229. [Google Scholar]
- Tsunewaki, K.; Ebana, K. Production of near-isogenic lines of common wheat for glaucousness and genetic basis of this trait clarified by their use. Genes Genet. Syst. 1999, 74, 33–41. [Google Scholar]
- Watanabe, N.; Takesada, N.; Shibata, Y.; Ban, T. Genetic mapping of the genes for glaucous leaf and tough rachis in Aegilops tauschii, the D-genome progenitor of wheat. Euphytica 2005, 144, 119–123. [Google Scholar]
- Liu, Q.; Ni, Z.; Peng, H.; Song, W.; Liu, Z.; Sun, Q. Molecular mapping of a dominant non-glaucousness gene from synthetic hexaploid wheat (Triticum aestivum L.). Euphytica 2007, 155, 71–78. [Google Scholar] [CrossRef]
- Yoshiya, K.; Watanabe, N.; Kuboyama, T. Genetic mapping of the genes for non-glaucous phenotypes in tetraploid wheat. Euphytica 2011, 177, 293–297. [Google Scholar]
- Wu, H.; Qin, J.; Han, J.; Zhao, X.; Ouyang, S.; Liang, Y.; Zhang, D.; Wang, Z.; Wu, Q.; Xie, J.; et al. Comparative high-resolution mapping of the wax inhibitors Iw1 and Iw2 in hexaploid wheat. PLoS ONE 2013, 8, e84691. [Google Scholar]
- Nishijima, R.; Iehisa, J.C.; Matsuoka, Y.; Takumi, S. The cuticular wax inhibitor locus Iw2 in wild diploid wheat Aegilops tauschii: Phenotypic survey, genetic analysis, and implications for the evolution of common wheat. BMC Plant Biol. 2014, 14, 246. [Google Scholar]
- Huang, D.; Feurtado, J.A.; Smith, M.A.; Flatman, L.K.; Koh, C.; Cutler, A.J. Long noncoding miRNA gene represses wheat β-diketone waxes. Proc. Natl. Acad. Sci. USA 2017, 114, 3149–3158. [Google Scholar]
- Lu, P.; Qin, J.; Wang, G.; Wang, L.; Wang, Z.; Wu, Q.; Xie, J.; Liang, Y.; Wang, Y.; Zhang, D.; et al. Comparative fine mapping of the Wax 1 (W1) locus in hexaploid wheat. Theor. Appl. Genet. 2015, 128, 1595–1603. [Google Scholar]
- Yang, F.; Liu, Z.; Wan, H.; Yang, S.; Yang, N.; Ding, H.; Jiang, Y.; Feng, J.; Zhang, J.; Wang, Y.; et al. Pentaploidization allows introgression of Aegilops tauschii into tetraploid wheat. Crop J. 2025, 13, 227–232. [Google Scholar] [CrossRef]
- Lang, T.; Li, G.; Wang, H.; Yu, Z.; Chen, Q.; Yang, E.; Fu, S.; Tang, Z.; Yang, Z. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta 2019, 249, 663–675. [Google Scholar]
- Feng, Z.; Qi, Z.; Du, D.; Zhang, M.; Zhao, A.; Hu, Z.; Xin, M.; Yao, Y.; Peng, H.; Sun, Q.; et al. Characterization of a new hexaploid triticale 6D (6A) substitution line with increased grain weight and decreased spikelet number. Crop J. 2019, 7, 598–607. [Google Scholar]
- Li, J.; Zhu, X.; Wan, H.; Wang, Q.; Tang, Z.; Fu, S.; Yang, Z.; Yang, M.; Yang, W. Identification of the 1RS-7DS. 7DL wheat-rye small segment translocation lines. Hereditas 2015, 37, 590–598. (In Chinese) [Google Scholar]
- Kang, H.; Wang, Y.; Diao, C.; Li, D.; Wang, Y.; Zeng, J.; Fan, X.; Xu, L.; Sha, L.; Zhang, H.; et al. A hexaploid triticale 4D (4B) substitution line confers superior stripe rust resistance. Mol. Breed. 2017, 37, 36. [Google Scholar]
- Li, L.; Chai, L.; Xu, H.; Zhai, H.; Wang, T.; Zhang, M.; You, M.; Peng, H.; Yao, Y.; Hu, Z.; et al. Phenotypic characterization of the glossy1 mutant and fine mapping of GLOSSY1 in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2021, 134, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Javelle, M.; Vernoud, V.; Rogowsky, P.M.; Ingram, G.C. Epidermis: The formation and functions of a fundamental plant tissue. New Phytol. 2011, 189, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Jetter, R.; Kunst, L.; Samuels, A.L. Composition of plant cuticular waxes. Annu. Plant Rev. Biol. Plant Cuticle 2006, 23, 145–181. [Google Scholar]
- Shepherd, T.; Griffiths, W.D. The effects of stress on plant cuticular waxes. New Phytol. 2006, 171, 469–499. [Google Scholar] [CrossRef] [PubMed]
- Samuels, L.; Kunst, L.; Jetter, R. Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 2008, 59, 683–707. [Google Scholar] [CrossRef]
- Tafolla-Arellano, J.C.; Báez-Sañudo, R.; Tiznado-Hernández, M.E. The cuticle as a key factor in the quality of horticultural crops. Sci. Hortic. 2018, 232, 145–152. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Broeckling, C.D.; Blancaflor, E.B.; Sledge, M.K.; Sumner, L.W.; Wang, Z.Y. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 2005, 42, 689–707. [Google Scholar] [CrossRef]
- Lowe, H.; Murphy, G.; Parker, M.L. Non-glaucousness, a probable aphid-resistance character of wheat. Ann. Appl. Biol. 1985, 106, 555–560. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, W.; Zhu, H.; Challa, G.S.; Bi, C.; Trick, H.N.; Li, W. W3 is a new wax locus that is essential for biosynthesis of β-diketone, development of glaucousness, and reduction of cuticle permeability in common wheat. PLoS ONE 2015, 10, e0140524. [Google Scholar] [CrossRef]
- Han, F.; Lamb, J.C.; Birchler, J.A. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc. Natl. Acad. Sci. USA 2006, 103, 3238–3243. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, Z.; Fu, S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119. 2, pTa-535, pTa71, CCS1, and pAWRC. 1 for FISH analysis. J. Appl. Genets 2014, 55, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Chen, L.; Wang, Y.; Li, M.; Yang, Z.; Qiu, L.; Yan, B.; Ren, Z.; Tang, Z. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci. Rep. 2015, 5, 10552. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, M.; Harris, N.S.; Twardziok, S.O.; Pasam, R.K.; Gundlach, H.; Spannagl, M.; Ormanbekova, D.; Lux, T.; Prade, V.M.; Milner, S.G. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019, 51, 885–895. [Google Scholar] [CrossRef]
- Luo, M.C.; Gu, Y.Q.; Puiu, D.; Wang, H.; Twardziok, S.O.; Deal, K.R.; Huo, N.; Zhu, T.; Wang, L.; Dvořák, J. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 2017, 551, 498–502. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, F.; Deng, C.; Wan, H.; Tang, H.; Feng, J.; Wang, Q.; Yang, N.; Li, J.; Yang, W. Chromosome-level assembly of the synthetic hexaploid wheat-derived cultivar Chuanmai 104. Sci. Data 2024, 11, 670. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Yang, F.; Yang, Z.; Hu, W.; Ding, H.; Yang, F.; Wan, H.; Liu, Z.; Lang, T.; Yang, N.; et al. Identification and Specific KASP Marker Development for Durum Wheat T2DS-2AS.2AL Translocation Line YL-429 with Wax Inhibitor Gene IW2. Plants 2025, 14, 1077. https://doi.org/10.3390/plants14071077
Yang S, Yang F, Yang Z, Hu W, Ding H, Yang F, Wan H, Liu Z, Lang T, Yang N, et al. Identification and Specific KASP Marker Development for Durum Wheat T2DS-2AS.2AL Translocation Line YL-429 with Wax Inhibitor Gene IW2. Plants. 2025; 14(7):1077. https://doi.org/10.3390/plants14071077
Chicago/Turabian StyleYang, Sujie, Fan Yang, Zujun Yang, Wenjing Hu, Hongxia Ding, Feiyang Yang, Hongshen Wan, Zehou Liu, Tao Lang, Ning Yang, and et al. 2025. "Identification and Specific KASP Marker Development for Durum Wheat T2DS-2AS.2AL Translocation Line YL-429 with Wax Inhibitor Gene IW2" Plants 14, no. 7: 1077. https://doi.org/10.3390/plants14071077
APA StyleYang, S., Yang, F., Yang, Z., Hu, W., Ding, H., Yang, F., Wan, H., Liu, Z., Lang, T., Yang, N., Zhang, J., Jiang, Y., Feng, J., Tang, H., Chen, Q., Deng, Q., Wang, Y., Wu, J., Xiao, J., ... Li, J. (2025). Identification and Specific KASP Marker Development for Durum Wheat T2DS-2AS.2AL Translocation Line YL-429 with Wax Inhibitor Gene IW2. Plants, 14(7), 1077. https://doi.org/10.3390/plants14071077