Characterization of Tungsten Sputtering Processes in a Capacitively Coupled Argon Plasma
Abstract
:1. Introduction
2. Materials
2.1. Sputtering System
2.2. Langmuir Probe Set-Up
2.3. Optical Emission Spectroscopy Set-Up
3. Langmuir Probe Measurement Method
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cherrington, B.E. The use of electrostatic probes for plasma diagnostics. Plasma Chem. Plasma Process. 1982, 2, 113. [Google Scholar] [CrossRef]
- Merlino, R.L. Understanding Langmuir probe current-voltage characteristics. Am. J. Phys. 2007, 75, 1078. [Google Scholar] [CrossRef]
- Knappmiller, S.; Robertson, S.; Sternovsky, Z. Method to find the electron distribution function from cylindrical probe data. Phys. Rev. E 2006, 73, 066402. [Google Scholar] [CrossRef]
- Kortshagen, U.; Schluter, H.J. Surface-wave propagation in homogeneous. Phys. D Appl. Phys. 1992, 25, 644. [Google Scholar] [CrossRef]
- Lindner, J.; Ross, U.; Roddatis, V.; Jooss, C. Langmuir analysis of electron beam induced plasma in environmental TEM. Ultramicroscopy 2023, 243, 113629. [Google Scholar] [CrossRef]
- Ohtsu, Y.; Fujita, H. Production of high-density capacitive plasma by the effects of multihollow cathode discharge and high-secondary-electron emission. Appl. Phys. Lett. 2008, 92, 171501. [Google Scholar] [CrossRef]
- Druyvesteyn, M.J.; Penning, F.M. The Mechanism of Electrical Discharges in Gases of Low Pressure. Rev. Mod. Phys. 1940, 12, 87. [Google Scholar] [CrossRef]
- Fullarton Boyd, R.L.; Twiddy, N.D. Pressure broadening studies on vibration-rotation bands II. The effective collision diameters. Proc. R. Soc. A 1959, 250, 53. [Google Scholar]
- Chung, T.H.; Shin, Y.M.; Seo, D.C. Comparison of two methods of interpretation of Langmuir probe data for an inductively coupled oxygen plasma. Contrib. Plasma Phys. 2006, 46, 348. [Google Scholar] [CrossRef]
- Sahu, B.B.; Han, J.G.; Kim, J.B.; Kumar, M.; Jin, S.; Hori, M. Study of Plasma Properties for the Low-Temperature Deposition of Highly Conductive Aluminum Doped ZnO Film Using ICP Assisted DC Magnetron Sputtering. Plasma Process. Polym. 2016, 13, 134. [Google Scholar] [CrossRef]
- Sasaki, T.; Takahashi, K.; Fujiwara, T.J. Electron Energy Distributions in a Radiofrequency Plasma Expanded by Permanent Magnets. Plasma Fusion Res. SERIES 2010, 9, 422. [Google Scholar]
- Kim, J.Y.; Kim, Y.-C.; Kim, Y.-S.; Chung, C.-W. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasma. Phys. Plasmas 2015, 22, 013501. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.-N. Fundamental study towards a better understanding of low pressure plasma etching. Plasma Phys. Control. Fusion 2021, 63, 035031. [Google Scholar] [CrossRef]
- Chung, C.W. Experimental investigation on the floating potential of cylindrical Langmuir probes in non-Maxwellian electron distributions. Phys. Plasmas 2005, 12, 123505. [Google Scholar]
- Roh, H.-J.; Kim, N.-K.; Ryu, S.; Park, S.; Lee, S.-H.; Huh, S.-R.; Kim, G.-H. Determination of electron energy probability function in low-temperature plasmas from current—Voltage characteristics of two Langmuir probes filtered by Savitzky–Golay and Blackman window methods. Curr. Appl. Phys. 2015, 15, 1173. [Google Scholar]
- Lee, H.-C.; Seo, B.H.; Kwon, D.-C.; Kim, J.H.; Seong, D.J.; Oh, S.J.; Chung, C.W.; You, K.H.; Shin, C.H. Evolution of electron temperature in inductively coupled plasma. Appl. Phys. Lett. 2017, 110, 014106. [Google Scholar] [CrossRef]
- Okada, K.; Komatsu, S.; Matsumoto, S.J. Langmuir probe measurements in a low pressure inductively coupled plasma used for diamond deposition. Vac. Sci. Technol. A 1999, 17, 721. [Google Scholar]
- Lee, Y.-K.; Hwang, K.-T.; Lee, M.-H.; Chung, C.-W. Measurement of plasma parameters in an inductively coupled plasma using a double Langmuir probe. J. Korean Phys. Soc. 2008, 52, 1792. [Google Scholar] [CrossRef]
- Chung, T.H.; Lee, Y.W.; Joh, H.M.; Song, M.A. Pressure dependence of dissociation fraction and optical emission characteristics in low-pressure inductively coupled N2-Ar plasmas. AIP Adv. 2011, 1, 032136. [Google Scholar] [CrossRef]
- Choi, I.; Chung, C.W.; Moon, S.Y. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes. Phys. Plasmas 2013, 20, 083508. [Google Scholar] [CrossRef]
- Yin, G.; Gao, S.; Liu, Z.; Yuan, Q. The discharge characteristics of low-pressure capacitively coupled argon plasma with Langmuir probe. Phys. Lett. A 2022, 426, 127910. [Google Scholar] [CrossRef]
- Azooz, A.A.; Ali, Z.T. Two Temperatures Components in CCP Argon 13.56-MHz RF Discharge. IEEE Trans. Plasma Sci. 2015, 43, 1774. [Google Scholar] [CrossRef]
- Ahn, S.K.; You, S.J.; Chang, H.Y. Driving frequency effect on the electron energy distribution function in capacitive discharge under constant discharge power condition. Appl. Phys. Lett. 2006, 89, 161506. [Google Scholar] [CrossRef]
- Zhu, X.M.; Chen, W.C.; Zhang, S.; Guo, Z.G.; Hu, D.W.; Pu, Y.K. Electron density and ion energy dependence on driving frequency in capacitively coupled argon plasmas. J. Phys. D Appl. Phys. 2007, 40, 7019. [Google Scholar] [CrossRef]
- Chen, F.F. Plasma Diagnostic Techniques; Huddlestone, R.H., Leonard, S.L., Eds.; Academic Press: Cambridge, MA, USA, 1965; p. 113. [Google Scholar]
- Heidenreich, J.E.; Paraszczak, J.R.; Moisan, M.; Sauve, G.J. Electrostatic probe analysis of microwave plasmas used for polymer etching. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 1987, 5, 347. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159. [Google Scholar] [CrossRef]
- Godyak, V.J. RF discharge diagnostics: Some problems and their resolution. Appl. Phys. 2021, 129, 041101. [Google Scholar] [CrossRef]
- Hershkowitz, N. Plasma Diagnostics, Discharge Parameters and Chemistry; Auciello, O., Flamm, D.L., Eds.; Academic Press: Cambridge, MA, USA, 1989; ISBN 978-0-12-067635-4. [Google Scholar]
- Sudit, I.D.; Woods, R.C. A workstation based Langmuir probe system for low-pressure dc plasmas. Rev. Sci. Instrum. 1993, 64, 2440. [Google Scholar] [CrossRef]
- Druyvesteyn, M.J. Der Niedervoltbogen. Z. Phys. 1930, 64, 781. [Google Scholar]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005; Chapter 18; ISBN 978-0-471-72001-0. [Google Scholar]
- Abdel-Fattah, E.; Sugai, H. Combined effects of gas pressure and exciting frequency on electron energy distribution functions in hydrogen capacitively coupled plasmas. Phys. Plasmas 2013, 20, 023501. [Google Scholar] [CrossRef]
- Ivanov, I.; Statev, S.; Orlinov, V.; Shkevov, R. Electron energy distribution function in a dc magnetron sputtering discharge. Vacuum 1992, 43, 837. [Google Scholar] [CrossRef]
- Turner, M.M. Collisionless heating in radio-frequency discharges: A review. J. Phys. D Appl. Phys. 2009, 42, 194008. [Google Scholar] [CrossRef]
- Ferch, J.; Granitza, B.; Masche, C.; Raith, W. Electron-argon total cross section measurements at low energies by time-of-flight spectroscopy. J. Phys. B Atom. Mol. Phys. 1985, 18, 967. [Google Scholar] [CrossRef]
- Phelps, A.V. The application of scattering cross sections to ion flux models in discharge sheaths. J. Appl. Phys. 1994, 76, 747. [Google Scholar]
- Singh, H.; Graves, D.B. Measurements of the electron energy distribution function in molecular gases in a shielded inductively coupled plasma. J. Appl. Phys. 2000, 87, 4098. [Google Scholar] [CrossRef]
- Jauberteau, J.L.; Jauberteau, I. Plasma parameters deduced from cylindrical probe measurements: Determination of the electron density at the ion saturation current. Plasma Sources Sci. Technol. 2008, 17, 015019. [Google Scholar] [CrossRef]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005; Chapter 3; ISBN 978-0-471-72001-0. [Google Scholar]
- Chu, P.K.; Qin, S.; Chan, C.; Cheung, N.W.; Ko, P.K. Instrumental and process considerations for the fabrication of silicon-on-insulators (SOI) structures by plasma immersion ion implantation. IEEE Trans. Plasma Sci. 1998, 26, 79. [Google Scholar] [CrossRef]
- Wu, S.Z. Pressure-Induced Anomalous Phase Transitions and Colossal Enhancement of Piezoelectricity in PbTiO3. J. Appl. Phys. 2005, 98, 083301. [Google Scholar] [CrossRef]
- Hwang, K.; Oh, S.; Choi, I.; Chung, C. Measurement of electron temperature and ion density using the self-bias effect in plasmas. Phys. Plasmas 2010, 17, 063501. [Google Scholar] [CrossRef]
- Sackers, M.; Busch, C.; Tsankov, V.; Czarnetzki, U.; Mertens, P.; Marchuk, O. Plasma parameters and tungsten sputter rates in a high-frequency CCP. Phys. Plasmas 2022, 29, 043511. [Google Scholar] [CrossRef]
- Abdel-Fattah, E. Investigation of capacitively coupled argon plasma driven at various frequencies and validation of surface waves excitation. Phys. Lett. A 2013, 377, 297. [Google Scholar] [CrossRef]
- Kumari, N.; Das, P.S.; Joshi, N.K.; Barhai, P.K. Correlations of plasma parameters and properties of magnetron sputtered TiN films. Eur. Phys. J. Appl. Phys. 2012, 59, 20302. [Google Scholar] [CrossRef]
- Takenaka, K.; Setsuhara, Y.; Nishisaka, K.; Ebe, A. Meters-Scale Large-Area Plasma Sources with Multiple Low-Inductance Antenna Units for Next-Generation Flat-Panel Display Processing. Trans. Mater. Res. Soc. Jpn. 2007, 32, 493. [Google Scholar] [CrossRef]
- Mirzaei, S.; Alishahi, M.; Souček, P.; Buršíková, V.; Zábranský, L.; Gröner, L.; Burmeister, F.; Blug, B.; Daum, P.; Mikšová, R.; et al. Effect of substrate bias voltage on the composition, microstructure and mechanical properties of W-B-C coatings. Appl. Surf. Sci. 2020, 528, 146966. [Google Scholar] [CrossRef]
- Kusano, E.; Fukushima, K.; Saitoh, T.; Saiki, S.; Kikuchi, N.; Nanto, H.; Kinbara, A. Effects of Ar pressure on ion flux energy distribution and ion fraction in r.f.-plasma-assisted magnetron sputtering. Surf. Coat. Technol. 1999, 120–121, 189. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, H.; Bi, Z.; Wang, Y. Effects of Ar pressure on ion flux energy distribution and ion fraction in r.f.-plasma-assisted magnetron sputtering. Plasma Sources Sci. Technol. 2011, 20, 035013. [Google Scholar] [CrossRef]
- Craig, S.; Harding, G.L. Effects of Argon Pressure and Substrate Temperature on the Structure and Properties of Sputtered Copper Films. J. Vac. Sci. Technol. 1981, 19, 205–215. [Google Scholar] [CrossRef]
- Pinto, R.; Poothra, J.I.; Purandare, S.C.; Pai, S.P.; D’Souza, C.P.; Kumar, D.; Sharon, M. Growth and Microstructural Study of Radio Frequency Magnetron Sputtered MgO Films on Silicon. J. Vac. Sci. Technol. A 1991, 9, 2670–2674. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassallo, E.; Saleh, M.; Pedroni, M.; Cremona, A.; Ripamonti, D. Characterization of Tungsten Sputtering Processes in a Capacitively Coupled Argon Plasma. Plasma 2025, 8, 8. https://doi.org/10.3390/plasma8010008
Vassallo E, Saleh M, Pedroni M, Cremona A, Ripamonti D. Characterization of Tungsten Sputtering Processes in a Capacitively Coupled Argon Plasma. Plasma. 2025; 8(1):8. https://doi.org/10.3390/plasma8010008
Chicago/Turabian StyleVassallo, Espedito, Miriam Saleh, Matteo Pedroni, Anna Cremona, and Dario Ripamonti. 2025. "Characterization of Tungsten Sputtering Processes in a Capacitively Coupled Argon Plasma" Plasma 8, no. 1: 8. https://doi.org/10.3390/plasma8010008
APA StyleVassallo, E., Saleh, M., Pedroni, M., Cremona, A., & Ripamonti, D. (2025). Characterization of Tungsten Sputtering Processes in a Capacitively Coupled Argon Plasma. Plasma, 8(1), 8. https://doi.org/10.3390/plasma8010008