Subregions of the Rotator Cuff Muscles Present Distinct Anatomy, Biomechanics, and Function
Abstract
1. Introduction
1.1. Anatomy of the Rotator Cuff Muscles and Subregions
1.2. Biomechanical Properties of the Rotator Cuff Subregions
1.2.1. Moment Arms
Muscle | Internal Rotation | External Rotation | Internal + External Rotation | |
---|---|---|---|---|
Infraspinatus (S: superior; M: middle; I: inferior) | ||||
Neutral | S | 14.0 (3.6) | 19.1 (3.8) | 17.5 (4.4) |
M | 15.5 (5.0) | 20.6 (5.6) | 19.1 (5.8) | |
I | 17.3 (4.4) | 21.5 (4.1) | 20.4 (4.9) | |
60° abduction | S | 8.7 (5.3) c,e | 10.8 (5.6) d,f | 10.3 (5.5) a,b,e |
M | 10.0 (6.3) | 15.9 (5.6) | 13.5 (6.5) | |
I | 12.0 (7.5) | 18.1 (6.6) | 15.6 (7.5) | |
Flexion (30°) | S | 13.0 (2.8) [9.5 to 18.9] | ||
I | 15.8 (3.9) [10.3 to 20.9] | |||
a: p = 0.042 compared to M; b: p < 0.001 compared to I; c: p = 0.029 compared to I; d: p = 0.018 compared to I; e: p < 0.001 compared to TMin; f: p = 0.017 compared to TMin. | ||||
Teres Minor | ||||
Neutral | 15.0 (4.3) | 21.8 (4.6) | 19.6 (5.3) | |
60° abduction | 14.2 (7.8) | 19.7 (3.5) | 17.5 (6.1) | |
Flexion (30°) | 16.4 (4.3) [7.3 to 20.5] | |||
Supraspinatus (A: anterior; P: posterior; AS: anterior–superficial; AM: anterior–middle; PD: posterior–deep) | ||||
Neutral | AS | −0.6 (2.4) a | 1.8 (3.4) b | 0.7 (3.2) a |
AM | −1.3 (3.2) a | 1.5 (3.1) a | 0.1 (3.3) a | |
PD | 9.2 (5.1) | 10.6 (6.2) | 10.5 (6.3) | |
60° abduction | AS | 2.9 (2.2) | 2.1 (1.0) c | 2.4 (1.6) a |
AM | 3.9 (7.3) | 3.6 (9.2) d | 4.0 (8.2) a | |
PD | 6.4 (5.9) | 8.3 (8.5) | 7.5 (7.3) | |
Flexion (30°) | A | −8.3 (2.2) [−11.3 to −4.0] | ||
P | −0.9 (0.9) [−5.8 to 5.4] | |||
a: p < 0.001 compared to PD; b: p = 0.003 compared to PD; c: p = 0.033 compared to PD; d: p = 0.013 compared to PD. | ||||
Subscapularis (S: superior; M: middle; I: inferior) | ||||
Neutral | S | −13.2 (7.4) | −17.5 (4.5) | −16.2 (6.5) a |
M | −16.0 (7.1) | −22.2 (6.6) | −20.0 (7.6) | |
I | −12.3 (6.7) | −21.0 (6.1) | −18.1 (7.5) | |
60° abduction | S | −4.2 (6.0) | −9.6 (7.8) | −7.1 (7.6) |
M | −10.9 (8.2) | −16.6 (8.1) | −14.3 (8.7) b | |
I | −13.6 (9.1) c | −22.0 (5.5) d | −18.5 (8.1) b | |
Flexion (30°) | S | −15.5 (1.8) [−17.5 to −13.2] | ||
M | −17.6 (1.7) [−20.0 to −15.2] | |||
I | −19.4 (3.8) [−23.5 to −13.0] | |||
a: p = 0.049 compared to M; b: p < 0.001 compared to S; c: p = 0.002 compared to S; d: p < 0.001 compared to S. |
1.2.2. Tensile Properties
1.3. Functional Properties of the Rotator Cuff Subregions
2. Conclusions
Future Research Directions
Funding
Conflicts of Interest
References
- Saper, M.G.; Pierpoint, L.A.; Liu, W.; Comstock, R.D.; Polousky, J.D.; Andrews, J.R. Epidemiology of Shoulder and Elbow Injuries Among United States High School Baseball Players: School Years 2005–2006 Through 2014–2015. Am. J. Sports Med. 2018, 46, 37–43. [Google Scholar] [CrossRef]
- Sindhu, K.; Cohen, B.; Gil, J.A.; Blood, T.; Owens, B.D. Chronic exertional compartment syndrome of the forearm. Phys. Sportsmed. 2019, 47, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Newham, D.J.; Mills, K.R.; Quigley, B.M.; Edwards, R.H. Pain and fatigue after concentric and eccentric muscle contractions. Clin. Sci. 1983, 64, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Niitsu, M.; Michizaki, A.; Endo, A.; Takei, H.; Yanagisawa, O. Muscle hardness measurement by using ultrasound elastography: A feasibility study. Acta Radiol. 2011, 52, 99–105. [Google Scholar] [CrossRef]
- Yanagisawa, O.; Niitsu, M.; Kurihara, T.; Fukubayashi, T. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: A feasibility study. Clin. Radiol. 2011, 66, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.R.; Yamasaki, A.; Brown, K. Epidemiology of sports-related musculoskeletal injuries in young athletes in United States. Transl. Pediatr. 2017, 6, 160–166. [Google Scholar] [CrossRef]
- Ombregt, L. A System of Orthopaedic Medicine, 3rd ed.; Ludwig Ombregt: Kanegem, Belgium, 2013. [Google Scholar]
- Escamilla, R.F.; Andrews, J.R. Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports. Sports Med. 2009, 39, 569–590. [Google Scholar] [CrossRef] [PubMed]
- Jeno, S.H.; Munjal, A.; Schindler, G.S. Anatomy, Shoulder and Upper Limb, Arm Supraspinatus Muscle. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Kim, S.Y.; Boynton, E.L.; Ravichandiran, K.; Fung, L.Y.; Bleakney, R.; Agur, A.M. Three-dimensional study of the musculotendinous architecture of supraspinatus and its functional correlations. Clin. Anat. 2007, 20, 648–655. [Google Scholar] [CrossRef]
- Henninger, H.B.; Christensen, G.V.; Taylor, C.E.; Kawakami, J.; Hillyard, B.S.; Tashjian, R.Z.; Chalmers, P.N. The Muscle Cross-sectional Area on MRI of the Shoulder Can Predict Muscle Volume: An MRI Study in Cadavers. Clin. Orthop. Relat. Res. 2020, 478, 871–883. [Google Scholar] [CrossRef]
- Roh, M.S.; Wang, V.M.; April, E.W.; Pollock, R.G.; Bigliani, L.U.; Flatow, E.L. Anterior and posterior musculotendinous anatomy of the supraspinatus. J. Shoulder Elbow Surg. 2000, 9, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Vahlensieck, M.; Pollack, M.; Lang, P.; Grampp, S.; Genant, H.K. Two segments of the supraspinous muscle: Cause of high signal intensity at MR imaging? Radiology 1993, 186, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Yuri, T.; Kobayashi, H.; Takano, Y.; Yoshida, S.; Naito, A.; Fujii, H.; Kiyoshige, Y. Capsular attachment of the subregions of rotator cuff muscles. Surg. Radiol. Anat. 2019, 41, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Lumsdaine, W.; Smith, A.; Walker, R.G.; Benz, D.; Mohammed, K.D.; Stewart, F. Morphology of the humeral insertion of the supraspinatus and infraspinatus tendons: Application to rotator cuff repair. Clin. Anat. 2015, 28, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, T.; Sugaya, H.; Uomizu, M.; Maeda, K.; Matsuki, K.; Sekiya, I.; Muneta, T.; Akita, K. Humeral insertion of the supraspinatus and infraspinatus. New anatomical findings regarding the footprint of the rotator cuff. J. Bone Joint Surg. Am. 2008, 90, 962–969. [Google Scholar] [CrossRef]
- Ruotolo, C.; Fow, J.E.; Nottage, W.M. The supraspinatus footprint: An anatomic study of the supraspinatus insertion. Arthroscopy 2004, 20, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Hermenegildo, J.A.; Roberts, S.L.; Kim, S.Y. Innervation pattern of the suprascapular nerve within supraspinatus: A three-dimensional computer modeling study. Clin. Anat. 2014, 27, 622–630. [Google Scholar] [CrossRef]
- Fabrizio, P.A.; Clemente, F.R. Anatomical structure and nerve branching pattern of the human infraspinatus muscle. J. Bodyw. Mov. Ther. 2014, 18, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Minagawa, H.; Itoi, E.; Konno, N.; Kido, T.; Sano, A.; Urayama, M.; Sato, K. Humeral attachment of the supraspinatus and infraspinatus tendons: An anatomic study. Arthroscopy 1998, 14, 302–306. [Google Scholar] [CrossRef]
- Kim, H.M.; Dahiya, N.; Teefey, S.A.; Keener, J.D.; Yamaguchi, K. Sonography of the teres minor: A study of cadavers. AJR Am. J. Roentgenol. 2008, 190, 589–594. [Google Scholar] [CrossRef]
- Hamada, J.; Nimura, A.; Yoshizaki, K.; Akita, K. Anatomic study and electromyographic analysis of the teres minor muscle. J. Shoulder Elbow Surg. 2017, 26, 870–877. [Google Scholar] [CrossRef]
- Kellam, P.; Kahn, T.; Tashjian, R.Z. Anatomy of the Subscapularis: A Review. J. Shoulder Elb. Arthroplast. 2019, 3, 2471549219849728. [Google Scholar] [CrossRef]
- Richards, D.P.; Burkhart, S.S.; Tehrany, A.M.; Wirth, M.A. The subscapularis footprint: An anatomic description of its insertion site. Arthroscopy 2007, 23, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Arai, R.; Sugaya, H.; Mochizuki, T.; Nimura, A.; Moriishi, J.; Akita, K. Subscapularis tendon tear: An anatomic and clinical investigation. Arthroscopy 2008, 24, 997–1004. [Google Scholar] [CrossRef]
- Ward, S.R.; Hentzen, E.R.; Smallwood, L.H.; Eastlack, R.K.; Burns, K.A.; Fithian, D.C.; Friden, J.; Lieber, R.L. Rotator cuff muscle architecture: Implications for glenohumeral stability. Clin. Orthop. Relat. Res. 2006, 448, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.H.; Hong, J.E.; Yang, H.M. Neuromuscular compartmentation of the subscapularis muscle and its clinical implication for botulinum neurotoxin injection. Sci. Rep. 2023, 13, 11167. [Google Scholar] [CrossRef] [PubMed]
- Kuechle, D.K.; Newman, S.R.; Itoi, E.; Niebur, G.L.; Morrey, B.F.; An, K.N. The relevance of the moment arm of shoulder muscles with respect to axial rotation of the glenohumeral joint in four positions. Clin. Biomech. 2000, 15, 322–329. [Google Scholar] [CrossRef]
- Yuri, T.; Trevino, J.H., 3rd; Hoshikawa, K.; Hooke, A.; Giambini, H. Moment arms of the anatomical subregions of the rotator cuff muscles during shoulder rotation. Clin. Biomech. 2023, 107, 106040. [Google Scholar] [CrossRef] [PubMed]
- Yuri, T.; Trevino, J.H., 3rd; Hooke, A.; Giambini, H. Moment arms from the anatomical subregions of the rotator cuff muscles during flexion. J. Biomech. 2022, 144, 111340. [Google Scholar] [CrossRef]
- Ackland, D.C.; Pandy, M.G. Moment arms of the shoulder muscles during axial rotation. J. Orthop. Res. 2011, 29, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Gates, J.J.; Gilliland, J.; McGarry, M.H.; Park, M.C.; Acevedo, D.; Fitzpatrick, M.J.; Lee, T.Q. Influence of distinct anatomic subregions of the supraspinatus on humeral rotation. J. Orthop. Res. 2010, 28, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Hik, F.; Ackland, D.C. The moment arms of the muscles spanning the glenohumeral joint: A systematic review. J. Anat. 2019, 234, 12903. [Google Scholar] [CrossRef] [PubMed]
- Langenderfer, J.E.; Patthanacharoenphon, C.; Carpenter, J.E.; Hughes, R.E. Variation in external rotation moment arms among subregions of supraspinatus, infraspinatus, and teres minor muscles. J. Orthop. Res. 2006, 24, 1737–1744. [Google Scholar] [CrossRef]
- Otis, J.C.; Jiang, C.C.; Wickiewicz, T.L.; Peterson, M.G.; Warren, R.F.; Santner, T.J. Changes in the moment arms of the rotator cuff and deltoid muscles with abduction and rotation. J. Bone Joint Surg. Am. 1994, 76, 667–676. [Google Scholar] [CrossRef]
- Vila Pouca, M.C.P.; Parente, M.P.L.; Jorge, R.M.N.; Ashton-Miller, J.A. Injuries in Muscle-Tendon-Bone Units: A Systematic Review Considering the Role of Passive Tissue Fatigue. Orthop. J. Sports Med. 2021, 9, 23259671211020731. [Google Scholar] [CrossRef]
- Schechtman, H.; Bader, D.L. In vitro fatigue of human tendons. J. Biomech. 1997, 30, 829–835. [Google Scholar] [CrossRef]
- Schechtman, H.; Bader, D.L. Fatigue damage of human tendons. J. Biomech. 2002, 35, 347–353. [Google Scholar] [CrossRef]
- Halder, A.; Zobitz, M.E.; Schultz, F.; An, K.N. Mechanical properties of the posterior rotator cuff. Clin. Biomech. 2000, 15, 456–462. [Google Scholar] [CrossRef]
- Matsuhashi, T.; Hooke, A.W.; Zhao, K.D.; Goto, A.; Sperling, J.W.; Steinmann, S.P.; An, K.N. Tensile properties of a morphologically split supraspinatus tendon. Clin. Anat. 2014, 27, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, S.S.; Diaz Pagan, J.L.; Wirth, M.A.; Athanasiou, K.A. Cyclic loading of anchor-based rotator cuff repairs: Confirmation of the tension overload phenomenon and comparison of suture anchor fixation with transosseous fixation. Arthroscopy 1997, 13, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, S.S.; Johnson, T.C.; Wirth, M.A.; Athanasiou, K.A. Cyclic loading of transosseous rotator cuff repairs: Tension overload as a possible cause of failure. Arthroscopy 1997, 13, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Goradia, V.K.; Mullen, D.J.; Boucher, H.R.; Parks, B.G.; O’Donnell, J.B. Cyclic loading of rotator cuff repairs: A comparison of bioabsorbable tacks with metal suture anchors and transosseous sutures. Arthroscopy 2001, 17, 360–364. [Google Scholar] [CrossRef] [PubMed]
- He, H.B.; Hu, Y.; Li, C.; Li, C.G.; Wang, M.C.; Zhu, H.F.; Yan, Z.W.; Pan, C.L.; Wang, T. Biomechanical comparison between single-row with triple-loaded suture anchor and suture-bridge double-row rotator cuff repair. BMC Musculoskelet. Disord. 2020, 21, 629. [Google Scholar] [CrossRef] [PubMed]
- Lorbach, O.; Anagnostakos, K.; Vees, J.; Kohn, D.; Pape, D. Three-dimensional evaluation of the cyclic loading behavior of different rotator cuff reconstructions. Arthroscopy 2010, 26, S95–S105. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.; Zobitz, M.E.; Schultz, E.; An, K.N. Structural properties of the subscapularis tendon. J. Orthop. Res. 2000, 18, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.M.; O’Driscoll, S.W.; Heers, G.; Mura, N.; Zobitz, M.E.; An, K.N.; Kreusch-Brinker, R. Biomechanical comparison of effects of supraspinatus tendon detachments, tendon defects, and muscle retractions. J. Bone Joint Surg. Am. 2002, 84, 780–785. [Google Scholar] [CrossRef]
- Itoi, E.; Berglund, L.J.; Grabowski, J.J.; Schultz, F.M.; Growney, E.S.; Morrey, B.F.; An, K.N. Tensile properties of the supraspinatus tendon. J. Orthop. Res. 1995, 13, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Connell, D.A.; Potter, H.G.; Wickiewicz, T.L.; Altchek, D.W.; Warren, R.F. Noncontrast magnetic resonance imaging of superior labral lesions. 102 cases confirmed at arthroscopic surgery. Am. J. Sports Med. 1999, 27, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Takahara, M.; Sasaki, J.; Mura, N.; Ito, T.; Ogino, T. Using sonography for the early detection of elbow injuries among young baseball players. AJR Am. J. Roentgenol. 2006, 187, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Eby, S.F.; Cloud, B.A.; Brandenburg, J.E.; Giambini, H.; Song, P.; Chen, S.; LeBrasseur, N.K.; An, K.N. Shear wave elastography of passive skeletal muscle stiffness: Influences of sex and age throughout adulthood. Clin. Biomech. 2015, 30, 22–27. [Google Scholar] [CrossRef]
- Hatta, T.; Giambini, H.; Hooke, A.W.; Zhao, C.; Sperling, J.W.; Steinmann, S.P.; Yamamoto, N.; Itoi, E.; An, K.N. Comparison of Passive Stiffness Changes in the Supraspinatus Muscle After Double-Row and Knotless Transosseous-Equivalent Rotator Cuff Repair Techniques: A Cadaveric Study. Arthroscopy 2016, 32, 1973–1981. [Google Scholar] [CrossRef]
- Hatta, T.; Giambini, H.; Itoigawa, Y.; Hooke, A.W.; Sperling, J.W.; Steinmann, S.P.; Itoi, E.; An, K.N. Quantifying extensibility of rotator cuff muscle with tendon rupture using shear wave elastography: A cadaveric study. J. Biomech. 2017, 61, 131–136. [Google Scholar] [CrossRef]
- Hatta, T.; Giambini, H.; Sukegawa, K.; Yamanaka, Y.; Sperling, J.W.; Steinmann, S.P.; Itoi, E.; An, K.N. Quantified Mechanical Properties of the Deltoid Muscle Using the Shear Wave Elastography: Potential Implications for Reverse Shoulder Arthroplasty. PLoS ONE 2016, 11, e0155102. [Google Scholar] [CrossRef] [PubMed]
- Hatta, T.; Giambini, H.; Uehara, K.; Okamoto, S.; Chen, S.; Sperling, J.W.; Itoi, E.; An, K.N. Quantitative assessment of rotator cuff muscle elasticity: Reliability and feasibility of shear wave elastography. J. Biomech. 2015, 48, 3853–3858. [Google Scholar] [CrossRef]
- Hatta, T.; Giambini, H.; Zhao, C.; Sperling, J.W.; Steinmann, S.P.; Itoi, E.; An, K.N. Biomechanical Effect of Margin Convergence Techniques: Quantitative Assessment of Supraspinatus Muscle Stiffness. PLoS ONE 2016, 11, e0162110. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Yuri, T.; Giambini, H.; Kiyoshige, Y. Shoulder scaption is dependent on the behavior of the different partitions of the infraspinatus muscle. Surg. Radiol. Anat. 2021, 43, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Hoshikawa, K.; Yuri, T.; Mura, N.; Giambini, H.; Kiyoshige, Y. Coordination of the Sub-Regions of the Supraspinatus and Deltoid Muscles During Shoulder Scaption: A Shear Wave Elastography Study. Muscle Ligaments Tendons 2021, 11, 569–576. [Google Scholar] [CrossRef]
- Wickham, J.; Pizzari, T.; Balster, S.; Ganderton, C.; Watson, L. The variable roles of the upper and lower subscapularis during shoulder motion. Clin. Biomech. 2014, 29, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Alenabi, T.; Whittaker, R.L.; Kim, S.Y.; Dickerson, C.R. Arm posture influences on regional supraspinatus and infraspinatus activation in isometric arm elevation efforts. J. Electromyogr. Kinesiol. 2019, 44, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Yuri, T.; Kuwahara, Y.; Fujii, H.; Kiyoshige, Y. Functions of the subregions of the supraspinatus muscle. Clin. Anat. 2017, 30, 347–351. [Google Scholar] [CrossRef]
- Yuri, T.; Trevino, J.H.; Hatta, T.; Kiyoshige, Y.; Jacobs, P.M.; Giambini, H. Stiffness of the infraspinatus and the teres minor muscles during shoulder external rotation: An in-vitro and in-vivo shear wave elastography study. Clin. Biomech. 2021, 85, 105328. [Google Scholar] [CrossRef] [PubMed]
- Langenderfer, J.E.; Patthanacharoenphon, C.; Carpenter, J.E.; Hughes, R.E. Variability in isometric force and moment generating capacity of glenohumeral external rotator muscles. Clin. Biomech. 2006, 21, 701–709. [Google Scholar] [CrossRef]
- Boettcher, C.E.; Cathers, I.; Ginn, K.A. The role of shoulder muscles is task specific. J. Sci. Med. Sport. 2010, 13, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.L.; Alenabi, T.; Kim, S.Y.; Dickerson, C.R. Regional Electromyography of the Infraspinatus and Supraspinatus Muscles During Standing Isometric External Rotation Exercises. Sports Health 2022, 14, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Wattanaprakornkul, D.; Cathers, I.; Halaki, M.; Ginn, K.A. The rotator cuff muscles have a direction specific recruitment pattern during shoulder flexion and extension exercises. J. Sci. Med. Sport. 2011, 14, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Hoshikawa, K.; Yuri, T.; Giambini, H.; Mura, N.; Kiyoshige, Y. The functional role of the supraspinatus and infraspinatus muscle subregions during forward flexion: A shear wave elastography study. JSES Int. 2022, 6, 849–854. [Google Scholar] [CrossRef]
Muscle | Ultimate Load (N) | Ultimate Stress (MPa) | Elastic Modulus (MPa) | Stiffness (N/mm) | |
---|---|---|---|---|---|
Infraspinatus [39] | |||||
hanging-arm position | Superior | 501 (n.a.) | 14.6 (7.7) | 109.3 (37.0) | |
Mid-superior | 662.4 (223.4) a | 25 (n.a.) | 142.8 (39.6) b | ||
Mid-inferior | 330.8 (205.8) | 13.0 (6.3) | 84.8 (34.6) | ||
Inferior | 716.6 (252.7) a | 30.4 (14.4) c | 169.0 (44.2) d | ||
60° abduction | Superior | 424.4 (154.4) | 17.7 (7.6) | 158.8 (30.9) | |
Mid-superior | 696.8 (258.1) e | 29.4 (8.2) f | 205.0 (60.3) g | ||
Mid-inferior | 301.6 (168.5) | 18.0 (8.8) | 108.4 (45.5) | ||
Inferior | 406.9 (239.0) | 14.0 (6.7) | 128.1 (50.6) | ||
Combined (hanging + 60°) | Superior | 120 (53.1) | |||
Mid-superior | 156.8 (56.9) h | ||||
Mid-inferior | 113.3 (45.9) | ||||
Inferior | 140 (n.a.) | ||||
a: p < 0.003 compared to mid-inferior; b: p < 0.001 compared to superior and mid-inferior; c: p < 0.005 compared to superior and mid-inferior; d: p < 0.001 compared to superior and mid-inferior; e: p < 0.001 compared to superior, mid inferior, and inferior; f: p < 0.002 compared to superior, mid inferior, and inferior; g: p < 0.001 compared to superior, mid inferior, and inferior; h: p < 0.003 compared to superior and mid-inferior. | |||||
Teres Minor (combined outcomes from hanging-arm position and 60° abduction) | |||||
66.8 (31.0) | 1.5 (0.9) | 14.1 (9.3) | 22.6 (14.4) | ||
Supraspinatus (45° relative to the humeral shaft axis) [40] | |||||
Anterior | 779.2 (218.9) b | 22.1 (5.4) c | 592.4 (237.4) a | ||
Posterior | 335.6 (164.0) | 11.6 (5.3) | 217.7 (102.1) | ||
a: p < 0.01 compared to posterior; b: p < 0.003 compared to posterior; c: p < 0.008 compared to posterior. | |||||
Subscapularis [46] | |||||
Hanging-arm position | Superior | 623 (n.a.) | 147.2 (32.3) | ||
Mid-superior | 706 (n.a.) | 175 (n.a.) | |||
Mid-inferior | 454 (n.a.) | 128 (n.a.) | |||
Inferior | 75 (n.a.) | 27.4 (17.7) | |||
60° abduction | Superior | 478 (n.a.) | 208.7 (60.9) | ||
Mid-superior | 598 (n.a.) | 182 (n.a.) | |||
Mid-inferior | 400 (n.a.) | 130 (n.a.) | |||
Inferior | 30 (n.a.) | 9.5 (5.9) | |||
n.a.: data not explicitly presented in reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavanaugh, E.; Arcot Santillan, A.; Hoshikawa, K.; Giambini, H. Subregions of the Rotator Cuff Muscles Present Distinct Anatomy, Biomechanics, and Function. Sports 2024, 12, 349. https://doi.org/10.3390/sports12120349
Cavanaugh E, Arcot Santillan A, Hoshikawa K, Giambini H. Subregions of the Rotator Cuff Muscles Present Distinct Anatomy, Biomechanics, and Function. Sports. 2024; 12(12):349. https://doi.org/10.3390/sports12120349
Chicago/Turabian StyleCavanaugh, Emma, Atenas Arcot Santillan, Kyosuke Hoshikawa, and Hugo Giambini. 2024. "Subregions of the Rotator Cuff Muscles Present Distinct Anatomy, Biomechanics, and Function" Sports 12, no. 12: 349. https://doi.org/10.3390/sports12120349
APA StyleCavanaugh, E., Arcot Santillan, A., Hoshikawa, K., & Giambini, H. (2024). Subregions of the Rotator Cuff Muscles Present Distinct Anatomy, Biomechanics, and Function. Sports, 12(12), 349. https://doi.org/10.3390/sports12120349