Aqueous-Phase Reaction Mechanisms of Small α-Dicarbonyls in the Presence of Phthalate Esters
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Initial Hydrolysis Pathways of PAEs
3.2. Hydrolysate-Mediated Dimerization of GL and MG
3.3. Subsequent Trimerization of Ester-like Dimers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pui, D.Y.H.; Chen, S.C.; Zuo, Z.L. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A.M.; Fröhlich-Nowoisky, J.; Fujitani, Y.; et al. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.M.; Hoffmann, A.R.; Behlen, J.C.; Lau, C.; Pendleton, D.; Harvey, N.; Shore, R.; Li, Y.X.; Chen, J.S.; Tian, Y.A.; et al. Air pollution and children’s health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ. Health Prev. 2021, 26, 29. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Kim, B.G.; Li, Z.Q.; Choi, Y.S.; Jung, C.H.; Um, J.; Mok, J.; Seo, K.H. Aerosol as a potential factor to control the increasing torrential rain events in urban areas over the last decades. Atmos. Chem. Phys. 2018, 18, 12531–12550. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.H.; Zhang, R.Y.; Ghan, S.J.; Lin, Y.; Hu, J.X.; Pan, B.W.; Levy, M.; Jiang, J.H.; Molina, M.J. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model. Proc. Natl. Acad. Sci. USA 2014, 111, 6894–6899. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.Y.; Saravanan, R. Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nat. Commun. 2014, 5, 7. [Google Scholar] [CrossRef]
- Li, J.X.; Yu, H.P.; Kulmala, M.; Kokkonen, T.V.; Tang, K.; Ma, J.M.; Hu, Z.Y.; Chen, S.Y.; Hu, Y.L.; Dai, R.; et al. Aerosol forces mesoscale secondary circulations occurrence: Evidence of emission reduction. npj Clim. Atmos. Sci. 2024, 7, 9. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Pan, B.W.; Hu, J.X.; Guo, S.; Zamora, M.L.; Tian, P.F.; Su, Q.; Ji, Y.M.; Zhao, J.Y.; et al. Formation, radiative forcing, and climatic effects of severe regional haze. Atmos. Chem. Phys. 2022, 22, 4951–4967. [Google Scholar] [CrossRef]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.F.; Shang, D.J.; Zheng, J.; Du, Z.F.; Wu, Z.; Shao, M.; Zeng, L.M.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef]
- Wang, Y.C.; Huang, R.J.; Ni, H.Y.; Chen, Y.; Wang, Q.Y.; Li, G.H.; Tie, X.X.; Shen, Z.X.; Huang, Y.; Liu, S.X.; et al. Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China. Atmos. Environ. 2017, 158, 128–137. [Google Scholar] [CrossRef]
- Huang, R.J.; Wang, Y.C.; Cao, J.J.; Lin, C.S.; Duan, J.; Chen, Q.; Li, Y.J.; Gu, Y.F.; Yan, J.; Xu, W.; et al. Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China. Atmos. Chem. Phys. 2019, 19, 2283–2298. [Google Scholar] [CrossRef]
- Wang, F.L.; Lv, S.J.; Liu, X.D.; Lei, Y.L.; Wu, C.; Chen, Y.B.; Zhang, F.; Wang, G.H. Investigation into the differences and relationships between gasSOA and aqSOA in winter haze pollution on Chongming Island, Shanghai, based on VOCs observation. Environ. Pollut. 2023, 316, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Study of Volatile Organic Compounds (VOC) in the Cloudy Atmosphere: Air/Droplet Partitioning of VOC; Clermont Auvergne University: Clermont-Ferrand, France, 2019. [Google Scholar]
- Kampf, C.J.; Waxman, E.M.; Slowik, J.G.; Dommen, J.; Pfaffenberger, L.; Praplan, A.P.; Prévôt, A.S.H.; Baltensperger, U.; Hoffmann, T.; Volkamer, R. Effective Henry’s law partitioning and the salting constant of glyoxal in aerosols containing sulfate. Environ. Sci. Technol. 2013, 47, 4236–4244. [Google Scholar] [CrossRef]
- Zhao, J.; Levitt, N.P.; Zhang, R.Y.; Chen, J.M. Heterogeneous reactions of methylglyoxal in acidic media: Implications for secondary organic aerosol formation. Environ. Sci. Technol. 2006, 40, 7682–7687. [Google Scholar] [CrossRef]
- Gaston, C.J.; Riedel, T.P.; Zhang, Z.F.; Gold, A.; Surratt, J.D.; Thornton, J.A. Reactive uptake of an isoprene-derived epoxydiol to submicron aerosol particles. Environ. Sci. Technol. 2014, 48, 11178–11186. [Google Scholar] [CrossRef]
- Fu, T.M.; Jacob, D.J.; Wittrock, F.; Burrows, J.P.; Vrekoussis, M.; Henze, D.K. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res.-Atmos. 2008, 113, 17. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Wang, G.H.; Guo, S.; Zarnora, M.L.; Ying, Q.; Lin, Y.; Wang, W.G.; Hu, M.; Wang, Y. Formation of urban fine particulate matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef]
- Liggio, J.; Li, S.M.; McLaren, R. Heterogeneous reactions of glyoxal on particulate matter: Identification of acetals and sulfate esters. Environ. Sci. Technol. 2005, 39, 1532–1541. [Google Scholar] [CrossRef]
- Ervens, B.; Turpin, B.J.; Weber, R.J. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11069–11102. [Google Scholar] [CrossRef]
- Volkamer, R.; Platt, U.; Wirtz, K. Primary and Secondary Glyoxal Formation from Aromatics: Experimental Evidence for the Bicycloalkyl−Radical Pathway from Benzene, Toluene, and p-Xylene. J. Phys. Chem. A 2001, 105, 7865–7874. [Google Scholar] [CrossRef]
- Gómez Alvarez, E.; Viidanoja, J.; Muñoz, A.; Wirtz, K.; Hjorth, J. Experimental Confirmation of the Dicarbonyl Route in the Photo-oxidation of Toluene and Benzene. Environ. Sci. Technol. 2007, 41, 8362–8369. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-J.; Carlton, A.G.; Turpin, B.J. Isoprene Forms Secondary Organic Aerosol through Cloud Processing: Model Simulations. Environ. Sci. Technol. 2005, 39, 4441–4446. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, J.; Wang, Y.; Seinfeld, J.H.; Zhang, R. Multigeneration Production of Secondary Organic Aerosol from Toluene Photooxidation. Environ. Sci. Technol. 2021, 55, 8592–8603. [Google Scholar] [CrossRef]
- Li, N.; Fu, T.M.; Cao, J.J.; Lee, S.C.; Huang, X.F.; He, L.Y.; Ho, K.F.; Fu, J.S.; Lam, Y.F. Sources of secondary organic aerosols in the Pearl River Delta region in fall: Contributions from the aqueous reactive uptake of dicarbonyls. Atmos. Environ. 2013, 76, 200–207. [Google Scholar] [CrossRef]
- Xing, L.; Wu, J.R.; Elser, M.; Tong, S.R.; Liu, S.X.; Li, X.; Liu, L.; Cao, J.J.; Zhou, J.M.; El-Haddad, I.; et al. Wintertime secondary organic aerosol formation in Beijing-Tianjin-Hebei (BTH): Contributions of HONO sources and heterogeneous reactions. Atmos. Chem. Phys. 2019, 19, 2343–2359. [Google Scholar] [CrossRef]
- Yasmeen, F.; Sauret, N.; Gal, J.F.; Maria, P.C.; Massi, L.; Maenhaut, W.; Claeys, M. Characterization of oligomers from methylglyoxal under dark conditions: A pathway to produce secondary organic aerosol through cloud processing during nighttime. Atmos. Chem. Phys. 2010, 10, 3803–3812. [Google Scholar] [CrossRef]
- Chan, K.M.; Huang, D.D.; Li, Y.J.; Chan, M.N.; Seinfeld, J.H.; Chan, C.K. Oligomeric products and formation mechanisms from acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate particles. J. Atmos. Chem. 2013, 70, 1–18. [Google Scholar] [CrossRef]
- Nozière, B.; Dziedzic, P.; Córdova, A. Inorganic ammonium salts and carbonate salts are efficient catalysts for aldol condensation in atmospheric aerosols. Phys. Chem. Chem. Phys. 2010, 12, 3864–3872. [Google Scholar] [CrossRef]
- Lavado, N.; de la Concepción, J.G.; Babiano, R.; Cintas, P. Formation of cyanamide-glyoxal oligomers in aqueous environments relevant to primeval and astrochemical scenarios: A spectroscopic and theoretical study. Chem.-Eur. J. 2018, 24, 4069–4085. [Google Scholar] [CrossRef]
- Lavado, N.; de la Concepción, J.G.; Gallego, M.; Babiano, R.; Cintas, P. From prebiotic chemistry to supramolecular oligomers: Urea-glyoxal reactions. Org. Biomol. Chem. 2019, 17, 5826–5838. [Google Scholar] [CrossRef]
- De Haan, D.O.; Pajunoja, A.; Hawkins, L.N.; Welsh, H.G.; Jimenez, N.G.; De Loera, A.; Zauscher, M.; Andretta, A.D.; Joyce, B.W.; De Haan, A.C.; et al. Methylamine’s effects on methylglyoxal-containing aerosol: Chemical, physical, and optical changes. ACS Earth Space Chem. 2019, 3, 1706–1716. [Google Scholar] [CrossRef]
- Kasthuriarachchi, N.Y.; Rivellini, L.H.; Chen, X.; Li, Y.J.; Lee, A.K.Y. Effect of relative humidity on secondary brown carbon formation in aqueous droplets. Environ. Sci. Technol. 2020, 54, 13207–13216. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.M.; Shi, Q.J.; Ma, X.H.; Gao, L.; Wang, J.X.; Li, Y.X.; Gao, Y.P.; Li, G.Y.; Zhang, R.Y.; An, T.C. Elucidating the critical oligomeric steps in secondary organic aerosol and brown carbon formation. Atmos. Chem. Phys. 2022, 22, 7259–7271. [Google Scholar] [CrossRef]
- Sun, J.; Wei, B.; Mei, Q.; An, Z.; Wang, X.; Han, D.; Xie, J.; Zhan, J.; Zhang, Q.; Wang, W.; et al. Theoretical investigation on the degradation of dibutyl phthalate initiated by •OH and SO4•- in aqueous solution: Mechanism, kinetics and ecotoxicity assessment. Chem. Eng. J. 2020, 382, 122791. [Google Scholar] [CrossRef]
- Li, Z.; Guo, S.; Li, Z.; Wang, Y.; Hu, Y.; Xing, Y.; Liu, G.; Fang, R.; Zhu, H.J.A.; Research, A.Q. PM2.5 associated phenols, phthalates, and water soluble ions from five stationary combustion sources. Aerosol Air Qual. Res. 2020, 20, 61–71. [Google Scholar] [CrossRef]
- Qiu, S.Q.; Tang, Y.J.; Hu, L.X.; Pei, C.L.; Hong, D.C.; Lin, D.Y.; Kang, G.; Zhou, S.Z.; Liang, B.L.; Chen, S.J.; et al. Unveiling airborne threats: Vertical profiles of multiple emerging pollutants in PM2.5 across the urban atmosphere of Southern China. J. Hazard. Mater. 2025, 486, 10. [Google Scholar] [CrossRef]
- Chen, Y.; Lv, D.; Li, X.H.; Zhu, T.L. PM2.5-bound phthalates in indoor and outdoor air in Beijing: Seasonal distributions and human exposure via inhalation. Environ. Pollut. 2018, 241, 369–377. [Google Scholar] [CrossRef]
- Ma, J.; Chen, L.L.; Guo, Y.; Wu, Q.; Yang, M.; Wu, M.H.; Kannan, K. Phthalate diesters in Airborne PM2.5 and PM10 in a suburban area of Shanghai: Seasonal distribution and risk assessment. Sci. Total Environ. 2014, 497, 467–474. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Ji, Y.M.; Zhao, J.; Terazono, H.; Misawa, K.; Levitt, N.P.; Li, Y.X.; Lin, Y.; Peng, J.F.; Wang, Y.; Duan, L.; et al. Reassessing the atmospheric oxidation mechanism of toluene. Proc. Natl. Acad. Sci. USA 2017, 114, 8169–8174. [Google Scholar] [CrossRef]
- Ji, Y.M.; Shi, Q.J.; Li, Y.X.; An, T.C.; Zheng, J.; Peng, J.F.; Gao, Y.P.; Chen, J.Y.; Li, G.Y.; Wang, Y.; et al. Carbenium ion-mediated oligomerization of methylglyoxal for secondary organic aerosol formation. Proc. Natl. Acad. Sci. USA 2020, 117, 13294–13299. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.M.; Shi, Z.; Li, W.J.; Wang, J.X.; Shi, Q.J.; Li, Y.X.; Gao, L.; Ma, R.Z.; Lu, W.J.; Xu, L.L.; et al. Aqueous-phase chemistry of glyoxal with multifunctional reduced nitrogen compounds: A potential missing route for secondary brown carbon. Atmos. Chem. Phys. 2024, 24, 3079–3091. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Hazra, M.K.; Sinha, A. Formic acid catalyzed hydrolysis of SO3 in the gas phase: A barrierless mechanism for sulfuric acid production of potential atmospheric importance. J. Am. Chem. Soc. 2011, 133, 17444–17453. [Google Scholar] [CrossRef]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. Natural bond orbital methods. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2012, 2, 1–42. [Google Scholar] [CrossRef]
- Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 1935, 3, 107–115. [Google Scholar]
- Evans, M.G.; Polanyi, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 1935, 31, 875–894. [Google Scholar]
- Galano, A.; Alvarez-Idaboy, J.R. Guanosine plus OH Radical Reaction in Aqueous Solution: A Reinterpretation of the UV-vis Data Based on Thermodynamic and Kinetic Calculations. Org. Lett. 2009, 11, 5114–5117. [Google Scholar] [CrossRef]
- Okuno, Y. Theoretical investigation of the mechanism of the baeyer-villiger reaction in nonpolar solvents. Chem.-Eur. J. 1997, 3, 212–218. [Google Scholar] [CrossRef]
- Collins, F.C.; Kimball, G.E. Diffusion-controlled reaction rates. J. Colloid Sci. 1949, 4, 425–437. [Google Scholar]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef]
- Xu, T.; Chen, J.W.; Wang, Z.Y.; Tang, W.H.; Xia, D.M.; Fu, Z.Q.; Xie, H.B. Development of prediction models on base-catalyzed hydrolysis kinetics of phthalate esters with density functional theory calculation. Environ. Sci. Technol. 2019, 53, 5828–5837. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Ji, Y.M.; Zhao, J.Y.; Wang, Y.; Shi, Q.J.; Peng, J.F.; Wang, Y.Y.; Wang, C.Y.; Zhang, F.; Wang, Y.X.; et al. Unexpected Oligomerization of Small α-Dicarbonyls for Secondary Organic Aerosol and Brown Carbon Formation. Environ. Sci. Technol. 2021, 55, 4430–4439. [Google Scholar] [CrossRef]
- Jiang, B.; Zhao, S.Z.; Chen, W.; Tian, L.L.; Hu, W.W.; Li, J.; Zhang, G. Intrinsic Chemical Drivers of Organic Aerosol Volatility: From Experimental Insights to Model Predictions. J. Geophys. Res.-Atmos. 2024, 129, 13. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Shi, Q.; Wang, J.; Ma, R.; Gao, Y.; Ji, Y. Aqueous-Phase Reaction Mechanisms of Small α-Dicarbonyls in the Presence of Phthalate Esters. Toxics 2025, 13, 272. https://doi.org/10.3390/toxics13040272
Li W, Shi Q, Wang J, Ma R, Gao Y, Ji Y. Aqueous-Phase Reaction Mechanisms of Small α-Dicarbonyls in the Presence of Phthalate Esters. Toxics. 2025; 13(4):272. https://doi.org/10.3390/toxics13040272
Chicago/Turabian StyleLi, Wenjian, Qiuju Shi, Jiaxin Wang, Ruize Ma, Yanpeng Gao, and Yuemeng Ji. 2025. "Aqueous-Phase Reaction Mechanisms of Small α-Dicarbonyls in the Presence of Phthalate Esters" Toxics 13, no. 4: 272. https://doi.org/10.3390/toxics13040272
APA StyleLi, W., Shi, Q., Wang, J., Ma, R., Gao, Y., & Ji, Y. (2025). Aqueous-Phase Reaction Mechanisms of Small α-Dicarbonyls in the Presence of Phthalate Esters. Toxics, 13(4), 272. https://doi.org/10.3390/toxics13040272