Effects of Thermodynamics on the Concurrent Accretion and Migration of Gas Giants in Protoplanetary Disks
Abstract
:1. Introduction
2. Numerical Methods
2.1. Hydrodynamical Model
2.2. Cooling of the Disk
2.3. Planet Accretion and Boundary Conditions
3. Simulation Results
3.1. The Accretion of the Planet
3.2. Mechanism of the Accretion
3.3. The Migration of the Planet
3.4. How Thermodynamics Affects Migration
4. Conclusions and Discussion
- The planetary accretion rates for varying cooling timescales are primarily constrained by the disk supply rate from the outer disk, exhibiting a slight decrease with increasing cooling timescales, even though different thermodynamical states have a significant impact on the CPD structures.
- The CPD is much smaller in size and less rotationally supported with longer cooling timescales. When the cooling timescale is an order of magnitude longer than the local dynamical timescale (e.g., ), the rotation of the CPD can even shift to a retrograde orbit, which could strongly influence satellite formation within the CPD.
- The planetary accretion is chiefly driven by spiral shock dissipation in the CPD region. We observe that the Reynolds stress coefficient varies significantly with different cooling timescales, following a trend similar to that of the effective accretion coefficients, making it a dominant factor in controlling the accretion process onto the planet.
- We confirm that in an isothermal disk, the planet migrates outward for a high disk viscosity, consistent with recent findings by Li et al. [56], Laune et al. [57]. However, there is a tendency for inward migration as the cooling timescale increases (), different from the general trend where non-accreting planets migrate outward in the adiabatic limit.
- The transition in migration under the longer cooling timescales is closely linked to the gravitational torque from the co-orbital region of the planet. In longer cooling timescales, the positive gravitational torque from this region is significantly suppressed due to the absence of a rotationally supported CPD. These results highlight the critical role of thermodynamics in the accretion and migration of planets in PPDs.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Borucki, W.J.; Koch, D.G.; Basri, G.; Batalha, N.; Brown, T.M.; Bryson, S.T.; Caldwell, D.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; et al. Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data. Astrophys. J. 2011, 736, 19. [Google Scholar] [CrossRef]
- Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355–359. [Google Scholar] [CrossRef]
- Lin, D.N.C.; Papaloizou, J. On the Tidal Interaction between Protoplanets and the Protoplanetary Disk. III. Orbital Migration of Protoplanets. Astrophys. J. 1986, 309, 846. [Google Scholar] [CrossRef]
- Levison, H.F.; Morbidelli, A.; Gomes, R.; Backman, D. Planet Migration in Planetesimal Disks. In Protostars and Planets V; Reipurth, B., Jewitt, D., Keil, K., Eds.; University of Arizona Press: Tucson, AZ, USA, 2007; p. 669. [Google Scholar]
- Clement, M.S.; Morbidelli, A.; Raymond, S.N.; Kaib, N.A. A record of the final phase of giant planet migration fossilized in the asteroid belt’s orbital structure. Mon. Not. R. Astron. Soc. 2020, 492, L56–L60. [Google Scholar] [CrossRef]
- Lissauer, J.J.; Fabrycky, D.C.; Ford, E.B.; Borucki, W.J.; Fressin, F.; Marcy, G.W.; Orosz, J.A.; Rowe, J.F.; Torres, G.; Welsh, W.F.; et al. A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 2011, 470, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Goldreich, P.; Schlichting, H.E. Overstable Librations can Account for the Paucity of Mean Motion Resonances among Exoplanet Pairs. Astron. J. 2014, 147, 32. [Google Scholar] [CrossRef]
- Xu, W.; Lai, D.; Morbidelli, A. Migration of planets into and out of mean motion resonances in protoplanetary discs: Overstability of capture and non-linear eccentricity damping. Mon. Not. R. Astron. Soc. 2018, 481, 1538–1549. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.P. Mean-motion resonances with interfering density waves. Mon. Not. R. Astron. Soc. 2024, 534, 485–501. [Google Scholar] [CrossRef]
- Brownlee, D.; Tsou, P.; Aléon, J.; Alexander, C.M.O.D.; Araki, T.; Bajt, S.; Baratta, G.A.; Bastien, R.; Bland, P.; Bleuet, P.; et al. Comet 81P/Wild 2 Under a Microscope. Science 2006, 314, 1711. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wu, Y. Review of Jupiter-Trojan asteroids research. Rev. Geophys. Planet. Phys. 2024, 55, 175–183. [Google Scholar] [CrossRef]
- Ward, W.R. Protoplanet Migration by Nebula Tides. Icarus 1997, 126, 261–281. [Google Scholar] [CrossRef]
- Goldreich, P.; Tremaine, S. Disk-satellite interactions. Astrophys. J. 1980, 241, 425–441. [Google Scholar] [CrossRef]
- Artymowicz, P. On the Wave Excitation and a Generalized Torque Formula for Lindblad Resonances Excited by External Potential. Astrophys. J. 1993, 419, 155. [Google Scholar] [CrossRef]
- Ward, W.R. Horsehoe Orbit Drag. Lunar Planet. Sci. Conf. 1991, 22, 1463. [Google Scholar]
- Masset, F.S. On the Co-orbital Corotation Torque in a Viscous Disk and Its Impact on Planetary Migration. Astrophys. J. 2001, 558, 453–462. [Google Scholar] [CrossRef]
- Papaloizou, J.; Lin, D.N.C. On the tidal interaction between protoplanets and the primordial solar nebula. I—Linear calculation of the role of angular momentum exchange. Astrophys. J. 1984, 285, 818–834. [Google Scholar] [CrossRef]
- Tanaka, H.; Takeuchi, T.; Ward, W.R. Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration. Astrophys. J. 2002, 565, 1257–1274. [Google Scholar] [CrossRef]
- Kley, W.; Nelson, R.P. Planet-Disk Interaction and Orbital Evolution. Ann. Rev. Astron. Astrophys. 2012, 50, 211–249. [Google Scholar] [CrossRef]
- Paardekooper, S.; Dong, R.; Duffell, P.; Fung, J.; Masset, F.S.; Ogilvie, G.; Tanaka, H. Planet-Disk Interactions and Orbital Evolution. In Protostars and Planets VII; Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K., Tamura, M., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2023; Volume 534, p. 685. [Google Scholar] [CrossRef]
- Lin, D.N.C.; Papaloizou, J. On the Tidal Interaction between Protoplanets and the Primordial Solar Nebula. II. Self-Consistent Nonlinear Interaction. Astrophys. J. 1986, 307, 395. [Google Scholar] [CrossRef]
- Bodenheimer, P.; Pollack, J.B. Calculations of the accretion and evolution of giant planets: The effects of solid cores. Icarus 1986, 67, 391–408. [Google Scholar] [CrossRef]
- Pollack, J.B.; Hubickyj, O.; Bodenheimer, P.; Lissauer, J.J.; Podolak, M.; Greenzweig, Y. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas. Icarus 1996, 124, 62–85. [Google Scholar] [CrossRef]
- Ida, S.; Lin, D.N.C. Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets. Astrophys. J. 2004, 604, 388–413. [Google Scholar] [CrossRef]
- Chen, Y.X.; Li, Y.P.; Li, H.; Lin, D.N.C. The Preservation of Super-Earths and the Emergence of Gas Giants after Their Progenitor Cores Have Entered the Pebble-isolation Phase. Astrophys. J. 2020, 896, 135. [Google Scholar] [CrossRef]
- Machida, M.N.; Kokubo, E.; Inutsuka, S.i.; Matsumoto, T. Angular Momentum Accretion onto a Gas Giant Planet. Astrophys. J. 2008, 685, 1220–1236. [Google Scholar] [CrossRef]
- Tanigawa, T.; Ohtsuki, K.; Machida, M.N. Distribution of Accreting Gas and Angular Momentum onto Circumplanetary Disks. Astrophys. J. 2012, 747, 47. [Google Scholar] [CrossRef]
- Fung, J.; Zhu, Z.; Chiang, E. Circumplanetary Disk Dynamics in the Isothermal and Adiabatic Limits. Astrophys. J. 2019, 887, 152. [Google Scholar] [CrossRef]
- Li, Y.P.; Chen, Y.X.; Lin, D.N.C. 3D global simulations of accretion onto gap-opening planets: Implications for circumplanetary disc structures and accretion rates. Mon. Not. R. Astron. Soc. 2023, 526, 5346–5364. [Google Scholar] [CrossRef]
- Kley, W.; D’Angelo, G.; Henning, T. Three-dimensional Simulations of a Planet Embedded in a Protoplanetary Disk. Astrophys. J. 2001, 547, 457–464. [Google Scholar] [CrossRef]
- D’Angelo, G.; Kley, W.; Henning, T. Orbital Migration and Mass Accretion of Protoplanets in Three-dimensional Global Computations with Nested Grids. Astrophys. J. 2003, 586, 540–561. [Google Scholar] [CrossRef]
- Machida, M.N.; Kokubo, E.; Inutsuka, S.I.; Matsumoto, T. Gas accretion onto a protoplanet and formation of a gas giant planet. Mon. Not. R. Astron. Soc. 2010, 405, 1227–1243. [Google Scholar] [CrossRef]
- Bodenheimer, P.; D’Angelo, G.; Lissauer, J.J.; Fortney, J.J.; Saumon, D. Deuterium Burning in Massive Giant Planets and Low-mass Brown Dwarfs Formed by Core-nucleated Accretion. Astrophys. J. 2013, 770, 120. [Google Scholar] [CrossRef]
- Choksi, N.; Chiang, E.; Fung, J.; Zhu, Z. The maximum accretion rate of a protoplanet: How fast can runaway be? Mon. Not. R. Astron. Soc. 2023, 525, 2806–2819. [Google Scholar] [CrossRef]
- Li, Y.P.; Chen, Y.X.; Lin, D.N.C.; Zhang, X. Accretion of Gas Giants Constrained by the Tidal Barrier. Astrophys. J. 2021, 906, 52. [Google Scholar] [CrossRef]
- Dobbs-Dixon, I.; Li, S.L.; Lin, D.N.C. Tidal Barrier and the Asymptotic Mass of Proto-Gas Giant Planets. Astrophys. J. 2007, 660, 791–806. [Google Scholar] [CrossRef]
- Duffell, P.C.; Haiman, Z.; MacFadyen, A.I.; D’Orazio, D.J.; Farris, B.D. The Migration of Gap-opening Planets is Not Locked to Viscous Disk Evolution. Astrophys. J. Lett. 2014, 792, L10. [Google Scholar] [CrossRef]
- Fung, J.; Shi, J.M.; Chiang, E. How Empty are Disk Gaps Opened by Giant Planets? Astrophys. J. 2014, 782, 88. [Google Scholar] [CrossRef]
- Dürmann, C.; Kley, W. Migration of massive planets in accreting disks. Astron. Astrophys. 2015, 574, A52. [Google Scholar] [CrossRef]
- Robert, C.M.T.; Crida, A.; Lega, E.; Méheut, H.; Morbidelli, A. Toward a new paradigm for Type II migration. Astron. Astrophys. 2018, 617, A98. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zhang, X.; Li, Y.P.; Li, H.; Lin, D.N.C. Retention of Long-period Gas Giant Planets: Type II Migration Revisited. Astrophys. J. 2020, 900, 44. [Google Scholar] [CrossRef]
- Kanagawa, K.D.; Tanaka, H.; Szuszkiewicz, E. Radial Migration of Gap-opening Planets in Protoplanetary Disks. I. The Case of a Single Planet. Astrophys. J. 2018, 861, 140. [Google Scholar] [CrossRef]
- Zhu, Z.; Ju, W.; Stone, J.M. Shock-driven Accretion in Circumplanetary Disks: Observables and Satellite Formation. Astrophys. J. 2016, 832, 193. [Google Scholar] [CrossRef]
- Szulágyi, J.; Masset, F.; Lega, E.; Crida, A.; Morbidelli, A.; Guillot, T. Circumplanetary disc or circumplanetary envelope? Mon. Not. R. Astron. Soc. 2016, 460, 2853–2861. [Google Scholar] [CrossRef]
- Krapp, L.; Kratter, K.M.; Youdin, A.N.; Benítez-Llambay, P.; Masset, F.; Armitage, P.J. A Thermodynamic Criterion for the Formation of Circumplanetary Disks. Astrophys. J. 2024, 973, 153. [Google Scholar] [CrossRef]
- Li, Y.P.; Dempsey, A.M.; Li, H.; Li, S.; Li, J. Hot Circumsingle Disks Drive Binary Black Hole Mergers in Active Galactic Nucleus Disks. Astrophys. J. Lett. 2022, 928, L19. [Google Scholar] [CrossRef]
- Sudarshan, P.; Penzlin, A.B.T.; Ziampras, A.; Kley, W.; Nelson, R.P. How cooling influences circumbinary discs. Astron. Astrophys. 2022, 664, A157. [Google Scholar] [CrossRef]
- Wang, H.Y.; Bai, X.N.; Lai, D. On the Role of Dynamical Cooling in the Dynamics of Circumbinary Disks. Astrophys. J. 2023, 943, 175. [Google Scholar] [CrossRef]
- Miranda, R.; Rafikov, R.R. Planet-Disk Interaction in Disks with Cooling: Basic Theory. Astrophys. J. 2020, 892, 65. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Z. The effects of disc self-gravity and radiative cooling on the formation of gaps and spirals by young planets. Mon. Not. R. Astron. Soc. 2020, 493, 2287–2305. [Google Scholar] [CrossRef]
- Ziampras, A.; Nelson, R.P.; Rafikov, R.R. Modelling planet-induced gaps and rings in ALMA discs: The role of in-plane radiative diffusion. Mon. Not. R. Astron. Soc. 2023, 524, 3930–3947. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, P.; Dong, R. The Dependence of the Structure of Planet-opened Gaps in Protoplanetary Disks on Radiative Cooling. Astrophys. J. 2024, 961, 86. [Google Scholar] [CrossRef]
- Masset, F.S.; Casoli, J. On the Horseshoe Drag of a Low-Mass Planet. II. Migration in Adiabatic Disks. Astrophys. J. 2009, 703, 857–876. [Google Scholar] [CrossRef]
- Paardekooper, S.J.; Baruteau, C.; Crida, A.; Kley, W. A torque formula for non-isothermal type I planetary migration—I. Unsaturated horseshoe drag. Mon. Not. R. Astron. Soc. 2010, 401, 1950–1964. [Google Scholar] [CrossRef]
- Lega, E.; Crida, A.; Bitsch, B.; Morbidelli, A. Migration of Earth-sized planets in 3D radiative discs. Mon. Not. R. Astron. Soc. 2014, 440, 683–695. [Google Scholar] [CrossRef]
- Li, Y.P.; Chen, Y.X.; Lin, D.N.C. Concurrent Accretion and Migration of Giant Planets in Their Natal Disks with Consistent Accretion Torque. Astrophys. J. 2024, 971, 130. [Google Scholar] [CrossRef]
- Laune, J.; Li, R.; Lai, D. Migration of Accreting Planets and Black Holes in Disks. arXiv 2024, arXiv:2405.00296. [Google Scholar] [CrossRef]
- Stone, J.M.; Tomida, K.; White, C.J.; Felker, K.G. The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers. Astrophys. J. Suppl. Ser. 2020, 249, 4. [Google Scholar] [CrossRef]
- Andrews, S.M. Observations of Protoplanetary Disk Structures. Ann. Rev. Astron. Astrophys. 2020, 58, 483–528. [Google Scholar] [CrossRef]
- Miotello, A.; Kamp, I.; Birnstiel, T.; Cleeves, L.C.; Kataoka, A. Setting the Stage for Planet Formation: Measurements and Implications of the Fundamental Disk Properties. In Protostars and Planets VII; Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K., Tamura, M., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2023; Volume 534, p. 501. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Zhu, Z.; Dong, R.; Stone, J.M.; Rafikov, R.R. The Structure of Spiral Shocks Excited by Planetary-mass Companions. Astrophys. J. 2015, 813, 88. [Google Scholar] [CrossRef]
- de Val-Borro, M.; Edgar, R.G.; Artymowicz, P.; Ciecielag, P.; Cresswell, P.; D’Angelo, G.; Delgado-Donate, E.J.; Dirksen, G.; Fromang, S.; Gawryszczak, A.; et al. A comparative study of disc-planet interaction. Mon. Not. R. Astron. Soc. 2006, 370, 529–558. [Google Scholar] [CrossRef]
- Li, Y.P.; Dempsey, A.M.; Li, S.; Li, H.; Li, J. Orbital Evolution of Binary Black Holes in Active Galactic Nucleus Disks: A Disk Channel for Binary Black Hole Mergers? Astrophys. J. 2021, 911, 124. [Google Scholar] [CrossRef]
- Li, R.; Lai, D. Hydrodynamical evolution of black-hole binaries embedded in AGN discs. Mon. Not. R. Astron. Soc. 2022, 517, 1602–1624. [Google Scholar] [CrossRef]
- Ribas, I.; Guinan, E.F.; Güdel, M.; Audard, M. Evolution of the Solar Activity over Time and Effects on Planetary Atmospheres. I. High-Energy Irradiances (1-1700 Å). Astrophys. J. 2005, 622, 680–694. [Google Scholar] [CrossRef]
- Trigo-Rodríguez, J.M.; García-Hernández, D.A.; Lugaro, M.; Karakas, A.I.; van Raai, M.; García Lario, P.; Manchado, A. The role of massive AGB stars in the early solar system composition. M&PS 2009, 44, 627–641. [Google Scholar] [CrossRef]
- Benítez-Llambay, P.; Masset, F.S. FARGO3D: A New GPU-oriented MHD Code. Astrophys. J. Suppl. Ser. 2016, 223, 11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Li, Y.-P. Effects of Thermodynamics on the Concurrent Accretion and Migration of Gas Giants in Protoplanetary Disks. Universe 2025, 11, 1. https://doi.org/10.3390/universe11010001
Wu H, Li Y-P. Effects of Thermodynamics on the Concurrent Accretion and Migration of Gas Giants in Protoplanetary Disks. Universe. 2025; 11(1):1. https://doi.org/10.3390/universe11010001
Chicago/Turabian StyleWu, Hening, and Ya-Ping Li. 2025. "Effects of Thermodynamics on the Concurrent Accretion and Migration of Gas Giants in Protoplanetary Disks" Universe 11, no. 1: 1. https://doi.org/10.3390/universe11010001
APA StyleWu, H., & Li, Y.-P. (2025). Effects of Thermodynamics on the Concurrent Accretion and Migration of Gas Giants in Protoplanetary Disks. Universe, 11(1), 1. https://doi.org/10.3390/universe11010001