Improved Differentiation Towards Insulin Producing Beta-Cells Derived from Healthy Canine Pancreatic Ductal Organoids
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.1.1. Pancreatic Tissue Samples
2.1.2. Organoid Isolation
2.1.3. Media Compositions, Expansion, Differentiation, and Maturation
2.1.4. Islet of Langerhans Isolation
2.2. RNA Isolation and qPCR
2.3. Glucose-Stimulated Insulin Secretion Assay
2.4. Statistical Analysis
3. Results
3.1. Expansion, Differentiation, and Maturation of dPO
3.2. Gene Expression of Stem Cell Markers, β-Cell Markers, and Non-β-Cell Markers
3.3. Glucose-Stimulated Insulin Secretion Assay
4. Discussion
Conclusion and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCann, T.M.; Simpson, K.E.; Shaw, D.J.; Butt, J.A.; Gunn-More, D.A. Feline diabetes mellitus in the UK: The prevalence within an insured cat population and a questionnairebased putative risk factor analysis. J. Feline Med. Surg. 2007, 9, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Catchpole, B.; Ristic, J.M.; Fleeman, L.M.; Davison, L.J. Canine diabetes mellitus: Can old dogs teach us new tricks? Diabetologia 2005, 48, 1948–1956. [Google Scholar] [CrossRef] [PubMed]
- Fall, T.; Hamlin, H.H.; Hedhammar, A.; Kämpe, O.; Egenvall, A. Diabetes mellitus in a population of 180,000 insured dogs: Incidence, survival, and breed distribution. J. Vet. Intern. Med. 2007, 21, 1209. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, D.G.; Gostelow, R.; Orme, C.; Church, D.B.; Niessen, S.J.; Verheyen, K.; Brodbelt, D.C. Epidemiology of Diabetes Mellitus among 193,435 Cats Attending Primary-Care Veterinary Practices in England. J. Vet. Intern. Med. 2016, 30, 964–972. [Google Scholar] [CrossRef]
- Corsini, A.; Niessen, S.J.; Miceli, D.D.; Caney, S.; Zeugswetter, F.K.; Sieber-Ruckstuhl, N.S.; Arenas, C.; Fleeman, L.M.; Leal, R.O.; Battellino, M.; et al. Quality of fe and response to treatment in cats with hypersomatotropism: The owners’ point of view. J. Feline Med. Surg. 2022, 24, e175–e182. [Google Scholar] [CrossRef]
- Ribitsch, I.; Baptista, P.M.; Lange-Consiglio, A.; Melotti, L.; Patruno, M.; Jenner, F.; Schnable-Feichter, E.; Dutton, L.C.; Connoly, D.J.; van Steenbeek, F.G.; et al. Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Front. Bioeng. Biotechnol. 2020, 8, 972. [Google Scholar] [CrossRef]
- Moshref, M.; Tangey, B.; Gilor, C.; Papas, K.K.; Williamson, P.; Loomba-Albrecht, L.; Sheeny, P.; Kol, A. Concise Review: Canine Diabetes Mellitus as a Translational Model for Innovative Regenerative Medicine Approaches. Stem Cells Transl. Med. 2019, 8, 450–455. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: Modeling development and disease suing organoid technologies. Science 2014, 345, 127125. [Google Scholar] [CrossRef]
- Chen, B.; Slocombe, R.F.; Georgy, S.R. Advances in organoid technology for veterinary disease modeling. Front. Vet. Sci. 2023, 10, 1234628. [Google Scholar] [CrossRef]
- Gabriel, V.; Zdyrski, C.; Sahoo, D.K.; Ralston, A.; Wickham, H.; Bourgois-Mochel, A.; Ahmed, B.; Merodio, M.M.; Paukner, K.; Piñeyro, P.; et al. Adult Animal Stem CellDerived Organoids in Biomedical Research and the One Health Paradigm. Int. J. Mol. Sci. 2024, 25, 701. [Google Scholar] [CrossRef]
- Allenspach, K.; Zavros, Y.; Elbadawy, M.; Zdyrski, C.; Mochel, J.P. Leveraging the predictive power of 3D organoids in dogs to develop new treatments for man and man’s best friend. BMC Biol. 2023, 21, 297. [Google Scholar] [CrossRef]
- Kopper, J.J.; Iennarella-Servantez, C.; Jergens, A.E.; Sahoo, D.K.; Guillot, E.; BourgoisMochel, A.; Martinez, M.N.; Allenspach, K.; Mochel, J.P. Harnessing the Biology of Canine Intestinal Organoids to Heighten Understanding of Inflammatory Bowel Disease Pathogenesis and Accelerate Drug Discovery: A One Health Approach. Front. Toxicol. 2021, 3, 773953. [Google Scholar] [CrossRef] [PubMed]
- Csukovich, G.; Pratscher, B.; Burgener, I.A. The World of Organoids: Gastrointestinal Disease Modelling in the Age of 3R and One, Health with Specific Relevance to Dogs and Cats. Animals 2022, 12, 2461. [Google Scholar] [CrossRef]
- Penning, L.C.; van den Boom, R. Companion animal organoid technology to advance veterinary regenerative medicine. Front. Vet. Sci. 2023, 10, 1032835. [Google Scholar] [CrossRef]
- Boj, S.F.; Hwang, C.I.; Baker, L.A.; Chio, I.I.; Engle, D.D.; Corbo, V.; Jager, M.; PonzSarvise, M.; Tiriac, H.; Spector, M.S.; et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015, 160, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Loomans, C.J.M.; Williams Giuliani, N.; Balak, J.; Ringnalda, F.; van Gurp, L.; Huch, M.; Boj, S.F.; Sato, T.; Kester, L.; de Sousa Lopes, S.M.C.; et al. Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential. Stem Cell Rep. 2018, 10, 712–724. [Google Scholar] [CrossRef]
- Hogrebe, N.J.; Maxwell, K.G.; Augsornworawat, P.; Millna, J.R. Generation of insulinproducing pancreatic β cells from multiple human stem cell lines. Nat. Protoc. 2021, 16, 4109–4143. [Google Scholar] [CrossRef] [PubMed]
- Chmielowiec, J.; Szlachcic, W.J.; Yang, D.; Scavuzzo, M.A.; Wamble, K.; SarrionPerdigones, A.; Sabek, O.M.; Venken, K.J.T.; Borowaik, M. Human pancreatic microenvironment promotes β-cell differentiation via non-canonical WNT5A/JNK and BMP signaling. Nat. Commun. 2022, 13, 1952. [Google Scholar] [CrossRef]
- Afrikanova, I.; Yebra, M.; Simpkinson, M.; Xu, Y.; Hayek, A.; Montgomery, A. Inhibitors of Src and focal adhesion kinase promote endocrine specification: Impact on the derivation of β-cells from human pluripotent stem cells. J. Biol. Chem. 2011, 286, 36042–36052. [Google Scholar] [CrossRef]
- Blum, B.; Roose, A.N.; Barrandon, O.; Maehr, R.; Arvanites, A.C.; Davidow, L.S.; Davis, J.C.; Peterson, Q.P.; Rubin, L.L.; Melton, D.A. Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway. eLife 2014, 3, e02809. [Google Scholar] [CrossRef]
- Kunisada, Y.; Tsubooka-Yamazoe, N.; Shoji, M.; Hosoya, M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res. 2012, 8, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Alessandra, G.; Algerta, M.; Paola, M.; Schulkte, C.; Lenardi, C.; Milani, P.; Maffiolo, E.; Tedeschi, G.; Perego, C. Shaping Pancreatic β-Cell Differentiation and Functioning: The Influence of Mechanotransduction. Cells 2020, 9, 413. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, D.; Pradhan, G.; Wu, C.; Allred, C.D.; Guo, S.; Sun, Y. A Simple High Efficiency Protocol for Pancreatic Islet Isolation from Mice. J. Vis. Exp. 2019, 150, 10–3791. [Google Scholar] [CrossRef]
- van Steenbeek, F.G.; Spee, B.; Penning, L.C.; Kummeling, A.; van Gils, I.H.; Grinwis, G.C.; Van Leenen, D.; Holstege, F.C.; Vos-Loohuis, M.; Rothuizen, J.; et al. Altered subcellular localization of heat shock protein 90 is associated with impaired expression of the aryl hydrocarbon receptor pathway in dogs. PLoS ONE 2013, 8, e57973. [Google Scholar] [CrossRef]
- Bustin, S.A.; Beaulieu, J.; Huggett, J.; Jaggi, R.; Kibenge, F.S.B.; Olsvik, P.A.; Penning, L.C.; Toegel, S. MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol. Biol. 2010, 11, 74. [Google Scholar] [CrossRef]
- Soldovieri, L.; Di Giuseppe, G.; Ciccarelli, G.; Quero, G.; Cinti, F.; Brunetti, M.; Nista, E.C.; Gasbarrini, A.; Alfieri, S.; Pontevecci, A.; et al. An update on pancreatic regeneration mechanisms: Searching for paths to a cure for type 2 diabetes. Mol. Metab. 2023, 74, 101754. [Google Scholar] [CrossRef]
- Gao, Y.; Guan, W.; Bai, C. Pancreatic Duct Cells Isolated From Canines Differentiate Into Beta-Like Pancreatic Islet Cells. Front. Vet. Sci. 2022, 8, 771196. [Google Scholar] [CrossRef]
- Linde-Forsberg, C.; Eneroth, A. Abnormalities in Pregnancy, Parturition, and the Periparturient Period, Textbook of Veterinary Internal Medicine; Elsevier Saunders: St Louis, MO, USA, 2005. [Google Scholar]
- Bratanova-Tochkova, T.K.; Cheng, H.; Daniel, S.; Gunawardana, S.; Liu, Y.-J.; Mulvaney-Musa, J.; Schermerhorn, T.; Straub, S.G.; Yajima, K.; Sharp, G.W.G. Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes 2002, 51, S83–S90. [Google Scholar] [CrossRef]
- Wang, S.; Du, Y.; Zhang, B.; Meg, G.; Liu, Z.; Liew, S.Y.; Liang, R.; Zhang, Z.; Cai, X.; Wu, S.; et al. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient. Cell 2024, 22, 6152–6164.e18. [Google Scholar] [CrossRef]
- Grattoni, A.; Korbutt, G.; Tomei, A.A.; Garcia, A.J.; Pepper, A.R.; Stable, C.; Brehm, M.; Papas, K.; Citro, A.; Shirwan, H.; et al. Harnessin cellular therapeutics for type 1 diabetes mellitus: Progress, challenges, and the road ahead. Nat. Rev. Endocrinol. 2025, 21, 14–30. [Google Scholar] [CrossRef]
- Westenfelder, C.; Hu, Z.; Zhang, P.; Gooch, A. Intraperitoneal administration of human “neo-islets”, 3-D organoids of mesenchymal stromal and pancreatic islet cells, normalizes blood glucose levels in streptozotocin-diabetic NOD/SCID mice: Significance for clinic al trials. PLoS ONE 2021, 16, e025043. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S.; Taylor, R. Intra-pancreatic fat deposition: Bringing hidden fat to the fore. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S. Fatty change of the pancreas: The Pandora’s box of pancreatology. Lancet Gastroenterol. Hepatol. 2023, 8, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Kruitwagen, H.S.; Oosterhoff, L.A.; Vernooij, I.G.W.H.; Schrall, I.M.; van Wolferen, M.E.; Bannink, F.; Roesch, C.; van Uden, L.; Molenaaar, M.R.; Helms, J.B.; et al. Longterm adult feline liver organoid cultures for disease modeling of hepatic steatosis. Stem Cell Rep. 2017, 8, 822–830. [Google Scholar] [CrossRef]
- Haaker, M.W.; Kruitwagen, H.S.; Vaandrager, A.B.; Houweling, M.; Penning, L.C.; Molenaaar, M.R.; van Wolferen, M.E.; Oosterhoff, L.A.; Spee, B.; Helms, J.B. Identification of potential drugs for treatment of hepatic lipidosis in cats using an invitro feline liver organoid system. J. Vet. Intern. Med. 2020, 34, 132–138. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouw, B.H.T.; Oliveira, F.C.M.; Kooistra, H.S.; Spee, B.; van Uden, L.; Penning, L.C. Improved Differentiation Towards Insulin Producing Beta-Cells Derived from Healthy Canine Pancreatic Ductal Organoids. Vet. Sci. 2025, 12, 362. https://doi.org/10.3390/vetsci12040362
Gouw BHT, Oliveira FCM, Kooistra HS, Spee B, van Uden L, Penning LC. Improved Differentiation Towards Insulin Producing Beta-Cells Derived from Healthy Canine Pancreatic Ductal Organoids. Veterinary Sciences. 2025; 12(4):362. https://doi.org/10.3390/vetsci12040362
Chicago/Turabian StyleGouw, Boyd H. T., Flavia C. M. Oliveira, Hans S. Kooistra, Bart Spee, Lisa van Uden, and Louis C. Penning. 2025. "Improved Differentiation Towards Insulin Producing Beta-Cells Derived from Healthy Canine Pancreatic Ductal Organoids" Veterinary Sciences 12, no. 4: 362. https://doi.org/10.3390/vetsci12040362
APA StyleGouw, B. H. T., Oliveira, F. C. M., Kooistra, H. S., Spee, B., van Uden, L., & Penning, L. C. (2025). Improved Differentiation Towards Insulin Producing Beta-Cells Derived from Healthy Canine Pancreatic Ductal Organoids. Veterinary Sciences, 12(4), 362. https://doi.org/10.3390/vetsci12040362