Dietary Angelica sinensis Enhances Sow Lactation and Piglet Development Through Gut Microbiota and Metabolism
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Husbandry and Experimental Design
2.2. Sample Collection
2.3. Calculation of Sow Lactation Capacity
2.4. Average Daily Weight Gain of Piglets
2.5. Enzyme-Linked Immunosorbent Assay
2.6. Intestinal Histomorphology Analysis
2.7. Real-Time PCR for Gene Expression Analysis
2.8. Analysis of Serum and Angelica sinensis Metabolites
2.9. Analysis of 16S rRNA Gene Amplicons from Gut Microbiota
2.10. Data Statistics and Analysis
3. Results
3.1. Dietary AS Supplementation Enhances Lactation Performance and Milk Immunoglobulin Profiles in Sows
3.2. AS Metabolite Analysis
3.3. Impact of AS Supplementation on Serum Metabolism in Sows
3.4. Analysis of Important AS Metabolites in Blood
3.5. AS Effects on Intestinal Microbiota in Sows
3.6. Maternal AS Intake During Lactation Enhances Piglet Growth and Immune Function
3.7. Supplementing Sow Diets with AS Benefits the Intestinal Health of Piglets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DAO | Diamine oxidase |
D-LA | D-Lactate |
GH | Growth Hormone |
IgA | Immunoglobulin A |
IGF-1 | Insulin-like growth factor 1 |
IgG | Immunoglobulin G |
IgM | Immunoglobulin M |
IL-6 | Interleukin-6 |
OTUs | Operational Taxonomic Units |
PRL | Prolactin |
SIgA | Secretory immunoglobulin A |
T3 | Triiodothyronine |
T4 | Thyroxine |
TIC | Time–intensity curve |
TNF-α | Tumor necrosis factor-α |
ZO-1 | Zonula Occludens Protein 1 |
References
- Guan, R.; Zhou, X.; Cai, H.; Qian, X.; Xin, X.; Li, X. Study on the influence of different production factors on PSY and its correlation. Porc. Health Manag. 2022, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Guan, R.; Cai, H.; Wang, P.; Yang, Y.; Wang, X.; Li, X.; Song, H. Machine learning based personalized promotion strategy of piglets weaned per sow per year in large-scale pig farms. Porc. Health Manag. 2022, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Fernández, S.; Díaz-Gaona, C.; Casas-Rosal, J.C.; Alòs, N.; Tusell, L.; Quintanilla, R.; Rodríguez-Estévez, V. Preweaning piglet survival on commercial farms. J. Anim. Sci. 2024, 102, 408. [Google Scholar] [CrossRef] [PubMed]
- Gourley, K.M.; Calderon, H.I.; Woodworth, J.C.; DeRouchey, J.M.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D. Sow and piglet traits associated with piglet survival at birth and to weaning. J. Anim. Sci. 2020, 98, 187. [Google Scholar] [CrossRef]
- Theil, P.K.; Lauridsen, C.; Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 2014, 8, 1021–1030. [Google Scholar] [CrossRef]
- Wolter, B.F.; Ellis, M. The effects of weaning weight and rate of growth immediately after weaning on subsequent pig growth performance and carcass characteristics. Can. J. Anim. Sci. 2001, 81, 363–369. [Google Scholar] [CrossRef]
- Moest, N.K.; Willard, N.C.; Shull, C.M.; McKilligan, D.; Ellis, M. 187 Effect of Piglet Weaning Weight on Wean-to-Finish Growth Performance and Ultrasound Carcass Measures. J. Anim. Sci. 2023, 101 (Suppl. S2), 9–10. [Google Scholar] [CrossRef]
- Chao, J.; Ko, C.Y.; Lin, C.Y.; Tomoji, M.; Huang, C.H.; Chiang, H.C.; Yang, J.J.; Huang, S.S.; Su, S.Y. Ethnobotanical Survey of Natural Galactagogues Prescribed in Traditional Chinese Medicine Pharmacies in Taiwan. Front. Pharmacol. 2020, 11, 625869. [Google Scholar] [CrossRef]
- Jin, M.; Zhao, K.; Huang, Q.; Xu, C.; Shang, P. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: A review. Carbohydr. Polym. 2012, 89, 713–722. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Meng, F.Y.; Liang, S.X.; Deng, R.; Li, C.K.; Pong, N.H.; Lau, C.P.; Cheng, S.W.; Ye, J.Y.; et al. Polysaccharides from the root of Angelica sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway. BMC Complement. Altern. Med. 2010, 10, 79. [Google Scholar] [CrossRef]
- Gao, Y.; Mo, S.; Cao, H.; Zhi, Y.; Ma, X.; Huang, Z.; Li, B.; Wu, J.; Zhang, K.; Jin, L. The efficacy and mechanism of Angelica sinensis (Oliv.) Diels root aqueous extract based on RNA sequencing and 16S rDNA sequencing in alleviating polycystic ovary syndrome. Phytomedicine 2023, 120, 155013. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chen, Y.; Zhang, Q.; Liu, B.W.; Yang, L.; Xu, Y.H.; Zhao, Y.H. Overview of therapeutic potentiality of Angelica sinensis for ischemic stroke. Phytomedicine 2021, 90, 153652. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Wang, L.; Wang, Z.; Xiao, H.; Hou, J.; Hu, L.; Fan, N.; Wang, Y. Angelica Sinensis polysaccharide antagonizes 5-Fluorouracil-induced spleen injury and dysfunction by suppressing oxidative stress and apoptosis. Biomed. Pharmacother. 2023, 162, 114602. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, J.; Xu, Q.; Zhu, J.; Zhang, H.; Xia, G.; Zang, H. Evaluation of total phenolic, flavonoid, carbohydrate contents and antioxidant activities of various solvent extracts from Angelica amurensis root. Nat. Prod. Res. 2021, 35, 4084–4088. [Google Scholar] [CrossRef]
- Wang, K.; Song, Z.; Wang, H.; Li, Q.; Cui, Z.; Zhang, Y. Angelica sinensis polysaccharide attenuates concanavalin A-induced liver injury in mice. Int. Immunopharmacol. 2016, 31, 140–148. [Google Scholar] [CrossRef]
- Ran, X.; Li, Y.; Guo, W.; Li, K.; Guo, W.; Wang, X.; Liu, J.; Bi, J.; Fu, S. Angelica sinensis Polysaccharide Alleviates Staphylococcus aureus-Induced Mastitis by Regulating The Intestinal Flora and Gut Metabolites. J. Agric. Food Chem. 2024, 72, 24504–24517. [Google Scholar] [CrossRef]
- Duan, X.; Wang, X.; Li, Z.; Liu, C.; Zhang, L.; Bao, Y.; Shi, W.; Zhao, X. Effects of supplemental feeding of Chinese herbal mixtures to perinatal sows on reproductive performance, immunity, and breast milk quality of sows. Front. Vet. Sci. 2024, 11, 1445216. [Google Scholar] [CrossRef]
- Duan, X.; Wang, X.; Li, Z.; Liu, C.; Bao, Y.; Shi, W.; Zhao, X. Effects of supplemental feeding of Chinese herbal mixtures to perinatal sows on antioxidant capacity and gut microbiota of sows and their offspring piglets. Front. Microbiol. 2024, 15, 1459188. [Google Scholar] [CrossRef]
- Miao, J.; Adewole, D.; Liu, S.; Xi, P.; Yang, C.; Yin, Y. Tryptophan Supplementation Increases Reproduction Performance, Milk Yield, and Milk Composition in Lactating Sows and Growth Performance of Their Piglets. J. Agric. Food Chem. 2019, 67, 5096–5104. [Google Scholar] [CrossRef]
- Zhou, Z.; Luo, M.; Zhang, H.; Yin, Y.; Cai, Y.; Zhu, Z.J. Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nat. Commun. 2022, 13, 6656. [Google Scholar] [CrossRef]
- Farmer, C. Nutritional impact on mammary development in pigs: A review. J. Anim. Sci. 2018, 96, 3748–3756. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R., Jr.; Manu, H.; Swartz, D.; Baidoo, S. 247 Effects of Feeding Frequency During Lactation on Sow and Litter Performance. J. Anim. Sci. 2022, 100 (Suppl. S2), 113–114. [Google Scholar] [CrossRef]
- Deng, S.; Fang, C.; Zhuo, R.; Jiang, Q.; Song, Y.; Yang, K.; Zhang, S.; Hao, J.; Fang, R. Maternal Supplementary Tapioca Polysaccharide Iron Improves the Growth Performance of Piglets by Regulating the Active Components of Colostrum and Cord Blood. Animals 2023, 13, 2492. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xie, C.; Liang, X.; Li, Z.; Li, B.; Wu, X.; Yin, Y. Yeast-based nucleotide supplementation in mother sows modifies the intestinal barrier function and immune response of neonatal pigs. Anim. Nutr. 2021, 7, 84–93. [Google Scholar] [CrossRef]
- Ariza-Nieto, C.; Bandrick, M.; Baidoo, S.K.; Anil, L.; Molitor, T.W.; Hathaway, M.R. Effect of dietary supplementation of oregano essential oils to sows on colostrum and milk composition, growth pattern and immune status of suckling pigs. J. Anim. Sci. 2011, 89, 1079–1089. [Google Scholar] [CrossRef]
- Chiu, Y.-W.; Cheng, S.-W.; Yang, C.-Y.; Weng, Y.-H. Chinese herbs in maternal diets related to clinical presentations in breastfed infants. J. Herb. Med. 2023, 41, 100708. [Google Scholar] [CrossRef]
- Ampode, K.M.B.; Mun, H.-S.; Lagua, E.B.; Chem, V.; Park, H.-R.; Kim, Y.-H.; Yang, C.-J. Bump Feeding Improves Sow Reproductive Performance, Milk Yield, Piglet Birth Weight, and Farrowing Behavior. Animals 2023, 13, 3148. [Google Scholar] [CrossRef]
- Chasseloup, F.; Bernard, V.; Chanson, P. Prolactin: Structure, receptors, and functions. Rev. Endocr. Metab. Disord. 2024, 25, 953–966. [Google Scholar] [CrossRef]
- Ma, X.; Liu, H.; Li, W.; Chen, J.; Cui, Z.; Wang, Z.; Hu, C.; Ding, Y.; Zhu, H. Prolactin Modulates the Proliferation and Secretion of Goat Mammary Epithelial Cells via Regulating Sodium-Coupled Neutral Amino Acid Transporter 1 and 2. Cells 2024, 13, 1461. [Google Scholar] [CrossRef]
- Chen, S.; Long, M.; Li, X.Y.; Li, Q.M.; Pan, L.H.; Luo, J.P.; Zha, X.Q. Codonopsis lanceolata polysaccharide ameliorates high-fat diet induced-postpartum hypogalactia via stimulating prolactin receptor-mediated Jak2/Stat5 signaling. Int. J. Biol. Macromol. 2024, 259 Pt 1, 129114. [Google Scholar] [CrossRef]
- Ni, Y.; Chen, Q.; Cai, J.; Xiao, L.; Zhang, J. Three lactation-related hormones: Regulation of hypothalamus-pituitary axis and function on lactation. Mol. Cell. Endocrinol. 2021, 520, 111084. [Google Scholar] [CrossRef] [PubMed]
- Accorsi, P.A.; Pacioni, B.; Pezzi, C.; Forni, M.; Flint, D.J.; Seren, E. Role of prolactin, growth hormone and insulin-like growth factor 1 in mammary gland involution in the dairy cow. J. Dairy Sci. 2002, 85, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yang, J.; Wang, S.; Zhang, X.; Hou, J.; Xu, F.; Wang, Z.; Xu, L.; Diao, X. Effects of Soybean Isoflavone and Astragalus Polysaccharide Mixture on Colostrum Components, Serum Antioxidant, Immune and Hormone Levels of Lactating Sows. Animals 2021, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Sevrin, T.; Boquien, C.Y.; Gandon, A.; Grit, I.; de Coppet, P.; Darmaun, D.; Alexandre-Gouabau, M.C. Fenugreek Stimulates the Expression of Genes Involved in Milk Synthesis and Milk Flow through Modulation of Insulin/GH/IGF-1 Axis and Oxytocin Secretion. Genes 2020, 11, 1208. [Google Scholar] [CrossRef]
- Atyeo, C.; Alter, G. The multifaceted roles of breast milk antibodies. Cell 2021, 184, 1486–1499. [Google Scholar] [CrossRef]
- Morrin, S.T.; McCarthy, G.; Kennedy, D.; Marotta, M.; Irwin, J.A.; Hickey, R.M. Immunoglobulin G from bovine milk primes intestinal epithelial cells for increased colonization of bifidobacteria. AMB Express 2020, 10, 114. [Google Scholar] [CrossRef]
- Donald, K.; Petersen, C.; Turvey, S.E.; Finlay, B.B.; Azad, M.B. Secretory IgA: Linking microbes, maternal health, and infant health through human milk. Cell Host Microbe 2022, 30, 650–659. [Google Scholar] [CrossRef]
- Johnson-Hence, C.B.; Gopalakrishna, K.P.; Bodkin, D.; Coffey, K.E.; Burr, A.H.P.; Rahman, S.; Rai, A.T.; Abbott, D.A.; Sosa, Y.A.; Tometich, J.T.; et al. Stability and heterogeneity in the antimicrobiota reactivity of human milk-derived immunoglobulin A. J. Exp. Med. 2023, 220, 20220839. [Google Scholar] [CrossRef]
- Ma, T.; Huang, W.; Li, Y.; Jin, H.; Kwok, L.Y.; Sun, Z.; Zhang, H. Probiotics alleviate constipation and inflammation in late gestating and lactating sows. NPJ Biofilms Microbiomes 2023, 9, 70. [Google Scholar] [CrossRef]
- Tummaruk, P.; Petchsangharn, K.; Shayutapong, K.; Wisetsiri, T.; Krimtum, P.; Kaewkaen, S.; Taechamaeteekul, P.; Dumniem, N.; Suwimonteerabutr, J.; De Rensis, F. Effect of Andrographis paniculata supplementation during the transition period on colostrum yield, immunoglobulin G, and postpartum complications in multiparous sows during tropical summer. Anim. Biosci. 2024, 37, 862–874. [Google Scholar] [CrossRef]
- Park, J.M.; Park, J.E.; Park, J.S.; Leem, Y.H.; Kim, D.Y.; Hyun, J.W.; Kim, H.S. Anti-inflammatory and antioxidant mechanisms of coniferaldehyde in lipopolysaccharide-induced neuroinflammation: Involvement of AMPK/Nrf2 and TAK1/MAPK/NF-κB signaling pathways. Eur. J. Pharmacol. 2024, 979, 176850. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Lu, J.; Chen, Q.; Jiang, H.; Lou, C.; Lin, C.; Wang, W.; Lin, J.; Pan, X.; Xue, X. Plantamajoside suppresses the activation of NF-κB and MAPK and ameliorates the development of osteoarthritis. Int. Immunopharmacol. 2023, 115, 109582. [Google Scholar] [CrossRef]
- Du, Y.; Li, J.; Cai, C.; Gong, F.; Zhou, G.; Liu, F.; Wu, Q.; Liu, F. Plantamajoside alleviates hypoxia-reoxygenation injury through integrin-linked kinase/c-Src/Akt and the mitochondrial apoptosis signaling pathways in H9c2 myocardial cells. BMC Complement. Med. Ther. 2023, 23, 64. [Google Scholar] [CrossRef] [PubMed]
- Schuler, F.; Baumgartner, F.; Klepsch, V.; Chamson, M.; Müller-Holzner, E.; Watson, C.J.; Oh, S.; Hennighausen, L.; Tymoszuk, P.; Doppler, W.; et al. The BH3-only protein BIM contributes to late-stage involution in the mouse mammary gland. Cell Death Differ. 2016, 23, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, R.; Zhang, H.; Su, Y.; Zhu, W. Swine gut microbiota and its interaction with host nutrient metabolism. Anim. Nutr. 2020, 6, 410–420. [Google Scholar] [CrossRef]
- Hu, X.; He, Z.; Zhao, C.; He, Y.; Qiu, M.; Xiang, K.; Zhang, N.; Fu, Y. Gut/rumen-mammary gland axis in mastitis: Gut/rumen microbiota-mediated “gastroenterogenic mastitis”. J. Adv. Res. 2024, 55, 159–171. [Google Scholar] [CrossRef]
- Wu, X.Q.; Zhao, L.; Zhao, Y.L.; He, X.Y.; Zou, L.; Zhao, Y.Y.; Li, X. Traditional Chinese medicine improved diabetic kidney disease through targeting gut microbiota. Pharm. Biol. 2024, 62, 423–435. [Google Scholar] [CrossRef]
- Luo, S.; Wang, Y.; Kang, X.; Liu, P.; Wang, G. Research progress on the association between mastitis and gastrointestinal microbes in dairy cows and the effect of probiotics. Microb. Pathog. 2022, 173 Pt A, 105809. [Google Scholar] [CrossRef]
- Yi, L.; Zhu, J.; Li, Q.; Guan, X.; Cheng, W.; Xie, Y.; Zhao, Y.; Zhao, S. Panax notoginseng stems and leaves affect microbial community and function in cecum of duzang pigs. Transl. Anim. Sci. 2024, 8, 142. [Google Scholar] [CrossRef]
- Liu, T.; Ma, W.; Wang, J.; Wei, Y.; Wang, Y.; Luo, Z.; Zhang, Y.; Zeng, X.; Guan, W.; Shao, D.; et al. Dietary Protease Supplementation Improved Growth Performance and Nutrients Digestion via Modulating Intestine Barrier, Immunological Response, and Microbiota Composition in Weaned Piglets. Antioxidants 2024, 13, 816. [Google Scholar] [CrossRef]
- Gu, Y.; Hou, M.; Chu, J.; Wan, L.; Yang, M.; Shen, J.; Ji, M. The cause and effect of gut microbiota in development of inflammatory disorders of the breast. Eur. J. Med. Res. 2023, 28, 324. [Google Scholar] [CrossRef]
- Hu, R.; Tan, J.; Li, Z.; Wang, L.; Shi, M.; Li, B.; Liu, M.; Yuan, X.; He, J.; Wu, X. Effect of dietary resveratrol on placental function and reproductive performance of late pregnancy sows. Front. Nutr. 2022, 9, 1001031. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H.; Yang, S.; Li, Z.; Zhong, J.; Fang, R. Epidermal Growth Factor and Intestinal Barrier Function. Mediat. Inflamm. 2016, 2016, 1927348. [Google Scholar] [CrossRef]
- Tang, X.; Xiong, K.; Fang, R.; Li, M. Weaning stress and intestinal health of piglets: A review. Front. Immunol. 2022, 13, 1042778. [Google Scholar] [CrossRef]
- Huang, H.; Xie, Y.; Li, X.; Gui, F.; Yang, P.; Li, Y.; Zhang, L.; Du, H.; Bi, S.; Cao, L. Danggui Buxue decoction regulates the immune function and intestinal microbiota of cyclophosphamide induced immunosuppressed mice. Front. Pharmacol. 2024, 15, 1420411. [Google Scholar] [CrossRef]
- Hong, C.; Huang, Y.; Yang, G.; Wen, X.; Wang, L.; Yang, X.; Gao, K.; Jiang, Z.; Xiao, H. Maternal resveratrol improves the intestinal health and weight gain of suckling piglets during high summer temperatures: The involvement of exosome-derived microRNAs and immunoglobin in colostrum. Anim. Nutr. 2024, 17, 36–48. [Google Scholar] [CrossRef]
- Stokes, C.R. The development and role of microbial-host interactions in gut mucosal immune development. J. Anim. Sci. Biotechnol. 2017, 8, 12. [Google Scholar] [CrossRef]
- Ding, M.; Yang, B.; Ross, R.P.; Stanton, C.; Zhao, J.; Zhang, H.; Chen, W. Crosstalk between sIgA-Coated Bacteria in Infant Gut and Early-Life Health. Trends Microbiol. 2021, 29, 725–735. [Google Scholar] [CrossRef]
- Kumar, N.; Arthur, C.P.; Ciferri, C.; Matsumoto, M.L. Structure of the secretory immunoglobulin A core. Science 2020, 367, 1008–1014. [Google Scholar] [CrossRef]
- Pietrasanta, C.; Carlosama, C.; Lizier, M.; Fornasa, G.; Jost, T.R.; Carloni, S.; Giugliano, S.; Silvestri, A.; Brescia, P.; De Ponte Conti, B.; et al. Prenatal antibiotics reduce breast milk IgA and induce dysbiosis in mouse offspring, increasing neonatal susceptibility to bacterial sepsis. Cell Host Microbe 2024, 32, 2178–2194. [Google Scholar] [CrossRef]
- Jiang, Z.; Su, W.; Li, W.; Wen, C.; Du, S.; He, H.; Zhang, Y.; Gong, T.; Wang, X.; Wang, Y.; et al. Bacillus amyloliquefaciens 40 regulates piglet performance, antioxidant capacity, immune status and gut microbiota. Anim. Nutr. 2023, 12, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Snelson, M.; Vanuytsel, T.; Marques, F.Z. Breaking the Barrier: The Role of Gut Epithelial Permeability in the Pathogenesis of Hypertension. Curr. Hypertens. Rep. 2024, 26, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhao, S.; Teng, Y.; Han, S.; Yang, Y.; Wu, M.; Guo, S.; Ding, B.; Xiao, L.; Yi, D. Dietary supplementary with ellagic acid improves the intestinal barrier function and flora structure of broiler chicken challenged with E. coli K88. Poult. Sci. 2024, 103, 104429. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, C.; Zhai, W.; Gao, Z.; Wang, H.; Liu, H. Recombinant IL-34 alleviates bacterial enteritis in Megalobrama amblycephala by strengthening the intestinal barrier. Int. J. Biol. Macromol. 2024, 284 Pt 1, 138072. [Google Scholar] [CrossRef]
Ingredient | Value |
---|---|
Corn (%) | 51.12 |
Soybean meal (%) | 24.61 |
Wheat bran (%) | 4.00 |
Rapeseed meal (%) | 2.50 |
Rice bran (%) | 5.00 |
Beef tallow (%) | 6.05 |
Molasses (%) | 3.50 |
CaHPO4 (%) | 1.64 |
Limestone (%) | 0.76 |
NaCl (%) | 0.50 |
Lysine salt (98%) (%) | 0.12 |
Vitamin and mineral premix (%) | 0.20 |
Nutrient Values (Calculated) | |
Metabolizable energy (MJ/kg) | 3.44 |
Crude protein (%) | 17.10 |
Crude fat (%) | 9.10 |
Lysine (%) | 1.00 |
Ca (%) | 0.85 |
P (%) | 0.73 |
Primer Name | Forward (5′-3’) | Reverse (5’-3’) | Product Length (bp) |
---|---|---|---|
18S | CATGCATGTCTAAGTACGCACGG | AGGCTGACCGGGTTGGTTTTGAT | 200 |
Claudin-1 | CTTCTGGGTTTCATCCTGGCTTCG | CCTGAGCAGTCACGATGTTGTCC | 194 |
Occludin | CAACGGCAAAGTGAATGGCAAGAC | TCATCCACGGACAAGGTCAGAGG | 188 |
ZO-1 | GCCAAGCCAGTCCATTCTCAGAG | TCCATAGCATCAGTTTCGGGTTTCC | 185 |
MS2 Name | Formula | MZ | RT | Type | p-Value | LOG_FOLDCHANGE |
---|---|---|---|---|---|---|
2′,4′,6′-Trihydroxyacetophenone | C8H8O4 | 149.02 | 304.00 | NEG | 0.0053 | 11.51 |
Coniferaldehyde | C10H10O3 | 177.06 | 305.30 | NEG | 0.0075 | 9.91 |
Andrograpanin | C20H30O3 | 341.21 | 418.10 | POS | 0.0091 | 2.25 |
5-[6-(3-hydroxy-4-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro [3,4-c]furan-3-yl]-2-methoxyphenol | C20H22O6 | 357.13 | 404.30 | NEG | 0.0109 | 7.88 |
Gemichalcone_C | C30H28O9 | 533.18 | 345.00 | POS | 0.0159 | 3.35 |
Plantamajoside | C29H36O16 | 639.19 | 354.60 | NEG | 0.0173 | 7.15 |
4-Hydroxybenzyl alcohol | C7H8O2 | 123.05 | 248.30 | NEG | 0.0380 | 2.12 |
Dillapiole | C12H14O4 | 223.10 | 353.60 | POS | 0.0391 | 4.67 |
4-hydroxy-3-(3-methylbut-2-enyl)benzoic acid | C12H14O3 | 205.09 | 382.70 | NEG | 0.0421 | 9.78 |
Item | CON | 0.5% ASE | 1% ASE | SEM | p-Value |
---|---|---|---|---|---|
Initial weight at day 5, kg | 1.83 | 1.83 | 1.81 | 0.02 | 0.8883 |
Weight at day 10, kg | 2.80 | 2.88 | 2.87 | 0.04 | 0.6694 |
Weight at day 15, kg | 4.81 b | 5.33 a | 5.16 ab | 0.06 | 0.0675 |
Weaning weight at day 21, kg | 5.02 b | 5.58 a | 5.39 ab | 0.10 | 0.0377 |
Average daily gain, g/d | 199.41 b | 234.63 a | 224.15 ab | 5.97 | 0.0354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Song, Y.; Wu, Q.; Wu, Y.; Zhou, M.; Ren, Y.; Guo, X.; Cao, G.; Li, B.; Duan, Z.; et al. Dietary Angelica sinensis Enhances Sow Lactation and Piglet Development Through Gut Microbiota and Metabolism. Vet. Sci. 2025, 12, 370. https://doi.org/10.3390/vetsci12040370
Chen Q, Song Y, Wu Q, Wu Y, Zhou M, Ren Y, Guo X, Cao G, Li B, Duan Z, et al. Dietary Angelica sinensis Enhances Sow Lactation and Piglet Development Through Gut Microbiota and Metabolism. Veterinary Sciences. 2025; 12(4):370. https://doi.org/10.3390/vetsci12040370
Chicago/Turabian StyleChen, Qian, Yali Song, Qitian Wu, Yali Wu, Maocuo Zhou, Yifei Ren, Xiaohong Guo, Guoqing Cao, Bugao Li, Zhibian Duan, and et al. 2025. "Dietary Angelica sinensis Enhances Sow Lactation and Piglet Development Through Gut Microbiota and Metabolism" Veterinary Sciences 12, no. 4: 370. https://doi.org/10.3390/vetsci12040370
APA StyleChen, Q., Song, Y., Wu, Q., Wu, Y., Zhou, M., Ren, Y., Guo, X., Cao, G., Li, B., Duan, Z., & Gao, P. (2025). Dietary Angelica sinensis Enhances Sow Lactation and Piglet Development Through Gut Microbiota and Metabolism. Veterinary Sciences, 12(4), 370. https://doi.org/10.3390/vetsci12040370