Fine Mapping Identifies Candidate Genes Associated with Swine Inflammation and Necrosis Syndrome
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Scoring
2.3. DNA Extraction and Sequencing
2.4. OVarFlow Pipeline
2.5. Genome-Wide Association Study (GWAS)
2.6. Variant Effect Prediction
2.7. Statistical Analysis of SNP Effects on SINS Traits
2.8. Annotation of Potential Candidate Genes
3. Results
3.1. Phenotypes
3.2. Single Nucleotide Polymorphisms (SNPs)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABCB11 | ATP-binding cassette, subfamily B member 11 |
BIVM | Basic immunoglobulin-like variable motif-containing protein |
CCDC168 | Coiled-coil domain containing 168 |
CI95 | 95% confidence interval |
DU | Low SINS Duroc boar |
ECD | Ecdysoneless cell cycle regulator |
ERCC5 | Excision repair 5, endonuclease |
ERICH2 | Glutamate rich 2 |
f | Forward (5′–3′) |
FAM149B1 | Member of the family with sequence similarity 149, member B1 |
GWAS | Genome-wide association study |
HWE | Hardy–Weinberg equilibrium |
Indels | Insertion/deletion polymorphisms |
LRP2 | LDL receptor related protein 2 |
MAF | Minor allele frequency |
METTL21C | Protein lysine methyltransferase 21C |
Missense | Missense variant |
MOD | Modifier |
MYO3B | Myosin IIIB |
N | Norm (e.g., base, triplet, amino acid (AA)) according to reference genome Sscrofa11.1 |
NN | Homozygous genotype of the norm variant |
NUDT13 | Nudix-hydrolase 13 |
NV | Heterozygous genotype |
n.s. | Not significant |
P | Significance |
PCA | Principal component analysis |
PI | Pietrain boar(s) |
PI+ | Low SINS Pietrain boar |
PI− | High SINS Pietrain boar |
QC | Quality control |
r | Reverse (3′–5′) |
SE | Standard error |
SIFT | Sorting Intolerant From Tolerant Score |
SINS | Swine inflammation and necrosis syndrome |
SNPs | Single nucleotide polymorphisms |
Splice | Splicing region |
SSC | Sus scrofa chromosome |
UTR | Untranslated region |
V | Variant (e.g., base, triplet, amino acid (AA)) deviating from the reference genome Sscrofa11.1 |
VEP | Variant Effect Predictor (Ensembl) |
VV | Homozygous genotype of the variant |
ZSINS | SINS score after Z-transformation |
References
- Li, Y.; Wu, N.; Xu, R.; Li, L.; Zhou, W.; Zhou, X. Empirical analysis of pig welfare levels and their impact on pig breeding efficiency-Based on 773 pig farmers’ survey data. PLoS ONE 2017, 12, e0190108. [Google Scholar] [CrossRef] [PubMed]
- Reiner, G.; Kuehling, J.; Loewenstein, F.; Lechner, M.; Becker, S. Swine Inflammation and Necrosis Syndrome (SINS). Animals 2021, 11, 1670. [Google Scholar] [CrossRef] [PubMed]
- Leite, N.G.; Knol, E.F.; Nuphaus, S.; Vogelzang, R.; Tsuruta, S.; Wittmann, M.; Lourenco, D. The genetic basis of swine inflammation and necrosis syndrome and its genetic association with post-weaning skin damage and production traits. J. Anim. Sci. 2023, 101, skad067. [Google Scholar] [CrossRef] [PubMed]
- Fortune, H.; Micout, S.; Monjouste, A. Évaluation de la prévalence du syndrome inflammatoire et nécrotique porcin dans les troupeaux français. Journées Rech. Porc. 2024, 56, 301–302. [Google Scholar]
- Kuehling, J.; Loewenstein, F.; Wenisch, S.; Kressin, M.; Herden, C.; Lechner, M.; Reiner, G. An in-depth diagnostic exploration of an inflammation and necrosis syndrome in a population of newborn piglets. Animal 2021, 15, 100078. [Google Scholar] [CrossRef]
- Kuehling, J.; Eisenhofer, K.; Lechner, M.; Becker, S.; Willems, H.; Reiner, G. The effects of boar on susceptibility to swine inflammation and necrosis syndrome in piglets. Porc. Health Manag. 2021, 7, 15. [Google Scholar] [CrossRef]
- Koenders-van Gog, K.; Wijnands, T.; Lechner, M.; Reiner, G.; Fink-Gremmels, J. Screening of Piglets for Signs of Inflammation and Necrosis as Early Life Indicators of Animal Health and Welfare Hazards. Animals 2025, 15, 378. [Google Scholar] [CrossRef]
- European Food Safety Authority. Statement on the use of animal-based measures to assess the welfare of animals. EFSA J. 2012, 10, 2767. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion concerning a Multifactorial approach on the use of animal and non-animal-based measures to assess the welfare of pigs. EFSA J. 2014, 12, 3702. [Google Scholar] [CrossRef]
- Reiner, G.; Kuehling, J.; Lechner, M.; Schrade, H.; Saltzmann, J.; Muelling, C.; Dänicke, S.; Loewenstein, F. Swine inflammation and necrosis syndrome is influenced by husbandry and quality of sow in suckling piglets, weaners and fattening pigs. Porc. Health Manag. 2020, 6, 32. [Google Scholar] [CrossRef]
- Ringseis, R.; Gessner, D.K.; Loewenstein, F.; Kuehling, J.; Becker, S.; Willems, H.; Lechner, M.; Eder, K.; Reiner, G. Swine Inflammation and Necrosis Syndrome Is Associated with Plasma Metabolites and Liver Transcriptome in Affected Piglets. Animals 2021, 11, 772. [Google Scholar] [CrossRef]
- Gerhards, K.; Becker, S.; Kuehling, J.; Lechner, M.; Willems, H.; Ringseis, R.; Reiner, G. Screening for transcriptomic associations with Swine Inflammation and Necrosis Syndrome. BMC Vet. Res. 2025, 21, 26. [Google Scholar] [CrossRef] [PubMed]
- Loewenstein, F.; Becker, S.; Kuehling, J.; Schrade, H.; Lechner, M.; Ringseis, R.; Eder, K.; Moritz, A.; Reiner, G. Inflammation and necrosis syndrome is associated with alterations in blood and metabolism in pigs. BMC Vet. Res. 2022, 18, 50. [Google Scholar] [CrossRef]
- Gerhards, K.; Becker, S.; Kuehling, J.; Lechner, M.; Bathke, J.; Willems, H.; Reiner, G. GWAS reveals genomic associations with swine inflammation and necrosis syndrome. Mamm. Genome 2023, 34, 586–601. [Google Scholar] [CrossRef]
- Bathke, J.; Lühken, G. OVarFlow: A resource optimized GATK 4 based Open source Variant calling workFlow. BMC Bioinform. 2021, 22, 402. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 19 February 2025).
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio PBC: Boston, MA, USA, 2022; Available online: http://www.rstudio.com/ (accessed on 19 January 2025).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; Bakker, P.I.W.; de Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef]
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 2019, 8, giy154. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Le Wang, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef]
- Brown, G.R.; Hem, V.; Katz, K.S.; Ovetsky, M.; Wallin, C.; Ermolaeva, O.; Tolstoy, I.; Tatusova, T.; Pruitt, K.D.; Maglott, D.R.; et al. Gene: A gene-centered information resource at NCBI. Nucleic Acids Res. 2015, 43, D36–D42. [Google Scholar] [CrossRef]
- Safran, M.; Rosen, N.; Twik, M.; BarShir, R.; Iny Stein, T.; Dahary, D.; Fishilevich, S.; Lancet, D. The GeneCards Suite. In Practical Guide to Life Science Databases; Springer: Berlin/Heidelberg, Germany, 2022; pp. 27–56. [Google Scholar]
- Belinky, F.; Nativ, N.; Stelzer, G.; Zimmerman, S.; Iny Stein, T.; Safran, M.; Lancet, D. PathCards: Multi-source consolidation of human biological pathways. Database 2015, 2015, bav006. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Baldarelli, R.M.; Smith, C.L.; Ringwald, M.; Richardson, J.E.; Bult, C.J. Mouse Genome Informatics: An integrated knowledgebase system for the laboratory mouse. Genetics 2024, 227, iyae031. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Rauw, W.; Kanis, E.; Noordhuizen-Stassen, E.; Grommers, F. Undesirable side effects of selection for high production efficiency in farm animals: A review. Livest. Prod. Sci. 1998, 56, 15–33. [Google Scholar] [CrossRef]
- Rydhmer, L.; Lundeheim, N. Chapter 9. Breeding Pigs for Improved Welfare. Welfare of Pigs from Birth to Slaughter; Wageningen Akad. Publ; Éditions Qæ: Wageningen, The Netherlands; Versailles, France, 2008; pp. 243–270. ISBN 9789086866373. [Google Scholar]
- Tan, C.; Wu, Z.; Ren, J.; Huang, Z.; Liu, D.; He, X.; Prakapenka, D.; Zhang, R.; Li, N.; Da, Y.; et al. Genome-wide association study and accuracy of genomic prediction for teat number in Duroc pigs using genotyping-by-sequencing. Genet. Sel. Evol. 2017, 49, 35. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Won, K.-H.; Song, K.-D. In silico approaches to discover the functional impact of non-synonymous single nucleotide polymorphisms in selective sweep regions of the Landrace genome. Asian-Australas. J. Anim. Sci. 2018, 31, 1980–1990. [Google Scholar] [CrossRef] [PubMed]
- Bertani, G.R.; Gladney, C.D.; Johnson, R.K.; Pomp, D. Evaluation of gene expression in pigs selected for enhanced reproduction using differential display PCR: II. Anterior pituitary. J. Anim. Sci. 2004, 82, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.-K.; Cho, I.-C.; Lee, J.-B.; Jung, E.-J.; Lim, H.-T.; Han, S.-H.; Lee, S.-S.; Ko, M.-S.; Kang, T.; Hwang, J.-H.; et al. QTL analysis of clinical-chemical traits in an F₂ intercross between Landrace and Korean native pigs. Physiol. Genom. 2012, 44, 657–668. [Google Scholar] [CrossRef]
- Wiederstein, J.L.; Nolte, H.; Günther, S.; Piller, T.; Baraldo, M.; Kostin, S.; Bloch, W.; Schindler, N.; Sandri, M.; Blaauw, B.; et al. Skeletal Muscle-Specific Methyltransferase METTL21C Trimethylates p97 and Regulates Autophagy-Associated Protein Breakdown. Cell Rep. 2018, 23, 1342–1356. [Google Scholar] [CrossRef]
- Huang, J.; Hsu, Y.-H.; Mo, C.; Abreu, E.; Kiel, D.P.; Bonewald, L.F.; Brotto, M.; Karasik, D. METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NF-κB signaling pathway. J. Bone Miner. Res. 2014, 29, 1531–1540. [Google Scholar] [CrossRef]
- Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 2005, 62, 670–684. [Google Scholar] [CrossRef]
- Cheng, J.; Li, R.; Wang, L.; Zhang, T.; Yuan, G.; Lu, H. Methyltransferase like 21C interaction with Hsc70 affects chicken myoblast differentiation. Ital. J. Anim. Sci. 2023, 22, 605–614. [Google Scholar] [CrossRef]
- He, J.; Xia, C.; He, Y.; Pan, D.; Cao, J.; Sun, Y.; Zeng, X. Proteomic responses to oxidative damage in meat from ducks exposed to heat stress. Food Chem. 2019, 295, 129–137. [Google Scholar] [CrossRef]
- Yang, G.; Lu, H.; Wang, L.; Zhao, J.; Zeng, W.; Zhang, T. Genome-Wide Identification and Transcriptional Expression of the METTL21C Gene Family in Chicken. Genes 2019, 10, 628. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J.; Wang, L.; Zhang, T.; Zeng, W.; Lu, H. METTL21C mediates lysine trimethylation of IGF2BP1 to regulate chicken myoblast proliferation. Br. Poult. Sci. 2023, 64, 74–80. [Google Scholar] [CrossRef]
- Steinert, N.D.; Jorgenson, K.W.; Lin, K.-H.; Hermanson, J.B.; Lemens, J.L.; Hornberger, T.A. A novel method for visualizing in-vivo rates of protein degradation provides insight into how TRIM28 regulates muscle size. iScience 2023, 26, 106526. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Lu, Y.; Wang, C. Production performance, egg quality, and uterine gene expression for layers as affected by N-Carbamylglutamate supplementation. Front. Vet. Sci. 2023, 10, 1110801. [Google Scholar] [CrossRef]
- Fedorova, E.S.; Dementieva, N.V.; Shcherbakov, Y.S.; Stanishevskaya, O.I. Identification of Key Candidate Genes in Runs of Homozygosity of the Genome of Two Chicken Breeds, Associated with Cold Adaptation. Biology 2022, 11, 547. [Google Scholar] [CrossRef]
- Filippin, L.I.; Vercelino, R.; Marroni, N.P.; Xavier, R.M. Redox signalling and the inflammatory response in rheumatoid arthritis. Clin. Exp. Immunol. 2008, 152, 415–422. [Google Scholar] [CrossRef]
- Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004, 4, 181–189. [Google Scholar] [CrossRef]
- Bulua, A.C.; Simon, A.; Maddipati, R.; Pelletier, M.; Park, H.; Kim, K.-Y.; Sack, M.N.; Kastner, D.L.; Siegel, R.M. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 2011, 208, 519–533. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free. Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Auf dem Keller, U.; Kümin, A.; Braun, S.; Werner, S. Reactive oxygen species and their detoxification in healing skin wounds. J. Investig. Dermatol. Symp. Proc. 2006, 11, 106–111. [Google Scholar] [CrossRef]
- Waris, G.; Ahsan, H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J. Carcinog. 2006, 5, 14. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, T.; Chen, Y.; Ahokas, R.A.; Sun, Y. Reactive oxygen species promote angiogenesis in the infarcted rat heart. Int. J. Exp. Pathol. 2009, 90, 621–629. [Google Scholar] [CrossRef]
- Colavitti, R.; Pani, G.; Bedogni, B.; Anzevino, R.; Borrello, S.; Waltenberger, J.; Galeotti, T. Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J. Biol. Chem. 2002, 277, 3101–3108. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-W.; West, X.Z.; Byzova, T.V. Inflammation and oxidative stress in angiogenesis and vascular disease. J. Mol. Med. 2013, 91, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Jerez-Timaure, N.; Gallo, C.; Ramírez-Reveco, A.; Greif, G.; Strobel, P.; Pedro, A.V.F.; Morera, F.J. Early differential gene expression in beef Longissimus thoracis muscles from carcasses with normal (<5.8) and high (5.9) ultimate pH. Meat Sci. 2019, 153, 117–125. [Google Scholar] [CrossRef]
- Stefl, S.; Nishi, H.; Petukh, M.; Panchenko, A.R.; Alexov, E. Molecular mechanisms of disease-causing missense mutations. J. Mol. Biol. 2013, 425, 3919–3936. [Google Scholar] [CrossRef]
- Zhang, Z.; Miteva, M.A.; Wang, L.; Alexov, E. Analyzing effects of naturally occurring missense mutations. Comput. Math. Methods Med. 2012, 2012, 805827. [Google Scholar] [CrossRef]
- Chatterjee, S.; Pal, J.K. Role of 5′- and 3′-untranslated regions of mRNAs in human diseases. Biol. Cell 2009, 101, 251–262. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, C.; Zhao, Y.; Li, C.; Cao, M.; Li, H.; Zhao, Z.; Sun, A.; Basang, W.; Zhu, Y.; et al. Identification and Regulatory Network Analysis of Genes Related to Reproductive Performance in the Hypothalamus and Pituitary of Angus Cattle. Genes 2022, 13, 965. [Google Scholar] [CrossRef]
- Hernandez, A.S.; Zayas, G.A.; Rodriguez, E.E.; Sarlo Davila, K.M.; Rafiq, F.; Nunez, A.N.; Titto, C.G.; Mateescu, R.G. Exploring the genetic control of sweat gland characteristics in beef cattle for enhanced heat tolerance. J. Anim. Sci. Biotechnol. 2024, 15, 66. [Google Scholar] [CrossRef]
- ElSharawy, A.; Hundrieser, B.; Brosch, M.; Wittig, M.; Huse, K.; Platzer, M.; Becker, A.; Simon, M.; Rosenstiel, P.; Schreiber, S.; et al. Systematic evaluation of the effect of common SNPs on pre-mRNA splicing. Hum. Mutat. 2009, 30, 625–632. [Google Scholar] [CrossRef]
- Bai, Z.; Luo, Y.; Tian, L. ERCC5, HES6 and RORA are potential diagnostic markers of coronary artery disease. FEBS Open Bio 2022, 12, 1814–1827. [Google Scholar] [CrossRef]
- Zuo, C.; Lv, X.; Liu, T.; Yang, L.; Yang, Z.; Yu, C.; Chen, H. Polymorphisms in ERCC4 and ERCC5 and risk of cancers: Systematic research synopsis, meta-analysis, and epidemiological evidence. Front. Oncol. 2022, 12, 951193. [Google Scholar] [CrossRef] [PubMed]
- Maroilley, T.; Lemonnier, G.; Lecardonnel, J.; Esquerré, D.; Ramayo-Caldas, Y.; Mercat, M.J.; Rogel-Gaillard, C.; Estellé, J. Deciphering the genetic regulation of peripheral blood transcriptome in pigs through expression genome-wide association study and allele-specific expression analysis. BMC Genom. 2017, 18, 967. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, R.; Jiang, N.; Alzahrani, F.; Ewida, N.; Al-Sheddi, T.; Alobeid, E.; Musaev, D.; Stanley, V.; Hashem, M.; Ibrahim, N.; et al. Bi-allelic Mutations in FAM149B1 Cause Abnormal Primary Cilium and a Range of Ciliopathy Phenotypes in Humans. Am. J. Hum. Genet. 2019, 104, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Son, H.; Sung, J.; Yun, J.M.; Kwon, H.; Cho, B.; Kim, J.-I.; Park, J.-H. A Genome-Wide Association Study on Abdominal Adiposity-Related Traits in Adult Korean Men. Obes. Facts 2022, 15, 590–599. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhuang, Z.; Meng, F.; Ruan, D.; Xu, C.; Ma, F.; Peng, L.; Ding, R.; Cai, G.; Yang, M.; et al. Identification of candidate genes associated with carcass component weights in commercial crossbred pigs through a combined GWAS approach. J. Anim. Sci. 2023, 101, skad121. [Google Scholar] [CrossRef]
- Saini, T.; Chauhan, A.; Ahmad, S.F.; Kumar, A.; Vaishnav, S.; Singh, S.; Mehrotra, A.; Bhushan, B.; Gaur, G.K.; Dutt, T. Elucidation of population stratifying markers and selective sweeps in crossbred Landlly pig population using genome-wide SNP data. Mamm. Genome 2024, 35, 170–185. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Z.; Zeng, X.; Zheng, Y.; Lan, L.; Wang, X.; Lai, Z.; Hou, X.; Gao, L.; Liang, L.; et al. Integrated analysis of miRNA-mRNA expression of newly emerging swine H3N2 influenza virus cross-species infection with tree shrews. Virol. J. 2024, 21, 4. [Google Scholar] [CrossRef]
- Kanis, E.; van den Belt, H.; Groen, A.F.; Schakel, J.; Greef, K.H.d. Breeding for improved welfare in pigs: A conceptual framework and its use in practice. Anim. Sci. 2004, 78, 315–329. [Google Scholar] [CrossRef]
- Guy, S.Z.Y.; Thomson, P.C.; Hermesch, S. Selection of pigs for improved coping with health and environmental challenges: Breeding for resistance or tolerance? Front. Genet. 2012, 3, 31610. [Google Scholar] [CrossRef]
Skin Shiny | No Bristles | Swelling | Red- ness | Scab Formation | Rhagades | Exudation | Necrosis | Bleeding | Ring- Shaped Constrictions | Vein Congestion | Edema | Additive Body Part Scores | Additive SINS- Score | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tail base | n.s. | 0/1 3 | 0/1 | 0/1 | n.s. | 0/1 | 0/1 | 0/1 | n.s. | n.s. | n.s. | n.s. | → | 0–6 | ||
Tail tip | n.s. | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | n.s. | n.s. | → | 0–9 | ||
Ears | 0/1 | 0/1 | n.s. | n.s. | n.s. | n.s. | n.s. | 0/1 | n.s. | n.s. | 0/1 | n.s. | → | 0–4 | ||
Face 1 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | 0/1 | → | 0–2 | ||
Teats | n.s. | n.s. | 0/1 | 0/1 | 0/1 | n.s. | n.s. | 0/1 | n.s. | n.s. | 0/1 | n.s. | → | 0–5 | ||
Navel | n.s. | n.s. | 0/1 | 0/1 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | → | 0–2 | 0–44 | |
Coronary bands 2 | n.s. | n.s. | 0/1 | 0/1 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | → | 0–2 | ||
Claw wall 2 | n.s. | n.s. | 0/1 | n.s. | n.s. | n.s. | n.s. | n.s. | 0/1 | n.s. | n.s. | n.s. | → | 0–2 | ||
Heels 2 | n.s. | n.s. | 0–3 | n.s. | n.s. | n.s. | n.s. | n.s. | 0–3 | n.s. | n.s. | n.s. | → | 0–12 |
SSC 1 | Start (Mbp) | End (Mbp) | Length (Mbp) | SNP Name | SNP Position | SNP Effect -log(p) |
---|---|---|---|---|---|---|
7 | 23.5 | 26.1 | 2.6 | rs338509948 | 26025361 | 16.3 |
9 | 89.74 | 90.74 | 1 | rs341512035 | 90241577 | 8.1 |
11 | 70.9 | 71.9 | 1 | rs3475903338 | 71239679 | 8.9 |
12 | 43.6 | 44.4 | 0.8 | rs1112423847 | 44738423 | 8.4 |
14 | 75.5 | 76.3 | 0.8 | rs323488836 | 75918198 | 12.7 |
14 | 91.4 | 92.2 | 0.8 | rs342612561 | 91808934 | 13.4 |
15 | 75 | 77 | 2 | rs339270582 | 76926106 | 16.8 |
16 | 44 | 45 | 1 | rs331217455 | 44669358 | 11.3 |
17 | 39.65 | 40.65 | 1 | rs341628611 | 40157128 | 14.8 |
Score | Boar | Mean | SE | Lower CI95 | Upper CI95 | Prevalence (%) | p |
---|---|---|---|---|---|---|---|
Tail base | DU | 0.77a 1 | 0.16 | 0.45 | 1.09 | 48.9 | <0.001 |
PI+ | 0.92a | 0.13 | 0.67 | 1.17 | 52 | ||
PI− | 1.45b | 0.11 | 1.24 | 1.66 | 68.5 | ||
Tail tip | DU | 0.43a | 0.15 | 0.13 | 0.73 | 29.8 | 0.012 |
PI+ | 0.57a | 0.12 | 0.34 | 0.81 | 45.3 | ||
PI− | 0.92b | 0.10 | 0.72 | 1.11 | 45.4 | ||
Ears | DU | 1.57a | 0.15 | 1.28 | 1.87 | 78.7 | <0.001 |
PI+ | 2.59b | 0.12 | 2.35 | 2.82 | 97.3 | ||
PI− | 2.56b | 0.10 | 2.36 | 2.75 | 97.2 | ||
Teats | DU | 0.74a | 0.32 | 0.11 | 1.38 | 23.4 | 0.002 |
PI+ | 1.59b | 0.26 | 1.08 | 2.09 | 65.3 | ||
PI− | 2.10b | 0.21 | 1.68 | 2.52 | 60.2 | ||
Coronary bands | DU | 1.04a | 0.13 | 0.78 | 1.31 | 61.7 | <0.001 |
PI+ | 0.89a | 0.11 | 0.68 | 1.10 | 61.3 | ||
PI− | 1.40b | 0.09 | 1.22 | 1.57 | 83.3 | ||
Claw wall | DU | 1.60 | 0.09 | 1.42 | 1.78 | 83 | n.s. |
PI+ | 1.81 | 0.07 | 1.67 | 1.96 | 96 | ||
PI− | 1.72 | 0.06 | 1.60 | 1.84 | 89.8 | ||
Heels | DU | 5.91a | 0.28 | 5.36 | 6.47 | 93.6 | (0.055) |
PI+ | 5.75ab | 0.22 | 5.31 | 6.18 | 100 | ||
PI− | 6.42b | 0.19 | 6.05 | 6.78 | 99.1 |
Series 1 | SSC 2 | Position | Phenotype 1 3 | Phenotype 2 3 | Base | Gene | Triplet | AA | Direction 6 | Ex-on | Effect 7 | Meaning (SNPEff) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
trait | -LOG(p) | trait | -LOG(p) | N 4 | V 5 | N 4 | V 5 | N 4 | V 5 | ||||||||
1 | 11 | 71015446 | Heels | 7.5 | Tail tip | 19.2 | G | A | METTL21C | CGT | CAT | T | M | r | 1 | Missense | MOD |
1 | 11 | 71020888 | Heels | 7.5 | Tail tip | 19.2 | T | C | METTL21C | 1 | 5′UTR | LOW | |||||
1 | 11 | 71054195 | Heels | 7.5 | Tail tip | 19.2 | T | C | CCDC168 | CTG | CCG | E | R | r | 1 | Missense | MOD |
1 | 11 | 71054252 | Heels | 7.5 | Tail tip | 19.2 | T | C | CCDC168 | ATT | ACT | N | S | r | 1 | Missense | MOD |
1 | 11 | 71056181 | Heels | 7.5 | Tail tip | 19.2 | C | T | CCDC168 | ACG | ATG | R | H | r | 1 | Missense | MOD |
1 | 11 | 71056239 | Heels | 7.5 | Tail tip | 19.2 | T | C | CCDC168 | CCT | CCC | R | G | r | 1 | Missense | MOD |
1 | 11 | 71056968 | Heels | 7.5 | Tail tip | 19.2 | C | G | CCDC168 | CTC | CTG | Q | E | r | 1 | Missense | MOD |
1 | 11 | 71057564 | Heels | 7.5 | Tail tip | 19.2 | T | C | CCDC168 | CTG | CCG | E | R | r | 1 | Missense | MOD |
1 | 11 | 71114837 | Heels | 7.5 | Tail tip | 19.2 | A | G | BIVM | 2 | Splice | LOW | |||||
1 | 11 | 71167929 | Heels | 7.5 | Tail tip | 19.2 | G | A | ERCC5 | CGT | CAT | R | H | f | 15 | Missense | MOD |
1 | 14 | 75945482 | Heels | 7.5 | Tail tip | 19.2 | G | C | NUDT13 | AGA | ACA | R | T | f | 2 | Missense | MOD |
1 | 14 | 75953186 | Heels | 7.5 | Tail tip | 19.2 | A | G | NUDT13 | ATG | GTG | M | V | f | 4 | Missense | MOD |
1 | 14 | 75956113 | Heels | 7.5 | Tail tip | 19.2 | G | C | NUDT13 | CGA | CCA | R | p | f | 7 | Missense | MOD |
1 | 14 | 75977767 | Heels | 7.5 | Tail tip | 19.2 | C | T | ECD | 5 | Splice | LOW | |||||
1 | 14 | 75998607 | Heels | 7.5 | Tail tip | 19.2 | C | T | FAM149B1 | ACA | ATA | T | I | f | 3 | Missense | MOD |
1 | 14 | 76053610 | Heels | 7.5 | Tail tip | 19.2 | A | G | FAM149B1 | AAG | AGG | K | R | f | 11 | Missense | MOD |
1 | 15 | 75617207 | Tail tip | 19.2 | Heels | 7.5 | T | C | LRP2 | GAT | GAC | I | V | r | 33 | Missense | MOD |
1 | 15 | 75626516 | Tail tip | 19.2 | Heels | 7.5 | A | C | LRP2 | 41 | Splice | LOW | |||||
1 | 15 | 76939828 | Tail tip | 19.2 | Heels | 7.5 | G | T | ERICH2 | promotor | 1 | 5′UTR | LOW | ||||
2 | 15 | 75405294 | Tail base | 8.4 | G | T | ABCB11 | 2 | Splice | LOW | |||||||
2 | 15 | 76734995 | Tail base | 8.4 | A | G | MYO3B | AGT | GGT | S | G | f | 30 | Missense | MOD | ||
2 | 15 | 76646899 | Tail base | 11.3 | A | G | MYO3B | 22 | Splice | LOW |
Boar | Sow | Piglets | ||||
---|---|---|---|---|---|---|
Series | Breed | Genotype | Genotype | n | Genotype | n |
1 | DU | NN | VV | 12 | NV | 42 |
NN | 1 | NN | 6 | |||
PI+ | VV | VV | 14 | VV | 77 | |
PI− | VV | VV | 21 | VV | 96 | |
NV | 5 | NV | 13 | |||
2 | DU | NN | VV | 12 | NV | 42 |
NN | 1 | NN | 6 | |||
PI+ | VV | VV | 14 | VV | 77 | |
PI− | NV | VV | 26 | VV | 59 | |
NV | 50 |
DU/NN | DU/NV | PI−/NV | PI+/VV | PI−/VV | p | |
---|---|---|---|---|---|---|
Series 1 | ||||||
Tail base | 0.15 ± 0.37 a | 0.73 ± 0.15 a | 1.11 ± 0.27 b | 0.88 ± 0.12 a | 1.5 ± 0.11 b | <0.001 |
Tail tip | 0.44 ± 0.41 | 0.56 ± 0.17 | 0.35 ± 0.30 | 0.65 ± 0.13 | 0.77 ± 0.12 | n.s. |
Ears | −0.13 ± 0.30 a | 1.7 ± 0.13 b | 1.2 ± 0.22 c | 2.51 ± 0.1 d | 2.80 ± 0.09 d | <0.001 |
Teats | 0.1 ± 0.72 a | 1.05 ± 0.3 ab | 1.1 ± 0.53 ab | 1.62 ± 0.23 b | 2.32 ± 0.21 c | <0.001 |
Coronary bands | −0.11 ± 0.34 a | 1.15 ± 0.14 bc | 1.4 ± 0.25 bc | 0.94 ± 0.11 b | 1.36 ± 0.10 c | <0.001 |
Claw wall | 0.15 ± 0.17 a | 1.71 ± 0.07 b | 1.86 ± 0.13 b | 1.82 ± 0.05 b | 1.71 ± 0.05 b | <0.001 |
Heels | 1.93 ± 0.7 a | 6.47 ± 0.29 c | 4.94 ± 0.51 b | 5.61 ± 0.22 b | 6.44 ± 0.20 c | <0.001 |
Series 2 | ||||||
DU/NN | DU/NV | PI+/VV | PI−/NV | PI−/VV | p | |
Tail base | 0.1 ± 0.4 a | 0.7 ± 0.2 a | 0.9 ± 0.1 a | 1.8 ± 0.1 b | 1.3 ± 0.1 c | <0.001 |
Tail tip | 0.5 ± 0.4 | 0.6 ± 0.2 | 0.6 ± 0.1 | 0.9 ± 0.1 | 0.7 ± 0.1 | n.s. |
Ears | −0.1 ± 0.3 a | 1.7 ± 0.1 b | 2.5 ± 0.1 c | 2.7 ± 0.1 c | 2.7 ± 0.1 c | <0.001 |
Teats | 0.1 ± 0.8 a | 1 ± 0.3 ac | 1.6 ± 0.2 bc | 2.1 ± 0.3 b | 2.1 ± 0.3 b | 0.018 |
Coronary bands | 0 ± 0.3 a | 1.2 ± 0.1 bc | 0.9 ± 0.1 b | 1.3 ± 0.1 c | 1.4 ± 0.1 c | <0.001 |
Claw wall | 0.1 ± 0.2 a | 1.7 ± 0.1 b | 1.8 ± 0.1 b | 1.7 ± 0.1 b | 1.8 ± 0.1 b | <0.001 |
Heels | 2.1 ± 0.7 a | 6.5 ± 0.3 b | 5.6 ± 0.2 c | 6.1 ± 0.3 b | 6.7 ± 0.3 b | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerhards, K.; Becker, S.; Kühling, J.; Mickan, J.; Lechner, M.; Willems, H.; Reiner, G. Fine Mapping Identifies Candidate Genes Associated with Swine Inflammation and Necrosis Syndrome. Vet. Sci. 2025, 12, 508. https://doi.org/10.3390/vetsci12050508
Gerhards K, Becker S, Kühling J, Mickan J, Lechner M, Willems H, Reiner G. Fine Mapping Identifies Candidate Genes Associated with Swine Inflammation and Necrosis Syndrome. Veterinary Sciences. 2025; 12(5):508. https://doi.org/10.3390/vetsci12050508
Chicago/Turabian StyleGerhards, Katharina, Sabrina Becker, Josef Kühling, Joel Mickan, Mirjam Lechner, Hermann Willems, and Gerald Reiner. 2025. "Fine Mapping Identifies Candidate Genes Associated with Swine Inflammation and Necrosis Syndrome" Veterinary Sciences 12, no. 5: 508. https://doi.org/10.3390/vetsci12050508
APA StyleGerhards, K., Becker, S., Kühling, J., Mickan, J., Lechner, M., Willems, H., & Reiner, G. (2025). Fine Mapping Identifies Candidate Genes Associated with Swine Inflammation and Necrosis Syndrome. Veterinary Sciences, 12(5), 508. https://doi.org/10.3390/vetsci12050508