EFFECTS OF GIBBERELLIC ACID ON THE GROWTH TRAITS, PROLINE CONTENT, PHOTOSYNTHESIS INTENSITY, AND MIRCROMORPHOLOGY OF KING MANDARIN (CITRUS NOBILIS LOUR.) UNDER IN VITRO SALINITY STRESS CONDITIONS

Authors

DOI:

https://doi.org/10.37569/DalatUniversity.15.2.1389(2025)

Keywords:

Germination, Gibberellic acid, King mandarin, Micromorphology, Photosynthesis, Salinity stress.

Abstract

King mandarin (Citrus nobilis Lour.) is one of the main fruit trees in agricultural production in Vietnam due to its high nutritional and economic value. Cultivation in the Mekong Delta, the largest citrus-producing region in Vietnam, is currently threatened by increasingly serious drought and salinity. Supplementing exogenous gibberellic acid helps stimulate the activity of antioxidant enzymes, improves stomatal conductance and photosynthesis intensity, and increases plant growth and salt stress tolerance. This study investigates the effects of gibberellic acid at concentrations of 0.0, 0.1, 0.3, and 0.5 mg.L-1 on the growth and the physiological and biochemical parameters of King mandarin in vitro under salinity stress conditions. The results indicate that the presence of gibberellic acid in the culture medium improved the germination and growth traits of King mandarin, particularly in the culture medium supplemented with 0.5 mg.L-1 gibberellic acid. Higher gibberellic acid concentration correlates with lower proline content. In addition, lignification and granular deposits in the root anatomical structure were lower with gibberellic acid treatment than with the control treatment. These results indicate that gibberellic acid treatment can be an effective tool for improving the growth and development and the physiological and biochemical parameters of King mandarin under salinity stress.

Downloads

Download data is not yet available.

References

Aldesuquy, H. S., & Ibrahim, A. H. (2001). Interactive effect of seawater and growth bioregulators on water relations, abscisic acid concentration and yield of wheat plants. Journal of Agronomy and Crop Science, 187(3), 185–193. https://doi.org/10.1046/j.1439-037x.2001.00522.x

Ali, E. F., Bazaid, S. A., & Hassan, F. (2014). Salinity tolerance of Taif roses by gibberellic acid (GA3). International Journal of Science and Research, 3(11), 184–192.

Anwar, A., Yu, X., & Li, Y. (2020). Seed priming as a promising technique to improve growth, chlorophyll, photosynthesis and nutrient contents in cucumber seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 116–127. https://doi.org/10.15835/nbha48111806

Aouad, B. A. E., Fadli, A., Tarik, A., Abdelhak, T., Benkirance, R., & Benyahia, H. (2015). Investigating salt tolerance in citrus rootstocks under greenhouse conditions using growth and biochemical indicators. Biolife, 3(4), 827–837.

Bohrani, M., & Habili, N. (1992). Physiology of plants and their cells (trans.). Chamran University Publication.

Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19(6), 371–379. https://doi.org/10.1016/j.tplants.2014.02.001

Doan, V. L., Vu, T. H., Doan, T. T., Nguyen, T. P., Bu, N. T., Nguyen, V. D., & Nguyen, Q. H. (2021). General fruit trees. Agricultural Academy Publishing House.

Ejaz, S., Fahad, S., Anjum, M. A., Nawaz, A., Naz, S., Hussain, S., & Ahmad, S. (2020). Role of osmolytes in the mechanisms of antioxidant defense of plants. Sustainable Agriculture Reviews, 39, 95–117. https://doi.org/10.1007/978-3-030-38881-2_4

El-Habashy, S. (2018). In vitro evaluation and selection for salinity tolerance in some citrus rootstock seedlings. Journal of Horticultural Science & Ornamental Plants, 10, 17–27.

FAO. (2021). Citrus fruit statistical compendium 2020. https://www.fao.org/3/cb6492en/cb6492en.pdf

General Statistics Office of Vietnam. (2020). The existing area of some perennial crops is mainly divided by area and growth index. Some perennial crops and year. https://bom.so/eM2smz

General Statistics Office of Vietnam. (2022). Orange production by region. https://bom.so/jYK6Ky

Gul, Z., Tang, Z.-H., Arif, M., & Ye, Z. (2022). An insight into abiotic stress and influx tolerance mechanisms in plants to cope in saline environments. Biology, 11(4), 597. https://doi.org/10.3390/biology11040597

Güneri, M., & Dalkılıç, Z. (2023). Effects of salicylic acid application on germination, growth and development of rough lemon (Citrus jambhiri Lush.) under salt stress. Acta Scientiarum Polonorum Hortorum Cultus, 22(2), 13–26. https://doi.org/10.24326/asphc.2023.4798

Hamayun, M., Khan, S. A., Khan, A. L., Shin, J.-H., Ahmad, B., Shin, D. H., & Lee, I.-J. (2010). Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. Journal of Agricultural and Food Chemistry, 58(12), 7226–7232. https://doi.org/10.1021/jf101221t

Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In P. Ahmad, M. Azooz, & M. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 25–87). Springer. https://doi.org/10.1007/978-1-4614-4747-4_2

Hoang, T. L. X., & Nguyen, P. T. (2021). Important analyzing parameters in the assessment of salt tolerance in plants. Vietnam Journal of Biotechnology, 19(2), 197–212. https://doi.org/10.15625/1811-4989/15370

Ibrahim, D. S., Eissa, A. M., Attala, A. Z. M., Sabbah, S. M., & Khalil, H. A. (2018). Alleviation of salinity stress by exogenous plant growth regulators in three citrus rootstocks. Middle East Journal of Agriculture Research, 7(2), 437–455.

Islam, F. H., Abou Leila, B., Gaballah, M., & Wakeel, H. (2019). Effect of antioxidants on citrus leaf anatomical structure grown under saline irrigation water. Plant Archives, 19(Suppl. 1), 840–845. https://www.plantarchives.org/PDF%20SUPPLEMENT%202019/135__840-845_.pdf

Khalid, M. F., Morillon, R., Anjum, M. A., Ejaz, S., Rao, M. J., Ahmad, S., & Hussain, S. (2022). Volkamer lemon tetraploid rootstock transmits the salt tolerance when grafted with diploid kinnow mandarin by strong antioxidant defense mechanism and efficient osmotic adjustment. Journal of Plant Growth Regulation, 41(3), 1125–1137. https://doi.org/10.1007/s00344-021-10367-6

Khương, T. H., Lê, T. V. A., & Trần, K. V. (2018). Giáo trình Sinh lý thực vật (Tập 1: Phần lý thuyết). Nhà xuất bản Khoa học và Kỹ thuật.

Lương, T. L. T., Lưu, T. P. K., & Trần, T. P. D. (2023). Nghiên cứu ảnh hưởng của Benzyl adenin lên sự sinh trưởng của cây Kinh giới (Elsholtzia ciliata (Thunb.) Hyland) trồng trên đất xám. Tạp chí Khoa học Trường Đại học Sư phạm Thành phố Hồ Chí Minh, 20(11), 1885–1897. https://doi.org/10.54607/hcmue.js.20.11.3715(2023)

Luu, M. C., Bui, T. N. B., Thai, D. N. D., Tran, T. A., Nguyen, H. A. T., Doan, T. K. T., Tran, T. G., Tran, B. L., Huynh, X. P., & Nguyen, N. T. (2023). Determination of total phenolic, flavonoid contents and antioxidant capacity of King mandarin fruits (Citrus nobilis). TNU Journal of Science and Technology, 228(13), 374–382. https://doi.org/10.34238/tnu-jst.8474

Maggio, A., Barbieri, G., Raimondi, G., & De Pascale, S. (2010). Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. Journal of Plant Growth Regulation, 29, 63–72. https://doi.org/10.1007/s00344-009-9114-7

Mahmoud, L. M., Vincent, C. I., Grosser, J. W., & Dutt, M. (2021). The response of salt-stressed Valencia sweet orange (Citrus sinensis) to salicylic acid and methyl jasmonate treatments. Plant Physiology Reports, 26, 137–151. https://doi.org/10.1007/s40502-020-00563-z

Marak, C. K., & Laskar, M. A. (2010). Analysis of phenetic relationship between Citrus indica Tanaka and a few commercially important citrus species by ISSR markers. Scientia Horticulturae, 124(3), 345–348. https://doi.org/10.1016/j.scienta.2010.01.014

Martínez-Cuenca, M.-R., Primo-Capella, A., & Forner-Giner, M. A. (2021). Screening of ‘King’ mandarin (Citrus nobilis Lour.) × Poncirus trifoliata ((L.) Raf.) hybrids as salt stress-tolerant Citrus rootstocks. Horticulture, Environment, and Biotechnology, 62, 337–351. https://doi.org/10.1007/s13580-020-00291-1

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Neljubow, D. (1925). Ueber die Methoden der Bestimmung der Keimfähigkeit ohne Keimprufung. Annales d’essais de semences, Leningrad, 7, 7.

Nguyen, D. C. G., & Nguyen, M. D. (2020). Improvement of soil chemistry and rice yield on saline alluvial soil by Sesbania rostrata L. in Vietnam. Can Tho University Journal of Science, 56, 169–176.

Nguyen, N., & Nguyen, H. (2024). Soil degradation due to long-term Citrus cultivation in the Upper Vietnamese Mekong Delta. Proceedings of the Bulgarian Academy of Sciences, 77(5), 780–788. https://doi.org/10.7546/CRABS.2024.05.17

Nguyễn, T. M. P. (2016). Xâm nhập mặn tại đồng bằng sông Cửu Long: Nguyên nhân, tác động và các giải pháp ứng phó. Bộ Khoa học và Công nghệ, Cục Thông tin Khoa học và Công nghệ quốc gia. https://vista.gov.vn/vn-uploads/tong-luan/2016/tl2-2016.pdf

Omena-Garcia, R. P., Martins, A. O., Medeiros, D. B., Vallarino, J. G., Ribeiro, D. M., Fernie, A. R., Araujo, W. L., & Nunes-Nesi, A. (2019). Growth and metabolic adjustments in response to gibberellin deficiency in drought stressed tomato plants. Environmental and Experimental Botany, 159, 95–107. https://doi.org/10.1016/j.envexpbot.2018.12.011

Paquin, R., & Lechasseur, P. (1979). Observations sur une méthode de dosage de la proline libre dans les extraits de plantes. Canadian Journal of Botany, 57(18), 1851–1854. https://doi.org/10.1139/b79-233

Parida, A. K., Das, A. B., & Mohanty, P. (2004). Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regulation, 42, 213–226. https://doi.org/10.1023/B:GROW.0000026508.63288.39

Prado, F. E., Hilal, M. B., Albornoz, P. L., Gallardo, M. G., & Ruiz, V. E. (2017). Anatomical and physiological responses of four quinoa cultivars to salinity at seedling stage. Indian Journal of Science and Technology, 10(8), 1–12. https://doi.org/10.17485/ijst/2017/v10i8/93709

Quamruzzaman, M., Manik, S. M., Shabala, S., & Zhou, M. (2021). Improving performance of salt-grown crops by exogenous application of plant growth regulators. Biomolecules, 11(6), 788. https://doi.org/10.3390/biom11060788

Rahman, M. A., Woo, J. H., Lee, S.-H., Park, H. S., Kabir, A. H., Raza, A., Sabagh, A. E., & Lee, K.-W. (2022). Regulation of Na+/H+ exchangers, Na+/K+ transporters, and lignin biosynthesis genes, along with lignin accumulation, sodium extrusion, and antioxidant defense, confers salt tolerance in alfalfa. Frontiers in Plant Science, 13, 1041764. https://doi.org/10.3389/fpls.2022.1041764

Sabagh, A. E., Mbarki, S., Hossain, A., Iqbal, M. A., Islam, M. S., Raza, A., Llanes, A., Reginato, M., Rahman, M. A., Mahboob, W., Singhal, R. K., Kumari, A., Rajendran, K., Wasaya, A., Javed, T., Shabbir, R., Rahim, J., Barutçular, C., Rahman, M. H. U., Raza, M. A., ... & Farooq, M. (2021). Potential role of plant growth regulators in administering crucial processes against abiotic stresses. Frontiers in Agronomy, 3, 648694. https://doi.org/10.3389/fagro.2021.648694

Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., de Larrinoa, I. F., Leube, M. P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., & Montesinos, C. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50(Special Issue), 1023–1036. https://doi.org/10.1093/jxb/50.Special_Issue.1023

Shaddad, M. A. K., Abd El-Samad, H. M., & Mostafa, D. (2013). Role of gibberellic acid (GA3) in improving salt stress tolerance of two wheat cultivars. International Journal of Plant Physiology and Biochemistry, 5(4), 50–57.

Shahzad, K., Hussain, S., Arfan, M., Hussain, S., Waraich, E. A., Zamir, S., Saddique, M., Rauf, A., Kamai, K. Y., Hano, C., & El-Esawi, M. A. (2021). Exogenously applied gibberellic acid enhances growth and salinity stress tolerance of maize through modulating the morpho-physiological, biochemical and molecular attributes. Biomolecules, 11(7), 1005. https://doi.org/10.3390/biom11071005

Trần, C. K. (1981). Thực tập hình thái và giải phẫu thực vật. NXB. Đại học và Trung học chuyên nghiệp.

Trần, Đ. H., Đào, M. T., Vũ, A. T., Trần, T. T. H., Võ, T. T. H., Nguyễn, P. A., Nguyễn, T. P. D., Nguyễn, L. H., Nguyễn, H. H., Tào, H. L., Nguyễn, M. Q., Phùng, A. T., & Trần, T. H. Y. (2020). Khoa học, Công nghệ và đổi mới sáng tạo Việt Nam 2020. Bộ Khoa học và Công nghệ. https://vista.gov.vn/vn-uploads/science-technology/2022_01/sti-vn2020_final.pdf

Trần, T. A. D., & Quan, M. N. (2019). Phân tích hiệu quả lợi nhuận của nông hộ trồng cam sành ở tỉnh Hậu Giang. Tạp chí Phát triển & Hội nhập, 46(56), 94–99.

Vũ, T. N. D., Phạm, K. H., Nguyễn, V. G., Khuất, H. T., & Trần, D. K. (2021). Vai trò của vi khuẩn sinh tổng hợp ACC deaminase trong giảm thiểu stress phi sinh học ở cây trồng. Tạp chí Khoa học và Công nghệ Việt Nam, 9A, 56–59.

Wang, F.-M., Huang, J.-F., Tang, Y.-L., & Wang, X.-Z. (2007). New vegetation index and its application in estimating leaf area index of rice. Rice Science, 14(3), 195–203. https://doi.org/10.1016/S1672-6308(07)60027-4

Xiao, H., Tang, Y., Li, H., Zhang, L., Ngo-Duc, T., Chen, D., & Tang, Q. (2021). Saltwater intrusion into groundwater systems in the Mekong Delta and links to global change. Advances in Climate Change Research, 12(3), 342–352. https://doi.org/10.1016/j.accre.2021.04.005

Zaky, I. F., Abdel Hamid, N., & El-Wakeel, H. (2018). Effect of foliar application of antioxidants on vegetative growth and leaf mineral content of Chinese tangerine young trees budded on some citrus rootstocks grown under saline conditions. Arab Universities Journal of Agricultural Sciences, 26(2), 459–473. https://doi.org/10.21608/ajs.2018.15610

Zhang, K., Khan, Z., Wu, H., Khan, M. N., & Hu, L. (2023). Gibberellic acid priming improved rapeseed drought tolerance by modulating root morphology, ROS homeostasis, and chloroplast autophagy. Journal of Plant Growth Regulation, 42(10), 5977–5990. https://doi.org/10.1007/s00344-022-10718-x

Zhu, G., An, L., Jiao, X., Chen, X., Zhou, G., & McLaughlin, N. (2019). Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chilean Journal of Agricultural Research, 79(3), 415–424. https://doi.org/10.4067/S0718-58392019000300415

Downloads

Published

31-03-2025

Volume and Issues

Section

Natural Sciences and Technology

How to Cite

Luong, T. L. T., Do, T. T. H., & Luu, . T. P. K. (2025). EFFECTS OF GIBBERELLIC ACID ON THE GROWTH TRAITS, PROLINE CONTENT, PHOTOSYNTHESIS INTENSITY, AND MIRCROMORPHOLOGY OF KING MANDARIN (CITRUS NOBILIS LOUR.) UNDER IN VITRO SALINITY STRESS CONDITIONS. Dalat University Journal of Science, 15(2), 69-85. https://doi.org/10.37569/DalatUniversity.15.2.1389(2025)