Citation: |
[1] |
A. R. A. Anderson, A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion, Math. Med. BIOL. IMA J., 22 (2005), 163-186.doi: 10.1093/imammb/dqi005. |
[2] |
M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of tissue invasion, in Cancer modelling and simulation, Chapman & Hall/CRC Math. Biol. Med. Ser., Chapman & Hall/CRC, Boca Raton, FL, (2003), 269-297. |
[3] |
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Net. Hetero. Med., 1 (2006), 399-439.doi: 10.3934/nhm.2006.1.399. |
[4] |
A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.doi: 10.1016/S0022-247X(02)00147-6. |
[5] |
K. Fujie, A. Ito and T. Yokota, Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type, Adv. Math. Sci. Appl., 24 (2014), 67-84. |
[6] |
R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56 (1996), 5745-5753. |
[7] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683. |
[8] |
T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci., 23 (2013), 165-198.doi: 10.1142/S0218202512500480. |
[9] |
K. Kang, A. Stevens and J. J. L. Velázquez, Qualitative behavior of a Keller-Segel model with non-diffusive memory, Commun. Partial Differ. Equations, 35 (2010), 245-274.doi: 10.1080/03605300903473400. |
[10] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[11] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Transl., Vol. 23, Providence, RI, 1968. |
[12] |
G. Liţcanu and C. Morales-Rodrigo, Asymptotic behaviour of global solutions to a model of cell invasion, Math. Mod. Meth. Appl. Sci., 20 (2010), 1721-1758.doi: 10.1142/S0218202510004775. |
[13] |
A. Marciniak-Czochra and M. Ptashnyk, Boundedness of solutions of a haptotaxis model, Math. Models Methods Appl. Sci., 20 (2010), 449-476.doi: 10.1142/S0218202510004301. |
[14] |
C. Morales-Rodrigo, Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours, Math. Comput. Modelling, 47 (2008), 604-613.doi: 10.1016/j.mcm.2007.02.031. |
[15] |
N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional Keller-Segel system, preprint. |
[16] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., 40 (1997), 411-433. |
[17] |
K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441-469. |
[18] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Basel/Boston/Berlin, 2007. |
[19] |
C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.doi: 10.1137/13094058X. |
[20] |
Z. Szymańska, C. Morales-Rodrigo, M. Lachowicz and M. A. J. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods Appl. Sci., 19 (2009), 257-281.doi: 10.1142/S0218202509003425. |
[21] |
Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60-69.doi: 10.1016/j.jmaa.2008.12.039. |
[22] |
Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal. Real World Appl., 12 (2011), 418-435.doi: 10.1016/j.nonrwa.2010.06.027. |
[23] |
Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533-1558.doi: 10.1137/090751542. |
[24] |
Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1067-1084.doi: 10.1017/S0308210512000571. |
[25] |
Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225-1239.doi: 10.1088/0951-7715/27/6/1225. |
[26] |
Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 257 (2014), 784-815.doi: 10.1016/j.jde.2014.04.014. |
[27] |
C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694-1713.doi: 10.1137/060655122. |
[28] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.doi: 10.1016/j.jde.2010.02.008. |
[29] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, Journal de Mathématiques Pures et Appliquées, 100 (2013), 748-767.doi: 10.1016/j.matpur.2013.01.020. |