Processing math: 28%
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stabilization in a chemotaxis model for tumor invasion

Abstract / Introduction Related Papers Cited by
  • This paper deals with the chemotaxis system {ut=Δu(uv),xΩ, t>0,vt=Δv+wz,xΩ, t>0,wt=wz,xΩ, t>0,zt=Δzz+u,xΩ, t>0, in a smoothly bounded domain ΩRn, n3, that has recently been proposed as a model for tumor invasion in which the role of an active extracellular matrix is accounted for.
        It is shown that for any choice of nonnegative and suitably regular initial data (u0,v0,w0,z0), a corresponding initial-boundary value problem of Neumann type possesses a global solution which is bounded. Moreover, it is proved that whenever u0, these solutions approach a certain spatially homogeneous equilibrium in the sense that as ,
        ,    ,        and     ,     uniformly with respect to , where ,    and    .
    Mathematics Subject Classification: Primary: 35B40, 35Q92; Secondary: 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. R. A. Anderson, A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion, Math. Med. BIOL. IMA J., 22 (2005), 163-186.doi: 10.1093/imammb/dqi005.

    [2]

    M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of tissue invasion, in Cancer modelling and simulation, Chapman & Hall/CRC Math. Biol. Med. Ser., Chapman & Hall/CRC, Boca Raton, FL, (2003), 269-297.

    [3]

    M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Net. Hetero. Med., 1 (2006), 399-439.doi: 10.3934/nhm.2006.1.399.

    [4]

    A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.doi: 10.1016/S0022-247X(02)00147-6.

    [5]

    K. Fujie, A. Ito and T. Yokota, Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type, Adv. Math. Sci. Appl., 24 (2014), 67-84.

    [6]

    R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56 (1996), 5745-5753.

    [7]

    M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.

    [8]

    T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci., 23 (2013), 165-198.doi: 10.1142/S0218202512500480.

    [9]

    K. Kang, A. Stevens and J. J. L. Velázquez, Qualitative behavior of a Keller-Segel model with non-diffusive memory, Commun. Partial Differ. Equations, 35 (2010), 245-274.doi: 10.1080/03605300903473400.

    [10]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [11]

    O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Transl., Vol. 23, Providence, RI, 1968.

    [12]

    G. Liţcanu and C. Morales-Rodrigo, Asymptotic behaviour of global solutions to a model of cell invasion, Math. Mod. Meth. Appl. Sci., 20 (2010), 1721-1758.doi: 10.1142/S0218202510004775.

    [13]

    A. Marciniak-Czochra and M. Ptashnyk, Boundedness of solutions of a haptotaxis model, Math. Models Methods Appl. Sci., 20 (2010), 449-476.doi: 10.1142/S0218202510004301.

    [14]

    C. Morales-Rodrigo, Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours, Math. Comput. Modelling, 47 (2008), 604-613.doi: 10.1016/j.mcm.2007.02.031.

    [15]

    N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional Keller-Segel system, preprint.

    [16]

    T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., 40 (1997), 411-433.

    [17]

    K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441-469.

    [18]

    P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Basel/Boston/Berlin, 2007.

    [19]

    C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.doi: 10.1137/13094058X.

    [20]

    Z. Szymańska, C. Morales-Rodrigo, M. Lachowicz and M. A. J. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods Appl. Sci., 19 (2009), 257-281.doi: 10.1142/S0218202509003425.

    [21]

    Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60-69.doi: 10.1016/j.jmaa.2008.12.039.

    [22]

    Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal. Real World Appl., 12 (2011), 418-435.doi: 10.1016/j.nonrwa.2010.06.027.

    [23]

    Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533-1558.doi: 10.1137/090751542.

    [24]

    Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1067-1084.doi: 10.1017/S0308210512000571.

    [25]

    Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225-1239.doi: 10.1088/0951-7715/27/6/1225.

    [26]

    Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 257 (2014), 784-815.doi: 10.1016/j.jde.2014.04.014.

    [27]

    C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694-1713.doi: 10.1137/060655122.

    [28]

    M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.doi: 10.1016/j.jde.2010.02.008.

    [29]

    M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, Journal de Mathématiques Pures et Appliquées, 100 (2013), 748-767.doi: 10.1016/j.matpur.2013.01.020.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(546) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return