For a bounded domain Ω in Rn (n≥2), we prove that the variable exponent De Giorgi class Bm(x)(Ω,M,γ,γ1,δ) is a subset of the variable exponent Hölder space C0,α(x)loc(Ω). It gives an improvement for the earlier result, which states that Bm(x)(Ω,M,γ,γ1,δ)⊂C0,αloc(Ω), where α is a constant. This result can be applied to get C0,α(x)loc(Ω) regularity for certain solutions of variational problems and nonlinear elliptic equations with variable exponents.
Citation: |
[1] |
E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration.Mech. Anal., 156 (2001), 121-140.
![]() ![]() |
[2] |
E. Acerbi and G. Mingione, Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259.
![]() |
[3] |
A. Almeida and S. Samko, Embeddings of variable Hajłasz-Sobolev spaces into Hölder spaces of variable order, J. Math. Anal. Appl., 353 (2009), 489-496.
![]() |
[4] |
P. M. Bies and P. Górka, Schauder theory in variable Hölder spaces, J. Differ. Equ., 259 (2015), 2850-2883.
doi: 10.1016/j.jde.2015.04.006.![]() ![]() |
[5] |
P. M. Bies and P. Górka, Cordes-Nirenberg theory in variable exponent spaces, J. Differ. Equ., 262 (2017), 862-884.
doi: 10.1016/j.jde.2016.09.045.![]() ![]() ![]() |
[6] |
D. V. Cruz-Uribe, A. Fiorenza and M. Ruzhansky, et al., Variable Lebesgue Spaces and Hyperbolic Systems, Springer-Birkhäuser, Basel, 2014.
![]() ![]() |
[7] |
L. Diening, P. Harjulehto and P. Hästö, et al., Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin Heidelberg, 2011.
![]() |
[8] |
M. Eleuteri and A. Passarelli di Napoli, Lipschitz regularity of minimizers of variational integrals with variable exponents, Nonlinear Anal. Real World Appl., 71 (2023), 25 pp.
doi: 10.1016/j.nonrwa.2022.103815.![]() ![]() ![]() |
[9] |
X. L. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal., 36 (1999), 295-318.
doi: 10.1016/S0362-546X(97)00628-7.![]() ![]() |
[10] |
X. L. Fan and D. Zhao, On the Spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446.
![]() |
[11] |
X. L. Fan, Global C1,α regularity for variable exponent elliptic equations in divergence form, J. Differ. Equ., 235 (2007), 397-417.
![]() |
[12] |
K. Ho, Y.-H. Kim and P. Winkert, et al., The boundedness and Hölder continuity of solutions
to elliptic equations involving variable exponents and critical growth, J. Differ. Equ, 313
(2022), 503-532.
![]() |
[13] |
V. Kokilashvili, A. Meskhi and H. Rafeiro, et al., Integral Operators in Non-Standard Function Spaces, Springer-Birkhäuser, Basel, 2016.
![]() ![]() |
[14] |
O. Kováčik and J. Rákosník, On spaces Lp(x) and W1,p(x), Czechoslovak Math. J., 41 (1991), 592-618.
doi: 10.21136/CMJ.1991.102493.![]() ![]() |
[15] |
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Nauka Press, Moscow, 1964.
![]() |
[16] |
V. D. R˘adulescu and D. D. Repov˘s, Partial Differential Equations with Variable Exponents, CRC Press, Boca Raton, FL, 2015.
![]() ![]() |
[17] |
S. Vita, Boundary regularity estimates in Hölder spaces with variable exponent, Calc. Var., 61 (2022), 166.
![]() |
[18] |
B. S. Wang, G. L. Hou and B. Ge, Existence and uniqueness of solutions for the p(x)-Laplacian equation with convection term, Mathematics, 8 (2020), 1768.
![]() |
[19] |
F. P. Yao, Local Hölder estimates for non-uniformly variable exponent elliptic equations in divergence form, Proc. Roy. Soc. Edinburgh, 148A (2018), 211-224.
doi: 10.1155/2012/757828.![]() ![]() |
[20] |
C. Zhang and S. Zhou, Hölder regularity for the gradients of solutions of the strong p(x)-Laplacian, J. Math. Anal. Appl., 389 (2012), 1066-1077.
doi: 10.1016/j.jmaa.2011.12.047.![]() ![]() |
[21] |
V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29 (1987), 33-66.
doi: 10.1070/IM1987v029n01ABEH000958.![]() ![]() |
[22] |
V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116.
![]() |
[23] |
J. Zhou and Z. Tan, Regularity of weak solutions to a class of nonlinear problem with non-standard growth conditions, J. Math. Phys., 61 (2020), 23 pp.
![]() ![]() |