Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Early Access articles via the “Early Access” tab for the selected journal.
In this paper, we study the existence and the multiplicity of solutions for a fractional problem with variable exponents and singular nonlinearity. More precisely, we use the variational and the Nehari manifold methods to prove the existence of two nontrivial solutions for such a problem which involves a general integro-differential operator of nonlocal fractional type.
Citation: |
[1] |
K. B. Ali, M. Hsini, K. Kefi and N. T. Chung, On a nonlocal fractional p(·,·)-Laplacian problem with competing nonlinearities, Complex Anal. Oper. Theory, 13 (2019), 1377-1399.
doi: 10.1007/s11785-018-00885-9.![]() ![]() ![]() |
[2] |
R. Ayazoglu, Y. Saraç, S. S. Şener and G. Alisoy, Existence and multiplicity of solutions for a Schrödinger Kirchhoff type equation involving the fractional p(.,.)-Laplacian operator in RN, Collect. Math., 72 (2021), 129-156.
doi: 10.1007/s13348-020-00283-5.![]() ![]() ![]() |
[3] |
E. Azroul, A. Benkirane and M. Shimi, General fractional Sobolev space with variable exponent and applications to nonlocal problems, Adv. Oper. Theory, 5 (2020), 1512-1540.
doi: 10.1007/s43036-020-00062-w.![]() ![]() ![]() |
[4] |
A. Bahrouni, Comparison and sub-super solution principles for the fractional p(x)-Laplacian, J. Math. Anal. Appl., 458 (2018), 1363-1372.
doi: 10.1016/j.jmaa.2017.10.025.![]() ![]() ![]() |
[5] |
A. Bahrouni and V. D. Rǎdulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. S., 11 (2018), 379-389.
doi: 10.3934/dcdss.2018021.![]() ![]() ![]() |
[6] |
H. Brézis and E. Lieb, A relation between pointwise convergence of function and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
[7] |
R. Chammem, A. Ghanmi and M. Mechergui, Combined effects in nonlinear elliptic equations involving fractional operators, J. Pseudo-Differ. Oper. Appl., 14 (2023), Paper 35, 18 pp.
doi: 10.1007/s11868-023-00530-w.![]() ![]() ![]() |
[8] |
R. Chammem, A. Ghanmi and M. Mechergui, Existence of solutions for a singular double phase Kirchhoff type problems involving the fractional q(x,.)-Laplacian operator, Complex Anal. Oper. Theory, 18 (2024), Paper No. 25, 21 pp.
doi: 10.1007/s11785-023-01470-5.![]() ![]() ![]() |
[9] |
R. Chammem, A. Sahbani and A. Saidani, Multiplicity of solutions for variable-order fractional Kirchhoff problem with singular term, Quaest. Math., 47 (2024), 1613-1629.
doi: 10.2989/16073606.2024.2329338.![]() ![]() ![]() |
[10] |
C. Chen, Z. Xui and J. Huang, The Nehari manifold and the existence of multiple solutions for a singular quasilinear elliptic equation, J. Math. Anal. Appl., 393 (2012), 671-679.
doi: 10.1016/j.jmaa.2012.03.015.![]() ![]() ![]() |
[11] |
Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.
doi: 10.1137/050624522.![]() ![]() ![]() |
[12] |
N. T. Chung, Eigenvalue problems for fractional p(x,y)-Laplacian equations with indefinite weight, Taiwanese J. Math., 23 (2019), 1153-1173.
doi: 10.11650/tjm/190404.![]() ![]() ![]() |
[13] |
N. T. Chung and H. Q. Toan, On a class of fractional Laplacian problems with variable exponents and indefinite weights, Collect. Math., 71 (2020), 223–237.
doi: 10.1007/s13348-019-00254-5.![]() ![]() ![]() |
[14] |
X. Fan and D. Zhao, On the spaces Lp(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617.![]() ![]() ![]() |
[15] |
A. Fiscella and P. K. Mishra, The Nehari manifold for fractional Kirchhoff problems involving singular and critical terms, Nonl. Anal., 186 (2019), 6-32.
doi: 10.1016/j.na.2018.09.006.![]() ![]() ![]() |
[16] |
A. Ghanmi and K. Saoudi, A multiplicity results for a singular problem involving the fractional p-Laplacian operator, Complex Var. Elliptic Equ., 61 (2016), 1199-1216.
doi: 10.1080/17476933.2016.1154548.![]() ![]() ![]() |
[17] |
A. Ghanmi and K. Saoudi, The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator, Fract. Differ. Calcul., 6 (2016), 201-217.
doi: 10.7153/fdc-06-13.![]() ![]() ![]() |
[18] |
K. Ho and Y.-H. Kim, A priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(.)-Laplacian, Nonlinear Anal., 188 (2019), 179-201.
doi: 10.1016/j.na.2019.06.001.![]() ![]() ![]() |
[19] |
K. Kefi and K. Saoudi, On the existence of a weak solution for some singular p(x)-biharmonicequation with Navier boundary conditions, Adv. Nonl. Anal., 8 (2019), 1171-1183.
doi: 10.1515/anona-2016-0260.![]() ![]() ![]() |
[20] |
O. Kováčik and J. Rákosník, On spaces Lp(x) and W1,p(x), Czech. Math. J., 41 (1991), 592-618.
doi: 10.21136/CMJ.1991.102493.![]() ![]() ![]() |
[21] |
L. Mbarki, The Nehari manifold approach involving a singular p(x)-biharmonic problem with Navier boundary conditions, Acta Appl. Math., 182 (2022), Paper No. 3, 14 pp.
doi: 10.1007/s10440-022-00538-2.![]() ![]() ![]() |
[22] |
N. S. Papageorgiou, D. D. Repovš and C. Vetro, Positive solutions for singular double phase problems, J. Math. Anal. Appl., 501 (2021), Paper No. 123896, 13 pp.
doi: 10.1016/j.jmaa.2020.123896.![]() ![]() ![]() |
[23] |
V. D. Rǎdulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, 1st ed. Chapman and Hall/CRC, New York. 2015.
doi: 10.1201/b18601.![]() ![]() ![]() |
[24] |
K. Saoudi, A. Ghanmi and S. Horrigue, Multiplicity of solutions for elliptic equations involving fractional operator and sign-changing nonlinearity, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1743-1756.
doi: 10.1007/s11868-020-00357-9.![]() ![]() ![]() |
[25] |
V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-IZV., 29 (1987), 33-66.
doi: 10.1070/IM1987v029n01ABEH000958.![]() ![]() |