This paper investigates a class of semilinear Timoshenko systems with thermal coupling on both the bending moment and the shear force. Under some general assumptions, we conclude the global well-posedness of the system. Then, we establish the existence of a compact global attractor with finite fractal dimension. In particular, under some proper assumptions, our results also allow to reach the uniform exponential stability of solutions.
Citation: |
[1] |
D. S. Almeida Júnior, M. L. Santos and J. E. Muñoz Rivera, Stability to weakly dissipative Timoshenko systems, Math. Methods Appl. Sci., 36 (2013), 1965-1976.
doi: 10.1002/mma.2741.![]() ![]() ![]() |
[2] |
M. O. Alves, A. H. Caixeta, M. A. Jorge Silva, J. H. Rodrigues and D. S. Almeida Júnior, On a Timoshenko system with thermal coupling on both the bending moment and the shear force, J. Evol. Equ., 20 (2020), 295-320.
doi: 10.1007/s00028-019-00522-8.![]() ![]() ![]() |
[3] |
F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115.
doi: 10.1016/S0022-0396(03)00185-2.![]() ![]() ![]() |
[4] |
F. Ammar-Khodja, S. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam, J. Math. Anal. Appl., 327 (2007), 525-538.
doi: 10.1016/j.jmaa.2006.04.016.![]() ![]() ![]() |
[5] |
L. C. Cardozo, M. A. Jorge Silva, T. F. Ma and J. E. Muñoz Rivera, Stability of Timoshenko systems with thermal coupling on the bending moment, Math. Nachr., 292 (2019), 2537-2555.
doi: 10.1002/mana.201800546.![]() ![]() ![]() |
[6] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcão Nascimento, I. Lasiecka and J. H. Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys., 65 (2014), 1189-1206.
doi: 10.1007/s00033-013-0380-7.![]() ![]() ![]() |
[7] |
I. D. Chueshov, Introduction to the Theory of Infinite Dimensional Dissipative Systems, AKTA, Kharkiv, 1999.
![]() ![]() |
[8] |
I. D. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with onlinear damping, in Mem. Amer. Math. Soc., 195 (2008), viii+183 pp.
doi: 10.1090/memo/0912.![]() ![]() ![]() |
[9] |
I. Chueshov and I. Lasiecka, Von Karman Evolution Equations: Well-Posedness and Long-Time Dynamics, Springer Monographs in Mathematics. Springer, New York, 2010.
![]() ![]() |
[10] |
M. Conti, F. Dell'Oro and V. Pata, Timoshenko systems with fading memory, Dyn. Partial Differ. Equ., 10 (2013), 367-377.
doi: 10.4310/DPDE.2013.v10.n4.a4.![]() ![]() ![]() |
[11] |
C. M. Dafermos, On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity, Arch. Rat. Mech. Anal., 29 (1968), 241-271.
doi: 10.1007/BF00276727.![]() ![]() ![]() |
[12] |
M. J. Dos Santos, M. M. Freitas, A. J. A. Ramos, D. S. Almeida Júnior and L. R. S. Rodrigues, Long-time dynamics of a nonlinear Timoshenko beam with discrete delay term and nonlinear damping, Journal of Mathematical Physics, 61 (2020), 061505.
doi: 10.1063/5.0006680.![]() ![]() ![]() |
[13] |
B. Feng, On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors, Discrete and Continuous Dynamical Systems, 37 (2017), 4729-4751.
![]() |
[14] |
A. Guesmia and S. A Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Methods Appl. Sci., 32 (2009), 2102-2122.
doi: 10.1002/mma.1125.![]() ![]() ![]() |
[15] |
A. Guesmia, S. A. Messaoudi and A. Wehbe, Uniform decay in mildly damped Timoshenko systems with non-equal wave speed propagation, Dynam. Systems Appl., 21 (2012), 133-146.
![]() ![]() |
[16] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.
![]() ![]() |
[17] |
J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078.![]() ![]() ![]() |
[18] |
Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton, 1999.
![]() ![]() |
[19] |
N. Mori, J. Xu and S. Kawashima, Global existence and optimal decay rates for the Timoshenko system: the case of equal wave speeds, J. Differential Equations, 258 (2015), 1494-1518.
doi: 10.1016/j.jde.2014.11.003.![]() ![]() ![]() |
[20] |
J. E. Muñoz Rivera, Energy decay rate in linear thermoelasticity, Funkcial. Ekvac., 35 (1992), 19-30.
![]() ![]() |
[21] |
J. E. Muñoz Rivera and A. I. Ávila, Rates of decay to non homogeneous Timoshenko model with tip body, J. Differential Equations, 258 (2015), 3468-3490.
doi: 10.1016/j.jde.2015.01.011.![]() ![]() ![]() |
[22] |
J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Contin. Dyn. Syst. B, 9 (2003), 1625-1639.
doi: 10.3934/dcds.2003.9.1625.![]() ![]() ![]() |
[23] |
V. Pata, Uniform estimates of Gronwall type, J. of Math. Analysis and Applications, 373 (2011), 264-270.
doi: 10.1016/j.jmaa.2010.07.006.![]() ![]() ![]() |
[24] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983.
![]() ![]() |
[25] |
C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett., 18 (2005), 535-541.
doi: 10.1016/j.aml.2004.03.017.![]() ![]() ![]() |
[26] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractor, Cambridge University Press, 2001.
![]() ![]() |
[27] |
M. L. Santos, D. S. Almeida Júnior, J. H. Rodrigues and F. A. Falcão Nascimento, Decay rates for Timoshenko system with nonlinear arbitrary localized damping, Differential and Integral Equations, 27 (2014), 1-26.
doi: 10.57262/die/1384282850.![]() ![]() ![]() |
[28] |
M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity, Arch. Rat. Mech. Anal., 76 (1981), 97-133.
doi: 10.1007/BF00251248.![]() ![]() ![]() |
[29] |
A. Soufyane, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 731-734.
doi: 10.1016/S0764-4442(99)80244-4.![]() ![]() ![]() |
[30] |
A. Soufyane, Exponential stability of the linearized nonuniform Timoshenko beam, Nonlinear Anal. Real World Appl., 10 (2009), 1016-1020.
doi: 10.1016/j.nonrwa.2007.11.019.![]() ![]() ![]() |
[31] |
A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations, 29 (2003), 1-14.
![]() ![]() |
[32] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math.Sci., 68, Springer-Verlag, New York, 1988.
![]() ![]() |
[33] |
A. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 245 (1921), 744-746.
doi: 10.1080/14786442108636264.![]() ![]() |
[34] |
S. P. Timoshenko, Vibration Problems in Engineering, Van Nostrand, New York, 1955.
![]() |