In this paper, we consider the following viscoelastic problem with variable exponent and logarithmic nonlinearities:
utt−Δu+u+∫t0b(t−s)Δu(s)ds+|ut|γ(⋅)−2ut=uln|u|α,
where γ(.) is a function satisfying some conditions. We first prove a global existence result using the well-depth method and then establish explicit and general decay results under a wide class of relaxation functions and some specific conditions on the variable exponent function. Our results extend and generalize many earlier results in the literature.
Citation: Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammad Kafini. Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities[J]. AIMS Mathematics, 2021, 6(9): 10105-10129. doi: 10.3934/math.2021587
[1] | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Nour, Mostafa Zahri . Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study. AIMS Mathematics, 2022, 7(8): 15370-15401. doi: 10.3934/math.2022842 |
[2] | Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi . Existence and stability results of nonlinear swelling equations with logarithmic source terms. AIMS Mathematics, 2024, 9(5): 12825-12851. doi: 10.3934/math.2024627 |
[3] | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Nasser-Eddine Tatar . On a nonlinear system of plate equations with variable exponent nonlinearity and logarithmic source terms: Existence and stability results. AIMS Mathematics, 2023, 8(9): 19971-19992. doi: 10.3934/math.20231018 |
[4] | Abdelbaki Choucha, Salah Boulaaras, Asma Alharbi . Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms. AIMS Mathematics, 2022, 7(3): 4517-4539. doi: 10.3934/math.2022252 |
[5] | Qian Li . General and optimal decay rates for a viscoelastic wave equation with strong damping. AIMS Mathematics, 2022, 7(10): 18282-18296. doi: 10.3934/math.20221006 |
[6] | Zayd Hajjej, Sun-Hye Park . Asymptotic stability of a quasi-linear viscoelastic Kirchhoff plate equation with logarithmic source and time delay. AIMS Mathematics, 2023, 8(10): 24087-24115. doi: 10.3934/math.20231228 |
[7] | Adel M. Al-Mahdi . The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type. AIMS Mathematics, 2023, 8(11): 27439-27459. doi: 10.3934/math.20231404 |
[8] | Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta . A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400 |
[9] | Soh E. Mukiawa, Tijani A. Apalara, Salim A. Messaoudi . Stability rate of a thermoelastic laminated beam: Case of equal-wave speed and nonequal-wave speed of propagation. AIMS Mathematics, 2021, 6(1): 333-361. doi: 10.3934/math.2021021 |
[10] | Keltoum Bouhali, Sulima Ahmed Zubair, Wiem Abedelmonem Salah Ben Khalifa, Najla ELzein AbuKaswi Osman, Khaled Zennir . A new strict decay rate for systems of longitudinal m-nonlinear viscoelastic wave equations. AIMS Mathematics, 2023, 8(1): 962-976. doi: 10.3934/math.2023046 |
In this paper, we consider the following viscoelastic problem with variable exponent and logarithmic nonlinearities:
utt−Δu+u+∫t0b(t−s)Δu(s)ds+|ut|γ(⋅)−2ut=uln|u|α,
where γ(.) is a function satisfying some conditions. We first prove a global existence result using the well-depth method and then establish explicit and general decay results under a wide class of relaxation functions and some specific conditions on the variable exponent function. Our results extend and generalize many earlier results in the literature.
In this paper we are concerned with the following problem
{utt−Δu+u+∫t0b(t−s)Δu(s)ds+|ut|γ(⋅)−2ut=uln|u|αinΩ×(0,+∞),u=∂u∂ν=0,on∂Ω×(0,∞),u(x,0)=u0(x),ut(x,0)=u1(x),inΩ, | (1.1) |
where Ω is a bounded domain of Rn with a smooth boundary ∂Ω, ν is the unit outer normal to ∂Ω, u0 and u1 are the given data, b is a relaxation function and γ(.) is a variable exponent.
Problem (1.1) contains three class of problems:
I. Viscoelasticity with wide class of relaxation functions.
The importance of the viscoelastic properties of materials has been realized because of the rapid developments in rubber and plastics industry. Many advances in the studies of constitutive relations, failure theories and life prediction of viscoelastic materials and structures were reported and reviewed in the last two decades [1]. There is an extensive literature on the stabilization of viscoelastic wave equations and many results have been established. There are a lot of contributions to generalize the decay rates by allowing an extended class of relaxation functions and give general decay rates. In fact, the journey of generalization of relaxation functions passed through several steps, we mention here the following stages:
1) As in [2], the relaxation function b satisfies, for two positive constants a1 and a2,
−a1b(t)≤b′(t)≤−a2b(t),t≥0. |
2)As in [3,4], the relaxation function b satisfies
b′(t)≤−a(t)b(t), t≥0, |
where a:R+→R+ is a nonincreasing differentiable function.
3) As in [5], the relaxation function b satisfies
b′(t)≤−χ(b(t)), |
where χ is a positive function, χ(0)=χ′(0)=0, and χ is strictly increasing and strictly convex near the origin.
4) As in [6], the relaxation function b satisfies
b′(t)≤−a(t)bp(t), ∀t≥0, 1≤p<32. |
5)As in [7], the relaxation function b satisfies
b′(t)≤−a(t)B(b(t)), | (1.2) |
where B∈C1(R), with B(0)=0 and B is linear or strictly increasing and strictly convex function C2 near the origin.
II. Variable-exponent nonlinearity.
With the advancement of sciences and technology, many physical and engineering models required more sophisticated mathematical functional spaces to be studied and well understood. For example, in fluid dynamics, the elecrtorheological fluids (smart fluids) have the property that the viscosity changes (often drastically) when exposed to an electrical field. The Lebesgue and Sobolev spaces with variable exponents proved to be efficient tools to study such problems as well as other models like fluids with temperature-dependent viscosity, nonlinear viscoelasticity, filtration processes through a porous media and image processing. More details on these problems can be found in [8,9]. For hyperbolic problems involving variable-exponent nonlinearities, we refer to [10,11,12,13,14,15]. For more results of other problems with the nonlinearity of power type, we refer the interested reader to see [16,17,18].
III. Logarithmic source term.
The logarithmic nonlinearity appears naturally in inflation cosmology and supersymmetric filed theories, quantum mechanics and nuclear physics [19,20]. Problems with logarithmic nonlinearity have a lot of applications in many branches of physics such as nuclear physics, optics and geophysics [21,22,23].
In this paper, we consider problem (1.1) and prove the global existence of solutions, using the well-depth method. We then establish explicit and general decay results of the solution under suitable assumptions on the variable exponent γ(.) and very general assumption on the relaxation function. To the best of our knowledge, such a problem has not been discussed before in the context of nonlinearity with variable exponents.
In addition to the introduction, this paper has four other sections. In Section 2, we present some preliminaries. The Existence is given in Section 3. In Section 4, we establish some technical lemmas needed for the proof of the main results. Our stability results and their proof are given in Section 5.
In this section, we present some preliminaries about the logarithmic nonlinerity and the Lebesgue and Sobolev spaces with variable exponents (see [24,25,26,27]). Throughout this paper, c is used to denote a generic positive constant.
Definition 2.1. Let β:Ω→[1,∞] be a measurable function, where Ω is a bounded domain of Rn, then we have the following definitions:
1) The Lebesgue space with a variable exponent β(⋅) is defined by
Lβ(⋅)(Ω):={v:Ω→R;measurable inΩ:ϱβ(⋅)(kv)<∞,for somek>0}, |
where ϱβ(⋅)(v)=∫Ω1β(x)|v(x)|β(x)dx is a modular.
2) The variable-exponent Sobolev space W1,β(⋅)(Ω) is:
W1,β(⋅)(Ω)={v∈Lβ(⋅)(Ω)such that∇vexistsand|∇v|∈Lβ(⋅)(Ω)}. |
3) W1,β(⋅)0(Ω) is the closure of C∞0(Ω) in W1,β(⋅)(Ω).
Remark 2.2. [9]
1) Lβ(⋅)(Ω) is a Banach space equipped with the following Luxembourg-type norm
‖v‖β(⋅):=inf{λ>0:∫Ω|v(x)λ|β(x)dx≤1}, |
2) W1,β(⋅)(Ω) is a Banach space with respect to the norm
‖v‖W1,β(⋅)(Ω)=‖v‖β(⋅)+‖∇v‖β(⋅). |
Definition 2.3. Let K be a convex function on (0,r], then the convex conjugate of K, in the sense of Young (see [32]), is defined as follows:
K∗(s)=s(K′)−1(s)−K[(K′)−1(s)],ifs∈(0,K′(r)] | (2.1) |
and K∗ satisfies the following generalized Young inequality
α1α2≤K∗(α1)+K(α2),ifα1∈(0,K′(r)],α2∈(0,r]. | (2.2) |
Let
β1:=essinfx∈Ωβ(x),β2:=esssupx∈Ωβ(x). |
Lemma 2.4. [9] If β:Ω→[1,∞) is a measurable function with β2<∞, then C∞0(Ω) is dense in Lβ(⋅)(Ω).
Remark 2.5 (Log-Hölder continuity condition). The exponent p(⋅):Ω→[1,∞] is said to be satisfying the log-Hölder continuity condition; if there exists a constant c>0 such that, for all δ with 0<δ<1,
|p(x)−p(y)|≤−clog|x−y|,for allx,y∈Ω,with|x−y|<δ. | (2.3) |
Lemma 2.6. [9][Poincaré's Inequality] Let Ω be a bounded domain of Rn and p(⋅) satisfies (2.3), then
‖v‖p(⋅)≤c∗‖∇v‖p(⋅),for allv∈W1,p(⋅)0(Ω). |
In particular, the space W1,p(⋅)0(Ω) has an equivalent norm given by ‖v‖W1,p(⋅)0(Ω)=‖∇v‖p(⋅).
Lemma 2.7. [9][Embedding Property] Let Ω be a bounded domain in Rn with a smooth boundary ∂Ω. Assume that p,k∈C(¯Ω) such that
1<p1≤p(x)≤p2<+∞,1<k1≤k(x)≤k2<+∞,∀x∈¯Ω, |
and k(x)<p∗(x) in ¯Ω with
p∗(x)={np(x)n−p(x),if p2<n;+∞,if p2≥n, |
then we have continuous and compact embedding W1,p(.)(Ω)↪Lk(.)(Ω). So, there exists ce>0 such that
‖v‖k≤ce‖v‖W1,p(.),∀v∈W1,p(.)(Ω). |
Lemma 2.8. [27] Let ϵ∈(0,1). Then there exists βε>0 such that
s|lns|≤s2+βϵs1−ϵ,∀s>0. | (2.4) |
We consider the following hypotheses:
(A1) The relaxation function b:R+→R+ is a C1 nonincreasing function satisfying
b(0)>0,1−∫∞0b(s)ds=ˉb>0, | (2.5) |
and there exists a C1 function B:(0,∞)→(0,∞) which is strictly increasing and strictly convex C2 function on (0,r], r≤b(0), with B(0)=B′(0)=0, such that
b′(t)≤−a(t)B(b(t)),∀t≥0, | (2.6) |
where a is a positive nonincreasing differentiable function.
(A2) γ:¯Ω→[1,∞) is a continuous function satisfies the log-Hölder continuity condition (Remark 2.5) such that
γ1:=essinfx∈Ωγ(x),γ2:=esssupx∈Ωγ(x). |
and 1<γ1<γ(x)≤γ2, where
{γ2<∞,n=1,2;γ2≤2nn−2,n≥3. |
(A3) The constant α in (1.1) satisfies 0<α<α0, where α0 is the positive real number satisfying
√2πˉbα0=e−32−1α0 | (2.7) |
where ‖.‖2=‖.‖L2(Ω).
Lemma 2.9. [28,29] (Logarithmic Sobolev inequality) Let u be any function in H10(Ω) and d be any positive real number. Then
∫Ωu2ln|u|dx≤12‖u‖22ln‖u‖22+d22π‖∇u‖22−(1+lnd)‖u‖22. | (2.8) |
Lemma 2.10. There exists a unique α0>0 such that
e−32−1s<√2πˉbs,∀s∈(0,α0). | (2.9) |
Proof. Let g(s)=√2πˉbs−e−32−1s, then g is a continuous and decreasing function on (0,∞), with
lims→0+g(s)=∞andlimx→∞g(x)=−e−32. |
Then, there exists a unique α0>0 such that g(α0)=0 and (2.9) holds
Remark 2.11. Lemma 2.10 shows that the selection of α in (A3) is possible.
Remark 2.12. Using the facts that B(0)=0 and B is strictly convex on (0,r], then
B(θs)≤θB(s), 0≤θ≤1 and s∈(0,r]. | (2.10) |
Remark 2.13. [7] If B is a strictly increasing and strictly convex \boldsymbol{C}^2 function on (0, r] , with B(0) = B'(0) = 0 , then there is a strictly convex and strictly increasing \boldsymbol{C}^2 function \overline{B}:[0, +\infty)\longrightarrow[0, +\infty) which is an extension of B . For simplicity, in the rest of this paper, we use B instead of \overline{B} .
In this section, we state the local existence theorem whose proof can be established by combining the arguments of [10,30,31]. Also, we state and prove a global existence result under smallness conditions on the initial data (u_0, u_1) .
Theorem 3.1 (Local Existence). Suppose conditions (A1) - (A3) hold and (u_0, u_1)\in H^1_0(\Omega)\times L^2(\Omega). Then, there exists T > 0 , such that problem (1.1) has a weak solution
u\in L^{\infty}((0, T), H^1_0(\Omega)), \quad u_t \in L^{\infty}((0, T), L^2(\Omega)) \cap L^{\gamma(.)}(\Omega \times (0, T)). |
Definition 3.2. We define the following functionals which are needed for establishing the global existence
\begin{equation} \begin{aligned} & E(t) = \frac{1}{2}\Big[\|u_t\|^2_2+\Big(1-\int_{0}^{t}b(s)ds\Big)\|\nabla u\|^2_2+(b\circ \nabla u)(t)+\frac{{\alpha}+2}{2}\| u\|_2^2\Big]\\ & \quad -\frac{1}{2}\int_{\Omega}u^2\ln{\vert u\vert^{\alpha}}dx \end{aligned} \end{equation} | (3.1) |
where for v\in L^{2}_{loc}(\mathbb{R}^+; L^2(\Omega)),
(b\circ v)(t): = \int_{0}^{t}b(t-s)\|v(t)-v(s)\|_2^2ds. |
E(t) represents the modified energy functional associated to problem (1.1).
\begin{equation} \text{ }I(u) = I(u(t)) = \left(1-\int_{0}^{t}b(s)ds\right)\|\nabla u\|_2^2+\| u\|_2^2+(bo\nabla u)(t)-\int_{\Omega}u^2\ln{\vert u\vert^{\alpha}}dx \end{equation} | (3.2) |
\begin{equation} \begin{aligned} &\text{ }J(u) = J(u(t)) = \frac{1}{2}I(u(t))+\frac{{\alpha}}{4}\| u\|_2^2, \end{aligned} \end{equation} | (3.3) |
then
\begin{equation} E(t) = \frac{1}{2} {\vert\vert{u_{t}(t)}\vert\vert}_{2}^{2}+J(u(t)). \end{equation} | (3.4) |
Notation: We define
\rho_{*} = e^{\frac{2D_0-{\alpha}}{{\alpha}}}, \quad E_1 = \frac{1}{2}D_0\rho_*^2-\frac{{\alpha}}{4}\rho_*^2 \ln{\rho_*^2} |
and
D_0 = \frac{{\alpha}+2}{2}+{\alpha}(1+\ln{d}), |
where 0 < d < \sqrt{\frac{2\pi \bar{b}}{{\alpha}}}.
Lemma 3.3. Assume that (u_{0}, u_{1})\in H^1_0(\Omega)\times L^{2}(\Omega) , (A1) holds,
\begin{equation} \|u_0\|_2 < \rho_{*} ~~{{and}}~~0 < E(0) < E_1. \end{equation} | (3.5) |
Then, I(u(t))\ge 0 for all t\in [0, T).
Proof. First, we show that \|u\|_2 < \rho_{*} , \forall t\in [0, T). By (2.5), (3.4) and (2.9), we obtain
\begin{equation} \begin{aligned} &E(t)\ge J(u(t))\\ & \quad \ge \frac{\bar{b}}{2}\|\nabla u\|_2^2+\frac{1}{2}\| u\|_2^2+\frac{1}{2}(bo\nabla u)(t)-\frac{1}{2}\int_{\Omega}u^2\ln{\vert u\vert^{\alpha}}dx+\frac{{\alpha}}{4}\| u\|_2^2\\ & \quad \ge \frac{1}{2}\left(\bar{b} -\frac{{\alpha} d^2}{2 \pi}\right)\|\nabla u\|_2^2+\frac{1}{2}\left(\frac{{\alpha}+2}{2}+{\alpha}(1+\ln{d})-\frac{{\alpha}}{2}\ln{\| u\|_2^2}\right)\| u\|_2^2 \end{aligned} \end{equation} | (3.6) |
If we select d < \sqrt{\frac{2\pi \bar{b}}{{\alpha}}} , then (3.6) becomes
\begin{equation} E(t)\ge Z({\rho}) = \frac{1}{2}D_0{\rho}^2-\frac{{\alpha}}{4}{\rho}^2 \ln{{\rho}^2} \end{equation} | (3.7) |
where D_0 = \frac{{\alpha}+2}{2}+{\alpha}(1+\ln{d}) and {\rho} = \|u\|_2. Using (3.7), we can deduce that that Z is increasing on (0, {\rho}_{*}) , decreasing on ({\rho}_{*}, +\infty) and Z({\rho})\to -\infty as {\rho} \to +\infty. Moreover,
\max\limits_{0 < {\rho} < +\infty} Z({\rho}) = \frac{1}{2}D_0{\rho}_*^2-\frac{{\alpha}}{4}{\rho}_*^2 \ln{{\rho}_*^2} = Z({\rho}_*) = E_1. |
Suppose that \|u(x, t)\|_2 < {\rho}_{*} is not true in [0, T). Therefore, using the continuity of u(t), it follows that there exists 0 < t_0 < T such that \|u(x, t_0)\|_2 = \rho_{*}. From Eq (3.7), we can see that
E(t_0)\ge Z(\|u(x, t_0)\|_2) = Z({\rho}_*) = E_1, |
which is a contradiction with E(t)\le E(0) < E_1 for all t \ge 0. Recalling the definition of I(u(t)), and using (2.9) with d < \sqrt{\frac{2\pi \bar{b}}{{\alpha}}}, for all t\in [0, T) , lead to
\begin{equation} \begin{aligned} &I(u(t))\ge \bar{b}\|\nabla u\|_2^2-\int_{\Omega}u^2\ln{\vert u\vert^{\alpha}}dx\\ & \quad \ge \left(\bar{b} -\frac{{\alpha} d^2}{2 \pi}\right)\|\nabla u\|_2^2+\left(1+{\alpha}(1+\ln{d})-\frac{{\alpha}}{2}\ln{\| u\|_2^2}\right)\| u\|_2^2\\ & \quad \ge \left(\bar{b} -\frac{{\alpha} d^2}{2 \pi}\right)\|\nabla u\|_2^2+\| u\|_2^2 \ge 0. \end{aligned} \end{equation} | (3.8) |
This completes the proof.
Remark 3.4. We can see that if \|u_0\|_2 < \rho_* and E(0) < E_1, then J(u(t))\ge 0 and consequently E(t)\ge 0 for all t\in [0, T). Therefore, from (3.8), for t\in [0, T) we have
\begin{equation} \begin{aligned} &\|u_t\|^2_2 \le 2E(t)\le 2E(0), \\ &\|\nabla u\|^2_2\le \frac{2\pi}{2\pi \bar{b}-{\alpha} d^2} I(t)\le \frac{4\pi}{2\pi \bar{b}-{\alpha} d^2} E(t)\le \frac{4\pi}{2\pi \bar{b}-{\alpha} d^2} E(0), \end{aligned} \end{equation} | (3.9) |
which shows that the soultion is global and bounded in time.
In this section, we establish several lemmas needed for the proof of our main result.
Lemma 4.1. The energy functional associated to problem (1.1) satisfies, for any t\ge 0 ,
\begin{equation} E'(t) = \frac{1}{2}(b'\circ \nabla u)(t)-\frac{1}{2}b(t)\|\nabla u\|^2_2-\int_{\Omega}|u_t|^{{\gamma}(x)}dx\le 0. \end{equation} | (4.1) |
Proof. Multiplying (1.1) by u_t , integrating over \Omega and using the boundary conditions, imply (4.1).
Lemma 4.2. [31] Assume that b satisfies (A1) . Then, for u\in H^{1}_{0}(\Omega),
\begin{equation*} \label{e4} \int_{\Omega}\left(\int_{0}^{t}b(t-s)(u(t)-u(s))ds\right)^{2}dx\le c(bo \nabla u)(t), \end{equation*} |
and
\begin{equation*} \int_{\Omega}\left(\int_{0}^{t} b^{\prime}(t-s)(u(t)-u(s))ds\right)^{2}dx\le -c(b^{\prime} o \nabla u)(t). \end{equation*} |
Lemma 4.3. [7] Assume (A1) holds. Then, for any t \ge t_0, , we have
\begin{equation*} a(t)\int_{0}^{t_0}b(s)\|\nabla u(t)-\nabla u(t-s)\|_2^2ds\le -c E^{\prime}(t). \end{equation*} |
Lemma 4.4. Assume that (A1) - (A3) and (3.5) hold, then the functional
I_1(t): = \int_{\Omega} uu_tdx |
satisfies, along with the solution of (1.1), the estimates:
\begin{equation} \begin{aligned} I'_1(t)&\le \vert \vert u_t \vert \vert^2_2-\|u\|^2_2-\frac{\bar{b}}{4} \vert \vert \nabla u(t) \vert \vert^2_2 +c(bo \nabla u)(t)\\&+c \int_{\Omega} |u_t|^{{\gamma}(x)} dx+\int_{\Omega}u^2\ln{\vert u\vert}^{\alpha} dx, \quad {{for}} ~~{\gamma}_1 \geq 2 \end{aligned} \end{equation} | (4.2) |
and
\begin{equation} \begin{aligned} I'_1(t)&\le \vert \vert u_t \vert \vert^2_2-\|u\|^2_2-\frac{\bar{b}}{4} \vert \vert \nabla u(t) \vert \vert^2_2 +c(bo \nabla u)(t)\\&+c \int_{\Omega} |u_t|^{{\gamma}(x)} dx+\bigg(\int_{\Omega}|u_t|^{{\gamma}(x)}\bigg)^{{\gamma}_1-1}+\int_{\Omega}u^2\ln{\vert u\vert}^{\alpha} dx, \mathit{\text{for}} 1 < {\gamma}_1 < 2. \end{aligned} \end{equation} | (4.3) |
Proof. Differentiate I_1 and use the differential equation in (1.1), to get
\begin{equation} \begin{aligned} &I'_1(t) = \vert \vert u_t \vert \vert^2_2-\|u\|^2_2-\left(1-\int_0^t b(s)ds \right) \vert \vert \nabla u \vert \vert^2_2+\int_{\Omega} \nabla u(t) \int_0^t b(t-s)\left(\nabla u(s)-\nabla u(t) \right) ds dx\\& \quad -\int_{\Omega}u|u_t|^{{\gamma}(x)-2}u_t dx+\int_{\Omega}u^2\ln{\vert u\vert}^{\alpha} dx. \end{aligned} \end{equation} | (4.4) |
Young's inequality and (4.2) give
\begin{equation} \begin{aligned} &\int_{\Omega}\nabla u.\int_{0}^{t}b(t-s)(\nabla u(s)-\nabla u(t))dsdx\\ & \quad \le\delta_0 \int_{\Omega}{\vert \nabla u\vert}^{2}dx+\frac{c}{4\delta_0}(bo \nabla u)(t). \end{aligned} \end{equation} | (4.5) |
Estimation of the term -\int_{\Omega}u|u_t|^{{\gamma}(x)-2}u_t dx :
We use Young's inequality with p(x) = \frac{{\gamma}(x)}{{\gamma}(x)-1} and p^{\prime}(x) = {\gamma}(x) so, for all x\in \Omega, we have
\vert u_t \vert^{{\gamma}(x)-2} u_t u\le \delta \vert u\vert ^{{\gamma}(x)}+c_{\delta}(x)\vert u_t\vert^{{\gamma}(x)}, |
where
c_{\delta}(x) = \delta ^{1-{\gamma}(x)}({\gamma}(x))^{-{\gamma}(x)} ({\gamma}(x)-1)^{{\gamma}(x)-1}. |
Hence,
\begin{equation} -\int_{\Omega}u|u_t|^{{\gamma}(x)-2}u_t dx \le \delta \int_{\Omega}|u|^{{\gamma}(x)} dx+\int_{\Omega}{c_\delta}(x)|u_t|^{{\gamma}(x)} dx. \end{equation} | (4.6) |
Now, using (3.1), (4.1), (3.9) and Lemma 2.7, we obtain
\begin{equation} \begin{split} \int_{\Omega}|u|^{{\gamma}(x)} dx &\leq \int_{\Omega_+}|u|^{{\gamma}(x)} dx+ \int_{\Omega_-}|u|^{{\gamma}(x)} dx\\ &\le \int_{\Omega_+}|u|^{{\gamma}_2} dx+ \int_{\Omega_-}|u|^{{\gamma}_1} dx \\ &\leq \int_{\Omega}|u|^{{\gamma}_2} dx+ \int_{\Omega}|u|^{{\gamma}_1}dx\\ &\le \bigg(c_e^{{\gamma}_1} \vert \vert \nabla u \vert \vert_2^{{\gamma}_1} + c_e^{{\gamma}_2} \vert \vert \nabla u \vert \vert_2^{{\gamma}_2} \bigg)\\ & \le \bigg( c_e^{{\gamma}_1} \vert \vert \nabla u \vert \vert_2^{{\gamma}_1-2}+c_e^{{\gamma}_2}\vert \vert \nabla u \vert \vert_2^{{\gamma}_2-2} \bigg)\vert \vert \nabla u \vert \vert_2^{2} \\ & \le \bigg( c_e^{{\gamma}_1} \bigg(\frac{4\pi}{2\pi\bar{b}-{\alpha} d^2}E(0)\bigg)^{{\gamma}_1-2}+c_e^{{\gamma}_2} \bigg(\frac{4\pi}{2\pi\bar{b}-{\alpha} d^2}E(0)\bigg)^{{\gamma}_2-2} \bigg)\vert \vert \nabla u \vert \vert_2^{2} \\ & \le c \vert \vert \nabla u \vert \vert_2^{2}, \end{split} \end{equation} | (4.7) |
where
\begin{equation*} \Omega_{+} = \{x \in \Omega: \vert u(x, t) \vert \geq 1\}\; \; \text{and} \; \; \Omega_{-} = \{x \in \Omega: \vert u(x, t) \vert < 1\}, \end{equation*} |
and
c = \bigg( c_e^{{\gamma}_1} \bigg(\frac{4\pi}{2\pi\bar{b}-{\alpha} d^2}E(0)\bigg)^{{\gamma}_1-2}+c_e^{{\gamma}_2} \bigg(\frac{4\pi}{2\pi\bar{b}-{\alpha} d^2}E(0)\bigg)^{{\gamma}_2-2} \bigg). |
Then, (4.6) and (4.7) yield
\begin{equation} -\int_{\Omega}u|u_t|^{{\gamma}(x)}u_t dx \le \delta c \vert \vert \nabla u \vert \vert_2^{2}+\int_{\Omega}{c_\delta}(x)|u_t|^{{\gamma}(x)} dx. \end{equation} | (4.8) |
Combining the above results with fixing \delta_0 = \frac{\bar{b}}{2} and \delta = \frac{\bar{b}}{4 c} completes the proof of (4.2).
For the proof of (4.3), we re-estimate the fifth term in (4.4) as follows:
First, we define
\begin{equation*} \Omega_{1} = \{x \in \Omega: {\gamma}(x) < 2\}\; \; \text{and} \; \; \Omega_{2} = \{x \in \Omega: {\gamma}(x) \geq 2\}. \end{equation*} |
Then, we get
\begin{equation} -\int_{\Omega}u|u_t|^{{\gamma}(x)-2} u_t dx = -\int_{\Omega_1}u|u_t|^{{\gamma}(x)-2} u_t dx-\int_{\Omega_2}u|u_t|^{{\gamma}(x)-2} u_t dx. \end{equation} | (4.9) |
Using the definition of \Omega_1 , we have
\begin{equation} 2 {\gamma}(x)-2 < {\gamma}(x), \; \; \text{and} \; \; \; 2 {\gamma}(x)-2 \geq 2 {\gamma}_1-2 . \end{equation} | (4.10) |
Therefore, using Young's and Poincaré's inequalities and (4.10), we obtain
\begin{equation} \begin{aligned} &-\int_{\Omega_1}u|u_t|^{{\gamma}(x)-2}u_tdx \le \theta \int_{\Omega_1}|u|^2 dx+\frac{1}{4\theta} \int_{\Omega_1}|u_t|^{2{\gamma}(x)-2} dx\\ &\le \theta c^2_* \vert \vert \nabla u \vert \vert_2^{2}+c \bigg[\int_{\Omega_1^{+}}|u_t|^{2{\gamma}(x)-2} dx+\int_{\Omega_1^{-}}|u_t|^{2{\gamma}(x)-2} dx\bigg] \\ &\le \theta c^2_* \vert \vert \nabla u \vert \vert_2^{2}+c \bigg[\int_{\Omega_1^{+}}|u_t|^{{\gamma}(x)} dx+\int_{\Omega_1^{-}}|u_t|^{2{\gamma}_1-2} dx\bigg]\\ &\le \theta c^2_* \vert \vert \nabla u \vert \vert_2^{2}+c \bigg[\int_{\Omega}|u_t|^{{\gamma}(x)} dx+\bigg(\int_{\Omega_1^{-}}|u_t|^{2} dx\bigg)^{\gamma_1-1}\bigg]\\ &\le \theta c^2_* \vert \vert \nabla u \vert \vert_2^{2}+c \bigg[\int_{\Omega}|u_t|^{{\gamma}(x)} dx+\bigg(\int_{\Omega_1^{-}}|u_t|^{{\gamma}(x)} dx\bigg)^{{\gamma}_1-1}\bigg]\\ &\le \theta c^2_* \vert \vert \nabla u \vert \vert_2^{2}+c \bigg[\int_{\Omega}|u_t|^{{\gamma}(x)} dx+\bigg(\int_{\Omega}|u_t|^{{\gamma}(x)} dx\bigg)^{{\gamma}_1-1}\bigg], \end{aligned} \end{equation} | (4.11) |
where
\begin{equation} \begin{aligned} &\Omega_1^{+} = \{x \in \Omega_1: \vert u_t(x, t) \vert \geq 1\}\; \; \text{and} \; \; \Omega_1^{-} = \{x \in \Omega_1: \vert u_t(x, t) \vert < 1\}. \end{aligned} \end{equation} | (4.12) |
After setting \theta = \frac{\bar{b}}{8 c^2_*} , (4.11) becomes
\begin{equation} \begin{aligned} &-\int_{\Omega_1}u|u_t|^{{\gamma}(x)-2}u_tdx \le \frac{\bar{b}}{8} \vert \vert \nabla u \vert \vert_2^{2}+c \bigg[\int_{\Omega}|u_t|^{{\gamma}(x)} dx+\bigg(\int_{\Omega}|u_t|^{{\gamma}(x)} dx\bigg)^{{\gamma}_1-1}\bigg]. \end{aligned} \end{equation} | (4.13) |
Next, for any \delta we have, by the case {\gamma}(x) \ge 2,
\begin{equation} -\int_{\Omega_2}u|u_t|^{{\gamma}(x)-2}u_t dx \le \delta c \vert \vert \nabla u \vert \vert_2^{2}+\int_{\Omega}{c_\delta}(x)|u_t|^{{\gamma}(x)} dx. \end{equation} | (4.14) |
Therefore, by combining (4.9)-(4.14), we arrive at
\begin{equation*} \begin{aligned} I'_1(t)&\le \vert \vert u_t \vert \vert^2_2-\left(\frac{3\bar{b}}{8}-c \delta \right)\vert \vert \nabla u(t) \vert \vert^2_2 + c(bo \nabla u)(t)\\&+c \left[\int_{\Omega}\left(1+c_{\delta}(x)\right) |u_t|^{{\gamma}(x)} dx+\bigg(\int_{\Omega}|u_t|^{{\gamma}(x)}\bigg)^{{\gamma}_1-1}\right]+\int_{\Omega}u^2\ln{\vert u\vert^{\alpha}}dx. \end{aligned} \end{equation*} |
By fixing \delta = \frac{\bar{b}}{8c} , c_{\delta}(x) remains bounded and, consequently, we obtain (4.3).
Lemma 4.5. Assume that (A1) - (A3) and (3.5) hold, then for any \delta > 0 , the functional
I_2(t): = -\int_{\Omega} u_t \int_{0}^{t}b(t-s)\big(u(t)-u(s)\big)ds dx |
satisfies, along the solution of (1.1), the estimates:
\begin{equation} \begin{aligned} I'_2(t)&\le \delta \|\nabla u\|^2_2-\Big(\int_{0}^{t}b(s)ds-\delta\Big)\|u_t\|^2_2+ \int_{\Omega}{c_\delta}(x)|u_t|^{{\gamma}(x)}dx\\ &+\frac{c}{\delta}(-b^{\prime}o \nabla u)(t)+\frac{c}{\delta}(b\circ \nabla u)(t)+c_{\epsilon, \delta}(bo\nabla u)^{\frac{1}{1+\epsilon}}(t), \mathit{\text{for}} \gamma_1 \geq 2, \end{aligned} \end{equation} | (4.15) |
and for 1 < \gamma_1 < 2 , we have the following estimate
\begin{equation} \begin{aligned} I'_2(t) &\le \delta \|\nabla u\|^2_2-\Big(\int_{0}^{t}b(s)ds-\delta\Big)\|u_t\|^2_2+c (b\circ \nabla u)(t)+c_{\epsilon , \delta}(bo\nabla u)^{\frac{1}{1+\epsilon}}(t)\\ &+\frac{c}{\delta}(-b^{\prime}o \nabla u)(t)+\frac{c}{\delta} \bigg[\int_{\Omega} |u_t|^{{\gamma}(x)}dx+ \bigg(\int_{\Omega} |u_t|^{{\gamma}(x)}dx\bigg)^{{\gamma}_1-1}\bigg] \end{aligned} \end{equation} | (4.16) |
Proof. Direct differentiation of I_2 , using (1.1), yields
\begin{equation} \begin{aligned} I'_2(t)& = \int_{\Omega}\nabla u\int_{0}^{t}b(t-s)\big(\nabla u(t)-\nabla u(s)\big)dsdx\\ & \quad -\int_{\Omega}u\int_{0}^{t}b(t-s)(u(t)-u(s))dsdx\\ & \quad -\int_{\Omega}\Big(\int_{0}^{t}b(t-s)\nabla u(s)ds\Big)\Big(\int_{0}^{t}b(t-s)\big(\nabla u(t)-\nabla u(s)\big)ds\Big)dx\\ & \quad -\int_{\Omega}u_t\int_{0}^{t}b'(t-s)\big(u(t)-u(s)\big)dsdx-\left(\int_{0}^{t}b(s)ds\right) \|u_t\|^2_2\\ & \quad +\int_{\Omega}|u_t|^{{\gamma}(x)-2}u_t\int_{0}^{t}b(t-s)\big(u(t)-u(s)\big)dsdx\\ & \quad -{\alpha}\int_{\Omega}u\ln{\vert u\vert} \int_{0}^{t}b(t-s)\big(u(t)-u(s)\big)dsdx\\ & = \left(1-\int_{0}^{t}b(s)ds\right)\int_{\Omega}\nabla u\int_{0}^{t}b(t-s)\big(\nabla u(t)-\nabla u(s)\big)dsdx\\ & \quad -\int_{\Omega}u\int_{0}^{t}b(t-s)(u(t)-u(s))dsdx\\ & \quad +\int_{\Omega}\Big(\int_{0}^{t}b(t-s)\big(\nabla u(t)-\nabla u(s)\big)ds\Big)^2dx\\ & \quad -\int_{\Omega}u_t\int_{0}^{t}b'(t-s)\big(u(t)-u(s)\big)dsdx-\left(\int_{0}^{t}b(s)ds\right) \|u_t\|^2_2\\ & \quad +\int_{\Omega}|u_t|^{{\gamma}(x)-2}u_t\int_{0}^{t}b(t-s)\big(u(t)-u(s)\big)dsdx\\ & \quad -{\alpha}\int_{\Omega}u\ln{\vert u\vert} \int_{0}^{t}b(t-s)\big(u(t)-u(s)\big)dsdx. \end{aligned} \end{equation} | (4.17) |
Using Young's inequality and Lemma 4.2, we obtain
\begin{equation} \begin{aligned} &\left(1-\int_{0}^{t}b(s)ds\right)\int_{\Omega} \nabla u .\int_{0}^{t}b(t-s)\big(\nabla u(t)-\nabla u(s)\big)dsdx\\ &\le c\delta\|\nabla u\|_2^2+\frac{c}{\delta}(bo \nabla u)(t). \end{aligned} \end{equation} | (4.18) |
The use of Lemma 4.2, Young's and Poincaré's inequalities leads to
\begin{equation} \begin{aligned} \int_{\Omega}u\int_{0}^{t}b(t-s)(u(t)-u(s))dsdx\le c\delta {\vert\vert {\nabla u} \vert\vert }_{2}^{2}+\frac{c}{\delta}(bo\nabla u)(t) \end{aligned} \end{equation} | (4.19) |
Exploiting Lemma (4.2) and Young's inequality, we obtain
\begin{equation} \begin{aligned} &-\int_{\Omega}u_t\int_{0}^{t}b'(t-s)\big(u(t)-u(s)\big)dsdx\le \delta\|u_t\|^2_2+\frac{c}{\delta}(-b^{\prime}o \nabla u)(t). \end{aligned} \end{equation} | (4.20) |
Next, for almost every x\in \Omega fixed, we have
\begin{equation} \begin{aligned} &\int_{0}^{t}b(t-s)\vert u(t)-u(s)\vert ds\le \left(\int_{0}^{t}b(s)ds\right)^{\frac{{\gamma}(x)-1}{{\gamma}(x)}}\left(\int_{0}^{t}b(t-s)\vert u(t)-u(s)\vert^{{\gamma}(x)}ds\right)^{\frac{1}{{\gamma}(x)}}\\ & \quad \le (1-\bar{b})^{\frac{{\gamma}(x)-1}{{\gamma}(x)}}\left(\int_{0}^{t}b(t-s)\vert u(t)-u(s)\vert^{{\gamma}(x)}ds\right)^{\frac{1}{{\gamma}(x)}}. \end{aligned} \end{equation} | (4.21) |
Therefore, for almost every x\in \Omega, we have
\begin{equation} \bigg \vert \int_{0}^{t}b(t-s)\vert u(t)-u(s)\vert ds \bigg \vert^{{\gamma}(x)}\le (1-\bar{b})^{{\gamma}_1-1}\int_{0}^{t}b(t-s)\vert u(t)-u(s)\vert^{{\gamma}(x)} ds. \end{equation} | (4.22) |
By using Young's, Hölder's and Poincaré's inequalities and Lemma 4.2, we get
\begin{equation} \begin{aligned} &\int_{\Omega}|u_t|^{{\gamma}(x)-2}u_t\int_{0}^{t}b(t-s)\big(u(t)-u(s)\big)dsdx\\ &\le \delta\int_{\Omega}\bigg|\int_{0}^{t}b(t-s)\big(u(t)-u(s)\big)ds\bigg|^{{\gamma}(x)}dx+\int_{\Omega}{c_\delta}(x)|u_t|^{{\gamma}(x)}dx\\ &\le \delta \Big(1-\bar{b}\Big)^{{\gamma}_1-1} \int_{\Omega} \int_{0}^{t}b(t-s)|(u(t)-u(s)|^{{\gamma}(x)} dsdx+ \int_{\Omega}{c_\delta}(x)|u_t|^{{\gamma}(x)}dx, \end{aligned} \end{equation} | (4.23) |
where
c_{\delta}(x) = \delta ^{1-{\gamma}(x)}({\gamma}(x))^{-{\gamma}(x)} ({\gamma}(x)-1)^{{\gamma}(x)-1}. |
Similarly, we have
\begin{equation} \begin{aligned} &\int_{\Omega} \int_{0}^{t}b(t-s)|(u(t)-u(s)|^{{\gamma}(x)} dsdx\\ &\le \int_{\Omega_+}\int_{0}^{t}b(t-s)|(u(t)-u(s)|^{{\gamma}_2} dsdx+\int_{\Omega_-}\int_{0}^{t}b(t-s)|(u(t)-u(s)|^{{\gamma}_1} dsdx\\ &\le \int_{0}^{t}b(t-s)\vert \vert (u(t)-u(s)\vert \vert_{{\gamma}_2}^{{\gamma}_2} ds+\int_{0}^{t}b(t-s)\vert \vert (u(t)-u(s)\vert \vert_{{\gamma}_1}^{{\gamma}_1} ds\\ &\le \left[c_e^{{\gamma}_2}\left(\frac{4\pi}{2\pi\bar{b}-{\alpha} d^2}E(0)\right)^{\frac{{\gamma}_2-2}{2}}+c_e^{{\gamma}_1}\left(\frac{4\pi}{2\pi\bar{b}-{\alpha} d^2}E(0)\right)^{\frac{{\gamma}_1-2}{2}}\right]\int_{0}^{t}b(t-s)\vert \vert (u(t)-u(s)\vert \vert_{2}^{2} ds. \end{aligned} \end{equation} | (4.24) |
Therefore,
\begin{equation} \begin{aligned} &\int_{\Omega}|u_t|^{{\gamma}(x)-2}u_t\int_{0}^{t}b(t-s)\big(u(t)-u(s)\big)dsdx\le c \delta \Big(1-\bar{b}\Big)^{\gamma_1-1} (b\circ \nabla u)(t)\\ & \quad +\int_{\Omega}{c_\delta}(x)|u_t|^{{\gamma}(x)}dx, \end{aligned} \end{equation} | (4.25) |
where c = \left[c_e^{{\gamma}_2}\left(\frac{4\pi}{2\pi\bar{b}-{\alpha} d^2}E(0)\right)^{\frac{{\gamma}_2-2}{2}}+c_e^{{\gamma}_1}\left(\frac{4\pi}{2\pi\bar{b}-{\alpha} d^2}E(0)\right)^{\frac{{\gamma}_1-2}{2}}\right].
For the last term in (4.17), the use of (2.4), Young's, Cauchy-Schwarz' and Poincaré's inequalities, the embedding theorem and Lemma 4.2 leads to, for any \delta > 0 ,
\begin{equation*} \begin{aligned} &\int_{\Omega}u\ln{\vert u\vert^{\alpha}}\int_{0}^{t}b(t-s)(u(t)-u(s))dsdx \le \\ & {\alpha}\int_{\Omega}\left(u^2 +{\beta}_{\epsilon}\vert u\vert^{1- {\epsilon}}\right) \left\vert\int_{0}^{t}b(t-s)(u(t)-u(s))dsdx\right\vert\\ &\le c\int_{\Omega}\vert u\vert^2\left\vert\int_{0}^{t}b(t-s)(u(t)-u(s))ds\right\vert dx\\& \quad +\delta \int_{\Omega} u^2 dx +c_{\epsilon, \delta}\int_{\Omega}\left\vert\int_{0}^{t}b(t-s)(u(t)-u(s))ds\right\vert^{\frac{2}{1+\epsilon}} dx\\ &\le c\delta {\vert\vert {\nabla u} \vert\vert }_{2}^{2} +\frac{c}{\delta} \int_{\Omega}\left\vert\int_{0}^{t}b(t-s)(u(t)-u(s))ds \right\vert^{2} dx\\& \quad +c_{\epsilon, \delta} \int_{\Omega}\left\vert\int_{0}^{t}b(t-s)(u(t)-u(s))ds\right\vert^{\frac{2}{1+\epsilon}} dx\\ &\le c \delta{\vert\vert {\nabla u} \vert\vert }_{2}^{2} +\frac{c}{\delta}(bo\nabla u)(t)+c_{\epsilon, \delta}(bo\nabla u)^{\frac{1}{1+\epsilon}}(t). \end{aligned} \end{equation*} |
Combining the above estimates with (4.17), we obtain (4.15).
For the proof of (4.16), we re-estimate the fifth term in (4.17) as follows:
\begin{equation} \begin{aligned} &\int_{\Omega}|u_t|^{{\gamma}(x)-2}u_t\int_{0}^{t}b(t-s)\big(u(t)-u(s)\big)dsdx\\ &\le \delta \int_{\Omega}\bigg|\int_{0}^{t}b(t-s)\big(u(t)-u(s)\big)ds\bigg|^{2}dx+\frac{c}{\delta}\int_{\Omega} |u_t|^{2{\gamma}(x)-2}dx\\ &\le \delta (1-\bar{b}) (b \circ u)(t)+ \frac{c}{\delta} \int_{\Omega}|u_t|^{2{\gamma}(x)-2}dx\\ &\le c\delta (b \circ \nabla u)(t)+ \frac{c}{\delta} \int_{\Omega_1}|u_t|^{2{\gamma}(x)-2}dx +\frac{c}{\delta} \int_{\Omega_2}|u_t|^{2{\gamma}(x)-2}dx \\ &\le c\delta (b \circ \nabla u)(t)+\frac{c}{\delta}\bigg(\int_{\Omega}|u_t|^{{\gamma}(x)}dx + \bigg(\int_{\Omega}|u_t|^{{\gamma}(x)}dx\bigg)^{{\gamma}_1-1}\bigg). \end{aligned} \end{equation} | (4.26) |
Then (4.16) is established.
Lemma 4.6. Given t_0 > 0. Assume that (A1) - (A3) and (3.5) hold. Then,
L(t): = N_1 E(t) + N_2 I_1(t) + I_2(t) |
satisfies, for a suitable choice of N_1, \, N_2 > 0 and for some positive constants \lambda_0 and c , the estimates, for any \, t \geq t_0 ,
\begin{equation} L^{\prime}(t) \le -\lambda_0 E(t)+c(bo\nabla u)(t) +c_{\epsilon}(bo\nabla u)^{\frac{1}{1+\epsilon}}(t), \mathit{\text{for}}\gamma_1 \geq 2, \end{equation} | (4.27) |
and
\begin{equation} \begin{aligned} L'(t) \leq - c E(t) +c( b \circ \nabla u)(t) +c_{\epsilon}(bo\nabla u)^{\frac{1}{1+\epsilon}}(t)+c \bigg(-E'(t)\bigg)^{\gamma_1-1}, \mathit{\text{for}}1 < \gamma_1 < 2. \end{aligned} \end{equation} | (4.28) |
Proof. Since b is positive and b(0) > 0 then, for any t_0 > 0 , we have
\begin{equation*} \int_{0}^{t}b(s)ds \ge \int_{0}^{t_0}b(s)ds = b_0 > 0, \text{ }\forall t \ge t_0. \end{equation*} |
By using (4.1), (4.2) and (4.15), then, for t\ge t_0 and any \lambda_0 > 0 , we have
\begin{equation*} \begin{aligned} &L^{\prime}(t) \le -\lambda_0 E(t)-\left(N_2\delta -\frac{\bar{b}}{2}+\frac{\lambda_0(1-b_0)}{2}\right){\vert \vert\ {\nabla u} \vert\vert}_2^{2}-\left(N_{2}(b_0-\delta)-1-\frac{\lambda_0}{2}\right){\vert\vert{u_{t}}\vert\vert}_{2}^{2}\\ & \quad +c(b o \nabla u)(t)+\left(\frac{1}{2}N_{1} -\frac{4c}{\ell}N_{2}^{2}\right) (b^{\prime} o \nabla u)(t)\\ & \quad +\left(1-\frac{\lambda_0}{2}\right)\int_{\Omega}u^2 \ln{\vert u\vert}^{\alpha} dx+\left(1-\frac{\lambda_0({\alpha}+2)}{4}\right)\|u\|_2^2. \end{aligned} \end{equation*} |
Using the Logarithmic Sobolev inequality, for 0 < \lambda_0 < \frac{1}{2} , we get
\begin{equation*} \begin{aligned} &L^{\prime}(t) \le -\lambda_0 E(t)-\left(N_2\delta -\frac{\bar{b}}{2}+\frac{\lambda_0(1-b_0)}{2}-\left(1-\frac{\lambda_0}{2}\right)\frac{{\alpha} d^2}{2\pi}\right){\vert \vert\ {\nabla u} \vert\vert}_2^{2}\\ & \quad -\left(N_{2}(b_0-\delta)-1-\frac{\lambda_0}{2}\right){\vert\vert{u_{t}}\vert\vert}_{2}^{2}\\ & \quad +c(b o \nabla u)(t)+\left(\frac{1}{2}N_{1} -\frac{4c}{\bar{b}}N_{2}^{2}\right) (b^{\prime} o \nabla u)(t)\\ & \quad -\left(1-\frac{{\alpha}}{2}\left(1-\frac{\lambda_0}{2}\right)\ln{\|u\|_2^2}+{\alpha}(1+\ln{d})\left(1-\frac{\lambda_0}{2}\right)-\frac{\lambda_0({\alpha}+2)}{4}\right)\|u\|_2^2. \end{aligned} \end{equation*} |
At this point, we select \lambda_0 and {\alpha} so small that
1-\frac{{\alpha}}{2}\left(1-\frac{\lambda_0}{2}\right)\ln{\|u\|_2^2}+{\alpha}(1+\ln{d})\left(1-\frac{\lambda_0}{2}\right)-\frac{\lambda_0({\alpha}+2)}{4} > 0. |
Then, we choose N_2 large enough so that:
N_2\delta -\frac{\bar{b}}{2}+\frac{\lambda_0(1-b_0)}{2}-\left(1-\frac{\lambda_0}{2}\right)\frac{{\alpha} d^2}{2\pi} > 0 |
and
N_{2}(b_0-\delta)-1-\frac{\lambda_0}{2} > 0, |
and then N_1 large enough that
N_{1} -\frac{4c}{\bar{b}}N_{2}^{2} > 0. |
Therefore, we arrive at the desired result (4.27). On the other hand, we can choose N_{1} even larger (if needed) so that
\begin{equation} L \sim E. \end{equation} | (4.29) |
In this section, we establish our main decay results. For this purpose, we need the following remarks and lemma.
Remark 5.1. Using (3.6) and (4.1), we get
\begin{equation} \begin{aligned} &(bo\nabla u)(t) = (bo\nabla u)^{\frac{\epsilon}{1+\epsilon}}(t) (bo\nabla u)^{\frac{1}{1+\epsilon}}(t)\\ & \quad \le c (bo\nabla u)^{\frac{1}{1+\epsilon}}(t). \end{aligned} \end{equation} | (5.1) |
Remark 5.2. In the case of B is linear and since a is nonincreasing, we have
\begin{equation} \begin{aligned} &a(t)(b\circ \nabla u)^{\frac{1}{1+\epsilon}}(t) = \left(a^{\epsilon} (t)a (t)(b\circ \nabla u)(t)\right)^{\frac{1}{1+\epsilon}}\\ & \quad \leq\left(a^{\epsilon} (0)a(t)(b\circ \nabla u)(t)\right)^{\frac{1}{1+\epsilon}}\\ & \quad \leq c\left(a(t)(b\circ \nabla u)(t)\right)^{\frac{1}{1+\epsilon}}\\ & \quad \leq c(-E^{\prime }(t))^{\frac{1}{1+\epsilon}}. \end{aligned} \end{equation} | (5.2) |
Lemma 5.3. If (A1) - (A2) are satisfied, then we have the following estimate
\begin{equation} (bo\nabla u)(t)\le \frac{t}{\varepsilon_0} B^{-1}\left(\frac{\varepsilon_0\psi(t)}{ta(t)}\right), \quad \forall t > 0, \end{equation} | (5.3) |
where \varepsilon_0 is small enough and the functional \psi is defined by
\begin{equation} \psi(t): = (-b^{\prime}o\nabla u)(t)\le -c E^{\prime}(t), \end{equation} | (5.4) |
Proof. To establish (5.3), let us define the following functional
\begin{equation} \Lambda (t): = \frac{\varepsilon_0}{t}\int_{0}^{t}\vert\vert \nabla u(t)-\nabla u(t-s)\vert\vert_2^{2}ds, \quad \forall t > 0. \end{equation} | (5.5) |
Then, using (3.1), (4.1) and the dentition of \Lambda(t) , we have
\begin{equation} \begin{aligned} &\Lambda (t)\leq \frac{2\varepsilon_0}{t}\bigg(\int_{0}^{t}\vert\vert \nabla u(t)\vert\vert_2^2+ \int_{0}^{t}\vert\vert \nabla u(t-s)\vert\vert_2^{2}ds\bigg).\\ & \quad \le \frac{4\varepsilon_0}{\bar{b} t}\bigg(\int_{0}^{t} \big(E(t)+E(t-s)\big)ds\bigg)\\ & \quad \le \frac{8\varepsilon_0}{\bar{b} t} \int_{0}^{t} E(s) ds\\ & \quad \le \frac{8\varepsilon_0}{\bar{b} t} \int_{0}^{t} E(0) ds = \frac{8\varepsilon_0}{\bar{b}}E(0) < + \infty. \end{aligned} \end{equation} | (5.6) |
Thus, \varepsilon_0 can be chosen so small so that, for all t > 0 ,
\begin{equation} \Lambda (t) < 1. \end{equation} | (5.7) |
Without loss of the generality, for all t > 0 , we assume that \Lambda(t) > 0 , otherwise we get an exponential decay from (4.27). The use of Jensen's inequality and using (5.4), (2.10) and (5.7) gives
\begin{equation} \begin{aligned} &\psi(t) = \frac{1}{\varepsilon_0\Lambda(t)}\int_{0}^{t}\Lambda (t)(-b'(s))\int_{\Omega}{\varepsilon_0\vert \nabla u(t)-\nabla u(t-s)\vert}^{2}dxds\\ & \quad \ge \frac{1}{\varepsilon_0\Lambda(t)}\int_{0}^{t}\Lambda (t)a(s) B(b(s))\int_{\Omega}{\varepsilon_0\vert \nabla u(t)-\nabla u(t-s)\vert}^{2}dxds\\ & \quad \ge \frac{a(t)}{\varepsilon_0\Lambda(t)}\int_{0}^{t}B(\Lambda (t)b(s))\int_{\Omega}{\varepsilon_0\vert \nabla u(t)-\nabla u(t-s)\vert}^{2}dxds\\ & \quad \ge \frac{ta(t)}{\varepsilon_0}B\biggl(\frac{\varepsilon_0}{t}\int_{0}^{t}b(s)\int_{\Omega}{\vert \nabla u(t)-\nabla u(t-s)\vert}^{2}dxds\biggr), \end{aligned} \end{equation} | (5.8) |
hence (5.3) is established.
Theorem 5.4 (The case: \bf \gamma_1\geq 2 ). Assume that (A1) - (A3) and (3.5) hold. Let (u_0, u_1)\in H^1_0(\Omega)\times L^2(\Omega). Then, there exist positive constants c , t_0 and t_1 such that the solution of (1.1) satisfies,
\begin{equation} E(t)\le c\left(1+\int_{t_0}^{t}a^{1+\epsilon}(s)ds\right)^{\frac{-1}{\epsilon}}, \forall t \geq t_0, \quad {{if ~~ B ~~ is ~~linear}} \end{equation} | (5.9) |
and
\begin{equation} E(t) \leq c t^{\frac{1}{1+\epsilon}} {\mathcal{B}_2}^{-1} \left( \frac{c}{t^{\frac{1}{1+\epsilon}}\int_{t_1}^{t}a(s) ds } \right), {{}}\forall t \geq t_1, \quad {{if ~~ B ~~ is ~~nonlinear, }} \end{equation} | (5.10) |
where {\mathcal{B}_2}(s) = s \mathcal{B}^{\prime}(\varepsilon_{1}s) and \mathcal{B}(t) = \left(\left[B^{-1}\right]^{\frac{1}{1+\epsilon}}\right)^{-1}(t) .
Proof. Case 1: B is linear
We multiply (4.27) by a(t) and use (5.1) and (5.2) to get
\begin{equation} \begin{aligned} &a(t) L^{\prime}(t) \le -\lambda_0 a(t)E(t)+c \left( -E^{\prime}(t) \right)^{\frac{1}{1+\epsilon}}, \quad \forall t\ge t_0. \end{aligned} \end{equation} | (5.11) |
Multiply (5.11) by a^{\epsilon}(t) E^{\epsilon}(t) , and recall that a^{\prime} \le 0, to obtain
\begin{equation*} a^{\epsilon +1}(t)E^{\epsilon}(t)L^{\prime}(t) \le -\lambda_0 a^{\epsilon +1}(t)E^{\epsilon+1}(t)+c\left(a E\right)^{\epsilon}(t)\left(-E^{\prime}(t) \right)^{\frac{1}{\epsilon+1}} , \quad \forall t\ge t_0. \end{equation*} |
Use of Young's inequality, with q = \epsilon+1 and q^{*} = \frac{\epsilon+1}{\epsilon} , gives, for any \varepsilon^{\prime} > 0 ,
\begin{equation*} \begin{aligned} &a^{\epsilon +1}(t)E^{\epsilon}(t)L^{\prime}(t) \le -\lambda_0 a^{\epsilon +1}(t)E^{\epsilon+1}(t) +c\left(\varepsilon^{\prime} a^{\epsilon+1}(t)E^{\epsilon+1}-c_{\varepsilon^{\prime}}E^{\prime}(t)\right)\\ & \quad = -(\lambda_0 -\varepsilon^{\prime} c)a^{\epsilon +1}(t)E^{\epsilon+1}-cE^{\prime}(t), \quad \forall t\ge t_0. \end{aligned} \end{equation*} |
We then choose 0 < \varepsilon^{\prime} < \frac{\lambda_0 }{c} and use that a^{\prime} \le 0 and E^{\prime} \le 0 , to get, for c_1 = \lambda_0 -\varepsilon^{\prime} c ,
\begin{equation*} \left( a^{\epsilon +1} E^{\epsilon}L \right)^{\prime}(t)\le a^{\epsilon+1}(t) E^{\epsilon}(t) L_1^{\prime}(t) \le -c_1 a^{\epsilon+1}(t) E^{\epsilon+1}(t) -c E^{\prime}(t), \quad \forall t\ge t_0, \end{equation*} |
which implies
\begin{equation*} \left( a^{\epsilon+1}E^{\epsilon} L+cE\right)^{\prime}(t) \le -c_1 a^{\epsilon+1}(t) E^{\epsilon+1}(t), \quad \forall t\ge t_0, \end{equation*} |
where L_1 = a^{\epsilon +1}E^{\epsilon}L +cE . Then L_1\sim E (thanks to (4.29)) and
\begin{equation*} L_1^{\prime}(t) \le -c a^{\epsilon+1}(t) L_1^{\epsilon+1}(t), \text{ }\forall t \ge t_0. \end{equation*} |
Integrating over (t_0, t) and using the fact that L_1 \sim E , we obtain (5.9).
Case 2: B is non-linear.
Using (4.27), (5.1) and (5.3), we obtain, \forall t\ge t_0 ,
\begin{equation} L^{\prime}(t)\le -\lambda_0 E(t)+ct^{\frac{1}{1+\epsilon}}\left[B^{-1}\left(\frac{\varepsilon_0\psi(t)}{ta(t)}\right)\right]^{\frac{1}{1+\epsilon}}. \end{equation} | (5.12) |
Combining the strictly increasing property of \overline{B} and the fact that \frac{1}{t} < 1 whenever t > 1 , we obtain
\begin{equation} B^{-1}\left(\frac{\varepsilon_0\psi(t)}{ta(t)}\right)\le B^{-1}\left(\frac{\varepsilon_0\psi(t)}{t^{\frac{1}{1+\epsilon}}a(t)}\right) \end{equation} | (5.13) |
then, (5.12) becomes, for \forall t \ge t_1 = \max{\{t_0, 1\}},
\begin{equation} \begin{aligned} &L^{\prime}(t)\le -\lambda_0 E(t)+ct^{\frac{1}{1+\epsilon}}\left[B^{-1}\left(\frac{\varepsilon_0\psi(t)}{t^{\frac{1}{1+\epsilon}}a(t)}\right)\right]^{\frac{1}{1+\epsilon}}. \end{aligned} \end{equation} | (5.14) |
Set
\begin{equation} \mathcal{B}(t) = \left(\left[B^{-1}\right]^{\frac{1}{1+\epsilon}}\right)^{-1}(t), \quad \chi(t) = \frac{\varepsilon_0\psi(t)}{t^{\frac{1}{1+\epsilon}}a(t)} \end{equation} | (5.15) |
Using the facts that \mathcal{B}^{\prime} > 0 and \mathcal{B}^{\prime\prime} > 0 on (o, r] , (5.14) reduces to
\begin{equation} L^{\prime}(t)\le -\lambda_0 E(t)+ct^{\frac{1}{1+\epsilon}} \mathcal{B}^{-1}(\chi(t)), \quad \forall t\ge t_1 \end{equation} | (5.16) |
Now, for \varepsilon_{1} < r and using (5.16) and the fact that E^{\prime}\le 0 , \mathcal{B}^{\prime} > 0, \mathcal{B}^{\prime\prime} > 0 on (0, r], we find that the functional L_{2}, defined by
L_{2}(t): = \mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)L(t), |
satisfies, for some c_{1}, c_{2} > 0.
\begin{equation} c_{1} L_{2}(t)\le E(t)\le c_{2}L_{2}(t) \end{equation} | (5.17) |
and, for all t\ge t_1 ,
\begin{equation} \begin{aligned} &L_{2}^{\prime}(t)\le -\lambda_0 E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)+ct^{\frac{1}{1+\epsilon}}\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)\mathcal{B}^{-1}(\chi(t)). \end{aligned} \end{equation} | (5.18) |
So, using (2.1) and (2.2) with \alpha_1 = \mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right) and \alpha_2 = \mathcal{B}^{-1}(\chi(t)), we arrive at
\begin{equation} \begin{aligned} &L_{2}^{\prime}(t)\le -\lambda_0 E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)+c t^{\frac{1}{1+\epsilon_0}}\mathcal{B}^{*}\left(G^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)\right)\\ & \quad +c t^{\frac{1}{1+\epsilon}}\chi(t)\\ & \quad \le -\lambda_0 E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon_0}}} \cdot \frac{E(t)}{E(0)}\right)+c\varepsilon_1\frac{E(t)}{E(0)}\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon_0}}} \cdot\frac{E(t)}{E(0)}\right)\\ & \quad +ct^{\frac{1}{1+\epsilon_0}}\chi(t). \end{aligned} \end{equation} | (5.19) |
Then, multiplying (5.19) by a(t) and using (5.4), (5.15), we get
\begin{equation*} \begin{aligned} &a(t)L_{2}^{\prime}(t)\le -\lambda_0 a(t) E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon_0}}} \cdot \frac{E(t)}{E(0)}\right)+c \varepsilon_{1} a(t) \frac{E(t)}{E(0)}\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon_0}}} \cdot \frac{E(t)}{E(0)}\right)\\ & \quad -cE^{\prime}(t), \forall t\ge t_1. \end{aligned} \end{equation*} |
Using the non-increasing property of a , we obtain, for all t \ge t_1,
\begin{equation*} \begin{aligned} &(aL_{2}+cE)^{\prime}(t)\le -\lambda_0 a(t) E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)\\ & \quad +c \varepsilon_1 a(t) \frac{E(t)}{E(0)}\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right) \end{aligned} \end{equation*} |
Therefore, by setting L_{3}: = a L_{2}+cE \sim E , we conclude that
\begin{equation*} \begin{aligned} &L_{3}^{\prime}(t)\le -\lambda_0 a(t) E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)+c \varepsilon_1 a(t) \cdot \frac{E(t)}{E(0)}\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right). \end{aligned} \end{equation*} |
This gives, for a suitable choice of \varepsilon_1 ,
\begin{equation*} \begin{aligned} &L_{3}^{\prime}(t)\le -c a(t) \left(\frac{E(t)}{E(0)}\right)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right), \quad \forall t\ge t_1 \end{aligned} \end{equation*} |
or
\begin{equation} c\left(\frac{E(t)}{E(0)}\right)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)a(t)\leq - L_{3}^{\prime}(t), \quad \forall t\ge t_1 \end{equation} | (5.20) |
An integration of (5.20) yields
\begin{equation} \int_{t_1}^{t} c \left( \frac{E(s)}{E(0)} \right)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{s^{\frac{1}{1+\epsilon}}} \cdot \frac{E(s)}{E(0)}\right)a(s) ds \leq - \int_{t_1}^{t} L_{3}^{\prime}(s)ds\le L_3(t_1). \end{equation} | (5.21) |
Using the facts that \mathcal{B}', \mathcal{B}'' > 0 and the non-increasing property of E , we deduce that the map t \mapsto E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right) is non-increasing and consequently, we have
\begin{equation} \begin{aligned} & c \left( \frac{E(t)}{E(0)} \right)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon_0}}} \cdot \frac{E(t)}{E(0)}\right)\int_{t_1}^{t} a(s) ds \\ & \quad \leq \int_{t_1}^{t} c\left( \frac{E(s)}{E(0)} \right)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{s^{\frac{1}{1+\epsilon}}} \cdot \frac{E(s)}{E(0)}\right)a(s) ds\le L_3(t_1), \quad \forall t\ge t_1 \end{aligned} \end{equation} | (5.22) |
Multiplying each side of (5.22) by \frac{1}{t^{\frac{1}{1+\epsilon}}} , we have
\begin{equation} \left(\frac{1}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right) \mathcal{B}^{\prime}\left(\frac{\varepsilon_{1}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)\int_{t_1}^{t} a(s) ds \leq \frac{c}{t^{\frac{1}{1+\epsilon}}}, \quad \forall t\ge t_1 \end{equation} | (5.23) |
Next, we set {\mathcal{B}_2}(s) = s \mathcal{B}^{\prime}(\varepsilon_{1}s) which is strictly increasing, and consequently we obtain,
\begin{equation} \mathcal{B}_{2} \left(\frac{1}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right) \int_{t_1}^{t} a(s) ds \leq \frac{c}{t^{\frac{1}{1+\epsilon}}}, \quad \forall t\ge t_1 \end{equation} | (5.24) |
Finally, we infer
\begin{equation} E(t) \leq c t^{\frac{1}{1+\epsilon}} {\mathcal{B}_{2}}^{-1} \left( \frac{c}{t^{\frac{1}{1+\epsilon}}\int_{t_1}^{t}a(s) ds } \right). \end{equation} | (5.25) |
This finishes the proof.
The following examples illustrate the results of Theorem 5.4:
Example 1. Let b(t) = c_1 e^{-c_2(1+t)}, where c_2 > 0 and c_1 > 0 is small enough so that (A1) holds. Then b^{\prime}(t) = -a(t) B(b(t)) where B(t) = t and a(t) = c . Therefore, we can use (5.9) to deduce
\begin{equation} E(t) \leq \frac{c}{(1+t)^\frac{1}{\epsilon}}. \end{equation} | (5.26) |
Example 2. Let b(t) = \frac{c_1}{(1+t)^q} , where q > 1+\epsilon and c_1 is chosen so that hypothesis (A1) is satisfied. Then
b^{\prime}(t) = -aB(b(t)), \quad {with} \quad B(s) = s^{\frac{q+1}{q}}, |
where a is a fixed constant. Then, (5.10) gives,
\begin{equation} E(t)\leq \frac{c}{t^{\frac{q-1-\epsilon}{(1+\epsilon)^2 (q+1)}}}. \end{equation} | (5.27) |
To establish the stability result in the case \bf 1 < \gamma_1 < 2 , we need the following lemma:
Lemma 5.5. The energy functional E(t) satisfies the following estimate:
\begin{equation} \bigg[-E'(t)\bigg]^{\frac{1}{1+\varepsilon}}+\bigg[-E'(t)\bigg]^{\gamma_1-1}\le c \bigg[-E'(t)\bigg]^{\gamma_\varepsilon}, \end{equation} | (5.28) |
where \gamma_{\varepsilon} = \min\{\gamma_1-1, \frac{1}{1+\varepsilon}\} .
Proof. Using (2.5), (3.1), (3.3), (3.6) and Lemma 3.3, we have
\begin{equation*} E(t) = J(t)+\frac{1}{2} \| u_{t} (t)\|_2^2 \geq J(t)\geq \frac{\bar{b}}{2} \| \nabla u (t)\|_2^2 , \end{equation*} |
then, using (4.1),
\begin{equation} \| \nabla u (t)\|_2^2 \leq \frac{2}{\bar{b}} E(t)\leq \frac{2}{\bar{b}} E(0). \end{equation} | (5.29) |
So, from (4.1), (4.7) and using Young's inequality, we get
\begin{equation} \begin{aligned} &\vert E^{\prime}(t)\vert = \frac{1}{2} b(t)\| \nabla u (t)\|_2^2 -\frac{1}{2} (b^{\prime}o\nabla u) (t)-\int_{\Omega}|u_t|^{\gamma(x)}dx\\ & \quad \le \frac{1}{2} b(t)\| \nabla u (t)\|_2^2 -\int_{0}^{t} b^{\prime} (t-s) \left(\| \nabla u (t)\|_2^2 +\| \nabla u (s)\|_2^2\right)ds+c\|\nabla u\|_2^2\\ & \quad \le \frac{2}{l}\left(\frac{1}{2} b(t) +2b(0)-2b(t)+c\right)E(0)\\ & \quad \le cE(0). \end{aligned} \end{equation} | (5.30) |
Setting \gamma_{\varepsilon} = \min\{\gamma_1-1, \frac{1}{1+\varepsilon}\} and using (5.30), we obtain
\begin{equation} \begin{aligned} \bigg[-E'(t)\bigg]^{\frac{1}{1+\varepsilon}}+\bigg[-E'(t)\bigg]^{\gamma_1-1}&\le \bigg[-E'(t)\bigg]^{\gamma_\varepsilon} \bigg[-E'(t)\bigg]^{\frac{1}{1+\varepsilon}-\gamma_\varepsilon}\\ & \quad +\bigg[-E'(t)\bigg]^{\gamma_\varepsilon} \bigg[-E'(t)\bigg]^{\gamma_1-1-\gamma_\varepsilon}\\ &\le \left((cE(0))^{\frac{1}{1+\varepsilon}-\gamma_\varepsilon}+(cE(0))^{\gamma_1-1-\gamma_\varepsilon}\right)\bigg[-E'(t)\bigg]^{\gamma_\varepsilon}, \end{aligned} \end{equation} | (5.31) |
which completes the proof of Lemma 5.5.
Theorem 5.6 (The case: \bf 1 < \gamma_1 < 2 ). Assume that (A1) - (A3) and (3.5) hold. Let (u_0, u_1)\in H^1_0(\Omega)\times L^2(\Omega). Then, there exist positive constants C , k_2, \, k_3 such that the energy functional associated to problem (1.1) satisfies
\begin{equation} E(t)\le C\left(\int_{t_0}^{t}a^{\frac{1}{\gamma_{\varepsilon}}}(s)ds\right)^{\frac{\gamma_{\varepsilon}-1}{\gamma_{\varepsilon}}}, \quad \forall t\ge t_0, {{if}}~~B ~~{{is ~~ linear}}, \end{equation} | (5.32) |
and, if B is nonlinear, we have
\begin{equation} E(t) \leq k_3 t^{\frac{1}{1+\epsilon}} {\mathcal{B}_{3}}^{-1} \left( \frac{k_2}{t^{\frac{1}{1+\epsilon}}\int_{t_1}^{t}a(s) ds } \right), \qquad\forall\, t > t_1, \end{equation} | (5.33) |
where \gamma_{\varepsilon} = \min\{\gamma_1-1, \frac{1}{1+\varepsilon}\} , {\mathcal{B}_3}(s) = s \mathcal{B}^{\prime}(\varepsilon_{3}s) and \mathcal{B}(s) = \left(\left[B^{-1}\right]^{\frac{1}{1+\epsilon}}\right)^{-1}(s) .
Proof. Case B is linear.
Multiplying (4.28) by a(t) and combining (2.6), (3.1), (5.2) and (5.28), we obtain, for some m_1 > 0 ,
\begin{equation} \begin{aligned} &a(t)L'(t) \leq -m_1a(t)E(t) + c\bigg[-E'(t)\bigg]^{\frac{1}{1+\varepsilon}}+ca(t) \bigg[-E'(t)\bigg]^{\gamma_1-1}\\ & \quad \le -m_1a(t)E(t) c+c \bigg[-E'(t)\bigg]^{\gamma_{\varepsilon}}, \quad \forall t > t_0. \end{aligned} \end{equation} | (5.34) |
Let \mathcal{L}: = aL+cE\sim E , multiply both sides of the above estimate by a^q E^q , with q = \frac{1}{\gamma_{\varepsilon}}-1 and apply Young's inequality, to get,
\begin{equation*} a^qE^q(t) \mathcal{L}^{\prime}(t)\le -(m_1-\epsilon_2)a^{q+1}(t)E^{q+1}(t)-cE^{\prime}(t), \quad \forall t\ge t_0. \end{equation*} |
Set \mathcal{L}_1: = a^qE^q \mathcal{L}+cE \sim E , take \epsilon_2 small enough and use the non-increasing property of E we obtain, for some m_2, m_3 > 0,
\begin{equation*} \mathcal{L}_1^{\prime}(t)\le -m_2 a^{q+1}(t)E^{q+1}(t)\le -m_3 a^{q+1}(t) \mathcal{L}_2^{q+1}(t), \quad \forall t\ge t_0. \end{equation*} |
A simple integration over (t_0, t) and using the equivalence L \sim E, we obtain,
\begin{equation*} E(t)\le C\left(\int_{t_0}^{t}a^{\frac{1}{\gamma_{\varepsilon}}}(s)ds\right)^{\frac{\gamma_{\varepsilon}-1}{\gamma_{\varepsilon}}}, \quad \forall t\ge t_0. \end{equation*} |
Case B is nonlinear.
Using (4.27), (5.1) and (5.3), we obtain, \forall t\ge t_0 ,
\begin{equation} L^{\prime}(t)\le - \lambda_0 E(t)+ct^{\frac{1}{1+\epsilon}}\left[B^{-1}\left(\frac{\varepsilon_0I(t)}{ta(t)}\right)\right]^{\frac{1}{1+\epsilon}}+c\bigg[-E'(t)\bigg]^{\gamma_1-1}. \end{equation} | (5.35) |
Using (5.13)-(5.15), (5.35) reduces to
\begin{equation} L^{\prime}(t)\le -\lambda_0 E(t)+ct^{\frac{1}{1+\epsilon}} \mathcal{B}^{-1}(\chi(t))+c\bigg[-E'(t)\bigg]^{\gamma_1-1}, \quad \forall t\ge t_1 \end{equation} | (5.36) |
Now, for \varepsilon_{3} < r and using (5.16) and the fact that E^{\prime}\le 0 , H^{\prime} > 0, H^{\prime\prime} > 0 on (0, r], we find that the functional \mathcal{F}, defined by
\mathcal{F}(t): = \mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)L(t), |
satisfies
\begin{equation} \mathcal{F}\sim E \end{equation} | (5.37) |
and, for all t\ge t_1 ,
\begin{equation} \begin{aligned} &\mathcal{F}^{\prime}(t)\le -\lambda_0 E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)+ct^{\frac{1}{1+\epsilon}}\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)\mathcal{B}^{-1}(\chi(t))\\ &+c\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)\bigg[-E'(t)\bigg]^{\gamma_1-1}. \end{aligned} \end{equation} | (5.38) |
After applying with the generalized Young inequality
we arrive at
\begin{equation} \begin{aligned} &\mathcal{F}^{\prime}(t)\le -\lambda_0 E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)+c t^{\frac{1}{1+\epsilon_0}}\mathcal{B}^{*}\left(\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)\right)\\ & \quad +c\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)\bigg[-E'(t)\bigg]^{\gamma_1-1}+c t^{\frac{1}{1+\epsilon}}\chi(t)\\ & \quad \le -\lambda_0 E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)+c\varepsilon_1\frac{E(t)}{E(0)}\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)\\ & \quad +ct^{\frac{1}{1+\epsilon}}\chi(t)-c_{\varepsilon}E^{\prime}+\varepsilon \left[\mathcal{B}^{\prime}\right]^{\frac{1}{2-\gamma_1}}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right). \end{aligned} \end{equation} | (5.39) |
Using the facts that \frac{1}{2-\gamma_1} > 1 and \mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right) is bounded, we have
\begin{equation} \left[\mathcal{B}^{\prime}\right]^{\frac{1}{2-\gamma_1}}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right)\le c \mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot\frac{E(t)}{E(0)}\right). \end{equation} | (5.40) |
Then, multiplying (5.39) by a(t) , using (5.15), (5.40) and the fact that E(t) > 0 , we get
\begin{equation*} \begin{aligned} &a(t)\mathcal{F}_1^{\prime}(t)\le -\lambda_0 a(t) E(t) \mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)+c \varepsilon_{5} a(t) \cdot \frac{E(t)}{E(0)}\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)\\ & \quad +c \varepsilon a(t)E(t) \mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)-cE^{\prime}(t), \forall t\ge t_1. \end{aligned} \end{equation*} |
where \mathcal{F}_1 = \mathcal{F}+c_{\varepsilon}E^{\prime} . Using the non-increasing property of a , we obtain, for all t \ge t_1,
\begin{equation*} \begin{aligned} &(a \mathcal{F}_{1}+cE)^{\prime}(t)\le -\lambda_0 a(t) E(t)H^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)+c \varepsilon_5a(t) \frac{E(t)}{E(0)}\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)\\ & \quad +c \varepsilon a(t)E(t) \mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right). \end{aligned} \end{equation*} |
Therefore, by setting \mathcal{F}_{2}: = a \mathcal{F}_{1}+cE \sim E , we conclude that
\begin{equation*} \begin{aligned} &\mathcal{F}_{2}^{\prime}(t)\le -\lambda_0 a(t) E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)+c \varepsilon_3 a(t) \cdot \frac{E(t)}{E(0)}\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)\\ & \quad +c \varepsilon a(t)E(t) \mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right). \end{aligned} \end{equation*} |
This gives, for a suitable choice of \varepsilon_3 and \varepsilon ,
\begin{equation*} \begin{aligned} &\mathcal{F}_{2}^{\prime}(t)\le -k a(t) \left(\frac{E(t)}{E(0)}\right)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right), \quad \forall t\ge t_1 \end{aligned} \end{equation*} |
or
\begin{equation} k\left(\frac{E(t)}{E(0)}\right)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon_0}}} \cdot \frac{E(t)}{E(0)}\right)a(t)\leq - \mathcal{F}_{2}^{\prime}(t), \quad \forall t\ge t_1 \end{equation} | (5.41) |
An integration of (5.41) yields
\begin{equation} \int_{t_1}^{t} k \left( \frac{E(s)}{E(0)} \right)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{s^{\frac{1}{1+\epsilon}}} \cdot \frac{E(s)}{E(0)}\right)a(s) ds \leq - \int_{t_1}^{t} \mathcal{F}_{2}^{\prime}(s)ds\le \mathcal{F}_{2}(t_1). \end{equation} | (5.42) |
Using the facts that \mathcal{B}', \mathcal{B}'' > 0 and the non-increasing property of E , we deduce that the map t \mapsto E(t)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right) is non-increasing and consequently, we have
\begin{equation} \begin{aligned} & k \left( \frac{E(t)}{E(0)} \right)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right)\int_{t_1}^{t} a(s) ds \\ & \quad \leq \int_{t_1}^{t} k \left( \frac{E(s)}{E(0)} \right)\mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{s^{\frac{1}{1+\epsilon}}} \cdot \frac{E(s)}{E(0)}\right)a(s) ds\le \mathcal{F}_{2}(t_1), \quad \forall t\ge t_1 \end{aligned} \end{equation} | (5.43) |
Multiplying each side of (5.43) by \frac{1}{t^{\frac{1}{1+\epsilon}}} , we have
\begin{equation} \left(\frac{k}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right) \mathcal{B}^{\prime}\left(\frac{\varepsilon_{3}}{t^{\frac{1}{1+\epsilon_0}}} \cdot \frac{E(t)}{E(0)}\right)\int_{t_1}^{t} a(s) ds \leq \frac{k_2}{t^{\frac{1}{1+\epsilon}}}, \quad \forall t\ge t_1 \end{equation} | (5.44) |
Using the fact that {\mathcal{B}_3}(s) = s \mathcal{B}^{\prime}(\varepsilon_{3}s) is strictly increasing, we obtain
\begin{equation} k \mathcal{B}_{3} \left(\frac{1}{t^{\frac{1}{1+\epsilon}}} \cdot \frac{E(t)}{E(0)}\right) \int_{t_1}^{t} a(s) ds \leq \frac{k_2}{t^{\frac{1}{1+\epsilon}}}, \quad \forall t\ge t_1 \end{equation} | (5.45) |
Finally, we infer
\begin{equation} E(t) \leq k_3 t^{\frac{1}{1+\epsilon}} {\mathcal{B}_{3}}^{-1} \left( \frac{k_2}{t^{\frac{1}{1+\epsilon}}\int_{t_1}^{t}a(s) ds } \right). \end{equation} | (5.46) |
This finishes the proof.
The following examples illustrate the results of Theorem 5.6:
Example 3. Let b(t) = c_1 e^{-c_2(1+t)}, where c_2 > 0 and c_1 > 0 is small enough so that (A1) holds. Then b^{\prime}(t) = -a(t) B(b(t)) where B(t) = t and a(t) = c . Therefore, (5.32) gives for t > t_0 and \epsilon \in (0, 1) ,
\begin{equation} E(t) \leq c {(t-t_0)^\frac{\gamma_\epsilon-1}{\gamma_\epsilon}}. \end{equation} | (5.47) |
Example 4. Let b(t) = \frac{c_1}{(1+t)^q} , where q > 1+\epsilon and c_1 is chosen so that hypothesis (A1) is satisfied. Then
b^{\prime}(t) = -aB(b(t)), \quad {with} \quad B(s) = s^{\frac{q+1}{q}}, |
where a is a fixed constant. Then, (5.33) gives, for t > t_1 and \epsilon \in (0, 1) ,
\begin{equation} E(t)\leq \frac{c}{t^{\frac{q-1-\epsilon}{(1+\epsilon)^2 (q+1)}}}. \end{equation} | (5.48) |
Remark 5.7. The classical power-type nonlinearity term in [33] provides a canonical description for the dynamics analysis of a quasi-wave propagation in a nonlinear process, therefore, the fast cumulative of such nonlinear interactions results in a significant effect to the solution under large spatial and temporal scales. However, the logarithmic nonlinearity in (1.1) only expresses slowly cumulative of nonlinear, thus giving another kind of description for dynamic process. Let us note here that though the logarithmic nonlinearity is somehow weaker than the polynomial nonlinearity, both the existence and stability result are not obtained by straightforward application of the method used for polynomial nonlinearity.
The authors would like to express their profound gratitude to King Fahd University of Petroleum and Minerals (KFUPM)- Interdisciplinary Research Center (IRC) for Construction and Building Materials for their continuous supports. The authors also thank the referee for her/his very careful reading and valuable comments. This work is funded by KFUPM under Project #SB191037.
The authors declare that there is no conflict of interest regarding the publication of this paper.
[1] | R. Christensen, Theory of viscoelasticity: An introduction, Elsevier, 1982. |
[2] | M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differ. Eq., 44 (2002), 1-14. |
[3] |
S. A. Messaoudi, General decay of solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Anal. Theor., 69 (2008), 2589-2598. doi: 10.1016/j.na.2007.08.035
![]() |
[4] |
S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457-1467. doi: 10.1016/j.jmaa.2007.11.048
![]() |
[5] |
F. Alabau-Boussouira, P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Acad Sci. Paris, Ser I, 347 (2009), 867-872. doi: 10.1016/j.crma.2009.05.011
![]() |
[6] |
S. A. Messaoudi, W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16-22. doi: 10.1016/j.aml.2016.11.002
![]() |
[7] | M. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Method. Appl. Sci., 41 (2017), 192-204. |
[8] | S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions: Existence, uniqueness, localization, blow-up, Springer, 2015. |
[9] | L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011. |
[10] | S. Antontsev, Wave equation with p(x, t)-Laplacian and damping term: Existence and blow-up, Differ. Equ. Appl., 3 (2011), 503-525. |
[11] |
S. Antontsev, Wave equation with p(x, t)-Laplacian and damping term: Blow-up of solutions, C. R. Mecanique, 339 (2011), 751-755. doi: 10.1016/j.crme.2011.09.001
![]() |
[12] |
S. Antontsev, J. Ferreira, Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Anal. Theor., 93 (2013), 62-77. doi: 10.1016/j.na.2013.07.019
![]() |
[13] |
B. Guo, W. Gao, Blow-up of solutions to quasilinear hyperbolic equations with p(x, t)-Laplacian and positive initial energy, C. R. Mecanique, 342 (2014), 513-519. doi: 10.1016/j.crme.2014.06.001
![]() |
[14] |
S. A. Messaoudi, J. Al-Smail, A. Talahmeh, Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities, Comput. Math. Appl., 76 (2018), 1863-1875. doi: 10.1016/j.camwa.2018.07.035
![]() |
[15] |
S. A. Messaoudi, A. Talahmeh, On wave equation: Review and recent results, Arab. J. Math., 7 (2018), 113-145. doi: 10.1007/s40065-017-0190-4
![]() |
[16] |
A. Palmieri, H. Takamura, Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation II, Math. Nachr., 291 (2018), 1859-1892. doi: 10.1002/mana.201700144
![]() |
[17] |
A. Palmieri, M. Reissig, Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities, Nonlinear Anal., 187 (2019), 467-492. doi: 10.1016/j.na.2019.06.016
![]() |
[18] |
W. Chen, R. Ikehata, The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case, J. Differ. Equations, 292 (2021), 176-219. doi: 10.1016/j.jde.2021.05.011
![]() |
[19] |
J. Barrow, P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995), 5576-5587. doi: 10.1103/PhysRevD.52.5576
![]() |
[20] |
K. Enqvist, J. McDonald, Q-balls and baryogenesis in the MSSM, Phys. Lett. B, 425 (1998), 309-321. doi: 10.1016/S0370-2693(98)00271-8
![]() |
[21] |
K. Bartkowski, P. Gorka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A Math. Theor., 41 (2008), 355201. doi: 10.1088/1751-8113/41/35/355201
![]() |
[22] | I. Bialynicki-Birula, J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Pol. Sc., 23 (1975), 461-466. |
[23] | P. Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Pol. B, 40 (2009), 59-66. |
[24] |
D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, Stud. Math., 143 (2000), 267-293. doi: 10.4064/sm-143-3-267-293
![]() |
[25] | D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent II, Math. Nachr., 246 (2002), 53-67. |
[26] |
X. Fan, D. Zhao, On the spaces L^{p(x)}(\Omega) and W^{m, p(x)}(\Omega), J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617
![]() |
[27] |
M. Al-Gharabli, A. Guesmia, S. A. Messaoudi, Well-posedness and asymptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity, Appl. Anal., 99 (2020), 50-74. doi: 10.1080/00036811.2018.1484910
![]() |
[28] |
L. Gross, Logarithmic Sobolev inequalities, Am. J. Math., 97 (1975), 1061-1083. doi: 10.2307/2373688
![]() |
[29] |
H. Chen, P. Luo, G. W. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98. doi: 10.1016/j.jmaa.2014.08.030
![]() |
[30] |
F. Belhannache, M. Algharabli, S. A. Messaoudi, Asymptotic stability for a viscoelastic equation with nonlinear damping and very general type of relaxation functions, J. Dyn. Control Syst., 26 (2020), 45-67. doi: 10.1007/s10883-019-9429-z
![]() |
[31] |
M. Al-Gharabli, A. Guesmia, Messaoudi S. A. Messaoudi, Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity, Commun. Pure Appl. Anal., 18 (2019), 159-180. doi: 10.3934/cpaa.2019009
![]() |
[32] | V. Arnold, Mathematical methods of classical mechanics, Springer Science & Business Media, 1989. |
[33] | J. Hassan, S. A. Messaoudi, General decay results for a viscoelastic wave equation with a variable exponent nonlinearity, Asymptotic Anal., 2021, 1-24. |
1. | Khaoula Merzoug, Nouri Boumaza, Billel Gheraibia, 2021, General Decay Result of Solutions for Viscoelastic Wave Equation with Logarithmic Nonlinearity, 978-1-6654-4171-1, 1, 10.1109/ICRAMI52622.2021.9585910 | |
2. | A. M. Al-Mahdi, M. M. Al-Gharabli, I. Kissami, A. Soufyane, M. Zahri, Exponential and polynomial decay results for a swelling porous elastic system with a single nonlinear variable exponent damping: theory and numerics, 2023, 74, 0044-2275, 10.1007/s00033-023-01962-6 | |
3. | Mohammad Kafini, Jamilu Hashim Hassan, Adel M. Al-Mahdi, Jamal H. Al-Smail, Existence and blow up time estimate for a nonlinear Cauchy problem with variable exponents: theory and numerics, 2023, 0020-7160, 1, 10.1080/00207160.2023.2176196 | |
4. | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Energy Decay Estimates of a Timoshenko System with Two Nonlinear Variable Exponent Damping Terms, 2023, 11, 2227-7390, 538, 10.3390/math11030538 | |
5. | Muhammad I. Mustafa, Timoshenko beams with variable‐exponent nonlinearity, 2023, 0170-4214, 10.1002/mma.9116 | |
6. | Mohammad M. Al-Gharabli, Adel M. Almahdi, Maher Noor, Johnson D. Audu, Numerical and Theoretical Stability Study of a Viscoelastic Plate Equation with Nonlinear Frictional Damping Term and a Logarithmic Source Term, 2022, 27, 2297-8747, 10, 10.3390/mca27010010 | |
7. | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Noor, Johnson D. Audu, Stability Results for a Weakly Dissipative Viscoelastic Equation with Variable-Exponent Nonlinearity: Theory and Numerics, 2023, 28, 2297-8747, 5, 10.3390/mca28010005 | |
8. | Adel M. Al‐Mahdi, Mohammad M. Al‐Gharabli, Mostafa Zahri, Theoretical and numerical decay results of a viscoelastic suspension bridge with variable exponents nonlinearity, 2023, 296, 0025-584X, 5426, 10.1002/mana.202200338 | |
9. | Bhargav Kumar Kakumani, Suman Prabha Yadav, Global existence and asymptotic behaviour for a viscoelastic plate equation with nonlinear damping and logarithmic nonlinearity, 2023, 135, 18758576, 399, 10.3233/ASY-231859 | |
10. | Muhammad I. Mustafa, Viscoelastic Wave Equation with Variable-Exponent Nonlinear Boundary Feedback, 2024, 30, 1079-2724, 10.1007/s10883-024-09714-z | |
11. | Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Existence and stability results of nonlinear swelling equations with logarithmic source terms, 2024, 9, 2473-6988, 12825, 10.3934/math.2024627 | |
12. | Adel M. Al-Mahdi, Internal and Boundary Control of Piezoelectric Beams with Magnetic Effects and Voltage Controller: Exponential and Polynomial Decay Rates, 2025, 11, 2349-5103, 10.1007/s40819-024-01816-3 | |
13. | Abdelbaki Choucha, Salah Boulaaras, Rashid Jan, Ayser Nasir Tahat, Results of the asymptotic behavior for a viscoelastic wave equation with nonlinear distributed delay and acoustic conditions in boundary feedback, 2024, 2024, 1029-242X, 10.1186/s13660-024-03241-y |