In this paper, we investigate the existence of a random uniform exponential attractor for the non-autonomous stochastic Boussinesq lattice equation with multiplicative white noise and quasi-periodic forces. We first show the existence and uniqueness of the solution of the considered Boussinesq system. Then, we consider the existence of a uniform absorbing random set for a jointly continuous non-autonomous random dynamical system (NRDS) generated by the system, and make an estimate on the tail of solutions. Third, we verify the Lipschitz continuity of the skew-product cocycle defined on the phase space and the symbol space. Finally, we prove the boundedness of the expectation of some random variables and obtain the existence of a random uniform exponential attractor for the considered system.
Citation: Ailing Ban. Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system[J]. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040
[1] | Rou Lin, Min Zhao, Jinlu Zhang . Random uniform exponential attractors for non-autonomous stochastic Schrödinger lattice systems in weighted space. AIMS Mathematics, 2023, 8(2): 2871-2890. doi: 10.3934/math.2023150 |
[2] | Xin Liu . Stability of random attractors for non-autonomous stochastic $ p $-Laplacian lattice equations with random viscosity. AIMS Mathematics, 2025, 10(3): 7396-7413. doi: 10.3934/math.2025339 |
[3] | Xintao Li, Yunlong Gao . Random uniform attractors for fractional stochastic FitzHugh-Nagumo lattice systems. AIMS Mathematics, 2024, 9(8): 22251-22270. doi: 10.3934/math.20241083 |
[4] | Xintao Li . Wong-Zakai approximations and long term behavior of second order non-autonomous stochastic lattice dynamical systems with additive noise. AIMS Mathematics, 2022, 7(5): 7569-7594. doi: 10.3934/math.2022425 |
[5] | Chunting Ji, Hui Liu, Jie Xin . Random attractors of the stochastic extended Brusselator system with a multiplicative noise. AIMS Mathematics, 2020, 5(4): 3584-3611. doi: 10.3934/math.2020233 |
[6] | Li Yang . Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains. AIMS Mathematics, 2021, 6(12): 13634-13664. doi: 10.3934/math.2021793 |
[7] | Xiaobin Yao . Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169 |
[8] | Xiao Bin Yao, Chan Yue . Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains. AIMS Mathematics, 2022, 7(10): 18497-18531. doi: 10.3934/math.20221017 |
[9] | Muhammad Shakeel, Amna Mumtaz, Abdul Manan, Marouan Kouki, Nehad Ali Shah . Soliton solutions of the nonlinear dynamics in the Boussinesq equation with bifurcation analysis and chaos. AIMS Mathematics, 2025, 10(5): 10626-10649. doi: 10.3934/math.2025484 |
[10] | Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal . Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101 |
In this paper, we investigate the existence of a random uniform exponential attractor for the non-autonomous stochastic Boussinesq lattice equation with multiplicative white noise and quasi-periodic forces. We first show the existence and uniqueness of the solution of the considered Boussinesq system. Then, we consider the existence of a uniform absorbing random set for a jointly continuous non-autonomous random dynamical system (NRDS) generated by the system, and make an estimate on the tail of solutions. Third, we verify the Lipschitz continuity of the skew-product cocycle defined on the phase space and the symbol space. Finally, we prove the boundedness of the expectation of some random variables and obtain the existence of a random uniform exponential attractor for the considered system.
It is well known that attractors are an important part of describing the long-time asymptotic behavior of infinite-dimensional dynamical systems, such as global attractors, pullback or uniform attractors for deterministic autonomous and non-autonomous dynamical systems, see [1,2,3,4,5,6]. Random attractor, random pullback or uniform attractors for autonomous and non-autonomous random dynamical systems; see [7,8,9,10,11,12,13,14,15,16,17,18,19] and the references therein. However, the dimension of the attractor may be infinite. This means that the asymptotic behavior of the dynamical systems may not be described with finite independent parameters. Moreover, the rate at which the attractor attracts trajectories may be very slow, so that the attractor may be unstable under some small perturbations, this brings some difficulties to practical application and numerical simulations. For these reasons, Eden et al. in [20] introduced the concept of the exponential attractor, which is a compact and positive invariant set with a finite fractal dimension attracts any trajectories exponentially for deterministic autonomous dynamical systems. Since then, the concept of an exponential attractor extended to deterministic non-autonomous dynamical systems, autonomous and non-autonomous random dynamical systems (NRDS), such as exponential attractors, pullback or uniform exponential attractors (see [21,22,23,24,25,26,27]), random exponential attractors and random pullback exponential attractors (see [28,29,30,31,32]).
Recently, Han and Zhou in [33] defined the random uniform exponential attractor for NRDS and established the existence criterion of the random uniform exponential attractor for a joint continuous NRDS by introducing a skew-product cocycle on the extended space and applied it to the non-autonomous stochastic first-order lattice system and FitzHugh-Nagumo lattice system with quasi-periodic forces and multiplicative noise. Using this criterion, the random uniform exponential attractor for the non-autonomous stochastic Schr¨odinger lattice system and discrete long wave-short wave resonance system in [34,35] is obtained, respectively.
In this paper, we consider the existence of a random uniform exponential attractor for the following non-autonomous stochastic Boussinesq lattice system with quasi-periodic forces and multiplicative white noise:
{¨uj+δ˙uj+α(Au)j+β(Bu)j+λuj−k3(D(D∗u)3)j=fj(˜σ(t))+auj∘˙W,uj(0)=uj,0,˙uj(0)=u1j,0,t>0, | (1.1) |
where uj=uj(t)∈R,j=(j1,j2,⋯,jN)∈ZN, (R and Z are the sets of real and integer numbers); α,δ,λ,k,a are positive constants, β∈R; Tm is the m- dimensional torus, ˜σ(t)=(xt+σ)mod(Tm),σ∈Tm,t∈R,x=(x1,⋯,xm)∈Rm is a fixed vector, and x1,⋯,xm are rationally independent numbers; f(˜σ)=(fj(˜σ))j∈ZN∈C(Tm,l2); W(t) is a two-sided real-valued Wiener process on a probability space (Ω,F,P), where Ω={ω∈C(R,R):ω(0)=0},F is the Borel σ-algebra on Ω generated by the compact open topology, and P is the Wiener measure on (Ω,F). A,B,D, and D∗ are all linear coupled operators; "∘" means the sense of Stratonovich in the stochastic term.
The Boussinesq equation is one of the mathematical models describing wave propagation, which is widely used in the fields of ocean engineering, coastal protection, and marine resources development, such as wave motion, swell, and tide, and is also used in physics and mechanics, such as nonlinear elastic beam systems, thermomechanical phase transitions, and some Hamiltonian mechanics.
For the autonomous lattice dynamical system (1.1) without multiplicative white noise and quasi-periodic forces (j∈Z,fj(˜σ(t))=fj∈R,a=0), Abdallah in [1] obtained the existence and upper semi-continuity of the global attractor, Zhao and Zhou in [25] proved the existence of the exponential attractor, then, they in [26] obtained the existence of the pullback and uniform exponential attractor for non-autonomous Boussinesq lattice system (1.1)
j∈Z,α=αj(t),β=βj(t),fj(˜σ(t))=fj∈R,a=0 |
and further proved the existence of the random attractor for the non-autonomous stochastic Boussinesq lattice system in [17]. As we are aware, there are no results on the random uniform exponential attractor for the non-autonomous stochastic Boussinesq lattice system with quasi-periodic forces and multiplicative white noise. Motivated by [33,34,35], we will consider the existence of a random uniform exponential attractor for the system (1.1). The time-dependent external force term of the system (1.1) is fj(˜σ), where the time symbol ˜σ(t)=(xt+σ)mod(Tm)∈Tm on the finite-dimensional torus Tm is taken as the parameter. Thus, the solutions of this system (1.1) generates a NRDS, denoted {Φ(t,ω,σ)}t≥0,ω∈Ω,σ∈Tm, which can be regarded as a family of autonomous random dynamical system with the parameter σ. We investigate that the random uniform exponential attractor is a family of single-parameter random sets, which involve three properties: random compactness, finite fractal dimensionality, and uniform exponential attraction.
This paper is organized as follows: In Section 2, we introduce some basic concepts and assumptions of the coefficients and external force term of the system (1.1). In Section 3, we apply the existence criterion of a random uniform exponential attractor in [33] to the considered system (1.1). In Section 4, we make conclusions and discussion.
In this section, we recall some concepts that can be obtained directly from [8,12,33,34,35], and make some assumptions about a and fj(˜σ(t)).
Let l2={u=(uj)j∈ZN:j=(j1,j2,⋯,jN)∈ZN,uj∈R,∑j∈ZNu2j<∞} be a Hilbert space with the inner product and norm are defined as:
(u,v)=∑j∈ZNujvj,‖u‖2=(u,u)=∑j∈ZN|uj|2,∀u,v∈l2. |
Define the linear operators A,B,D,D∗:l2→l2 as follows:
A=A1+A2+⋯+AN,B=B1+B2+⋯+BN, |
for all u=(uj)j∈ZN∈l2,j=(j1,j2,⋯,jN)∈ZN,i=1,2,⋯,N,
(Aiu)j=u(j1,j2,⋯,ji−1,ji+2,ji+1,⋯,jN)−4u(j1,j2,⋯,ji−1,ji+1,ji+1,⋯,jN)+6u(j1,j2,⋯,ji−1,ji,ji+1,⋯,jN)−4u(j1,j2,⋯,ji−1,ji−1,ji+1,⋯,jN)+u(j1,j2,⋯,ji−1,ji−2,ji+1,⋯,jN), |
(Biu)j=u(j1,j2,⋯,ji−1,ji+1,ji+1,⋯,jN)−2u(j1,j2,⋯,ji−1,ji,ji+1,⋯,jN)+u(j1,j2,⋯,ji−1,ji−1,ji+1,⋯,jN), |
(Diu)j=u(j1,j2,⋯,ji−1,ji+1,ji+1,⋯,jN)−u(j1,j2,⋯,ji−1,ji,ji+1,⋯,jN), |
(D∗iu)j=u(j1,j2,⋯,ji−1,ji,ji+1,⋯,jN)−u(j1,j2,⋯,ji−1,ji−1,ji+1,⋯,jN). |
Then Ai=B2i,Bi=DiD∗i=D∗iDi, where D∗i is the conjugate operator of Di, this is, for all u=(uj)j∈ZN,v=(vj)j∈ZN∈l2,i=1,2,⋯,N, then
(Diu,v)=−(u,D∗iv),(Biu,v)=−(Diu,Div),(Aiu,v)=(Biu,Biv). |
Endowed with the inner products and norms on l2 as: for any u=(uj)j∈ZN,v=(vj)j∈ZN∈l2,
(u,v)λ=λ∑j∈ZNujvj,‖u‖λ=(u,u)λ=(λ∑j∈ZNu2j)12. |
Let l2λ=(l2,(⋅,⋅)λ,‖⋅‖λ) and E=l2λ×l2, it is obvious that the norm ‖⋅‖λ in l2λ and the usual norm ‖⋅‖ in l2 are equivalent, and E is a Hilbert space with the inner product (⋅,⋅)E and the norm ‖⋅‖E: for φ(i)=(u(i),v(i))=(u(i)j,v(i)j)j∈ZN∈E,i=1,2,
(φ(1),φ(2))E=(u(1),u(2))λ+(v(1),v(2)),‖φ‖2E=(φ,φ)E=‖u‖2λ+‖v‖2, |
and B(E) is the Borel σ−algebra of E.
Let Tm be the m–dimensional torus
Tm={σ=(σ1,⋯,σm):σl∈[−π,π],∀l=1,⋯,m}, |
where (σ1,⋯,σl−1,−π,σl+1,⋯,σm)∼(σ1,⋯,σl−1,π,σl+1,⋯,σm),∀l=1,⋯,m, and the norm in Tm is given by
‖σ‖Tm=(m∑l=1σ2l)12,∀σ=(σ1,⋯,σm)∈Tm. |
Let x=(x1,⋯,xm)∈Rm be a fixed vector such that x1,⋯,xm are rationally independent. For t∈R, define
ϑtσ=(xt+σ)mod(Tm),σ∈Tm, |
then {ϑt}t∈R is a translation group on Tm with ϑtTm=Tm and (t,σ)→ϑtσ is continuous for ∀t∈R, B(Tm) denotes the Borel σ−algebra of Tm.
Define the extended space E=Tm×E with norm
‖Υ‖E=(‖σ‖2Tm+‖φ‖2E)12,∀Υ={σ}×{φ}∈E,φ=(u,v)∈E, |
and the Borel σ−algebra B(E). Norm ‖⋅‖E induces a metric.
Let (Ω,F,P,{θtω}t∈R) be an ergodic metric dynamical system [8]. The two groups {θt}t∈R and {ϑt}t∈R are said to be base flows [12]. Hereafter, for simplicity, we identify "a.e. ω∈Ω" as "ω∈Ω ".
Definition 2.1. [33] A continuous NRDS on E with base flows {θt}t∈R on Ω and {ϑt}t∈R on Tm is defined as a mapping φ(t,ω,σ,u):R+×Ω×Tm×E→E satisfying
(i) φ is (B(R+)×F×B(Tm)×B(E),B(E)) measurable;
(ii) φ(0,ω,σ,⋅) is the identity on E for each σ∈Tm and ω∈Ω;
(iii) ∀t,s≥0,ω∈Ω,σ∈Tm,φ(t+s,ω,σ,⋅)=Φ(t,θsω,ϑsσ,⋅)∘φ(s,ω,σ,⋅);
(iv) ∀t∈R+,ω∈Ω,σ∈Tm,φ(t,ω,σ,⋅) is continuous.
A NRDS is said to be jointly continuous in Tm and E if the mapping φ(t,ω,⋅,⋅) is continuous for each t∈R+ and ω∈Ω.
Definition 2.2. [8] A (autonomous) random set D=D(⋅) in E is a multi-valued map D:Ω→2E∖∅ such that for each u∈E, the map ω→distE(u,D(ω)) (distance in E between u and D(ω)) is measurable. It is said that the (autonomous) random set is bounded (respectively, closed or compact) if D(ω) is bounded (respectively, closed or compact) for ω∈Ω.
Given two random sets D1,D2, we write D1⊆D2 if D1(ω)⊆D2(ω) for all ω∈Ω.
Definition 2.3. [8] A random set D(⋅) in E is called tempered with respect to {θt}t∈R, if for ω∈Ω,γ>0,limt→+∞e−γt‖D(θ−tω)‖E=0, where ‖D(ω)‖E=supx∈D(ω)‖x‖E.
Let D=D(E) be the collection of all tempered bounded random sets of E.
Definition 2.4. [33] A random set {M(ω)}ω∈Ω in E is called a D(E)−random uniform exponential attractor for the continuous NRDS {φ(t,ω,σ)}t≥0,ω∈Ω,σ∈Tm on E with base flows {θt}t∈R and {ϑt}t∈R if there is a set of full measure ˜Ω∈F such that for every ω∈˜Ω, it holds that
(i) M(ω) is a compact set;
(ii) There exists a random variable ξω<∞ such that dimfM(ω)≤ξω, where dimfM(ω) is the fractal dimension of M(ω);
(iii) There exists a constant b>0 such that for any B∈D(E), there exist random variables ¯tB(ω)≥0,¯Q(ω,‖B‖E)>0 satisfying supσ∈TmdistE(φ(t,θ−tω,ϑ−tσ)B(θ−tω),M(ω))≤¯Q(ω,‖B‖E)e−bt,t≥¯tB(ω).
For the given jointly continuous NRDS φ, introduce a mapping π:R+×Ω×E→E by
π(t,ω,{σ}×{E})={ϑtσ}×{φ(t,ω,σ,x)}. |
Then the mapping π satisfying: (i) π is (B(R+)×F×B(E),B(E))−measurable; (ii) π(0,ω,Υ)=Υ,∀ω∈Ω,Υ∈E; (iii) the cocycle property π(t+s,ω,Υ)=π(t,θsω,π(s,ω,Υ)),∀t,s≥0,ω∈Ω,Υ∈E.
The π is called the skew-product cocycle on the extended space E. Note that π is continuous; that is, the mapping Υ→π(⋅,⋅,Υ) is continuous in E if and only if φ is jointly continuous in Tm and E. Let DE={B:B=Tm×B={Tm×B(ω)}ω∈ΩandB∈D(E)} be some class of random sets in E.
In order to study the existence of a uniform exponential attractor, we need to make the following assumptions:
(H1) f(σ)=(fj(σ))j∈ZN∈C(Tm,l2), that is, for any f(σ)∈C(Tm,l2),‖f(σ)‖2C=maxσ∈Tm‖f(σ)‖2<∞, and for any ϵ>0, there exists I(ϵ)∈N such that maxσ∈Tm∑‖j‖>I(ϵ)f2j(σ)<ϵ, where ‖j‖=max{|ji|,i=1,⋯,N};
(H2) There exists d=(dj)j∈ZN∈l2 and dj>0 such that
|fj(σ1)−fj(σ2)|≤dj‖σ1−σ2‖Tm; |
(H3) ε2−(2a√πδ+12√2α+4β√λ+2aε√λπδ+a22δ√λ)>0, where ε=λδ2λ+δ2>48√2α+16|β|√λ.
The system (1.1) can be rewritten in the following vector form:
{¨u+δ˙u+αAu+βBu+λu−k3D(D∗u)3=f(˜σ(t))+au∘˙W(t),u(0)=u0,˙u(0)=u1,0,t>0, | (3.1) |
where
u=(uj(t))j∈ZN,Au=((Au(t))j)j∈ZN,Bu=((Bu(t))j)j∈ZN, |
D∗u=((D∗u(t))j)j∈ZN,f(˜σ(t))=(fj(˜σ(t)))j∈ZN. |
Let z(θtω)=−δ∫0−∞eδsθtω(s)ds,t∈R,ω∈Ω be the Ornstein–Uhlenbeck stationary processes, and a stationary solution of Itˆo equation dz(θtω)+z(θtω)dt=dW(t), where W(t)=w(t). It follows from [8,12] that z(θtω) is continuous in t and has the following properties:
{limt→±∞|z(θtω)|t=limt→±∞∫t0z(θsω)dst=limt→±∞e−ϵ|t||z(θtω)|=0,∀ϵ>0,limt→±∞∫t0|z(θsω)|rdst=E[|z(ω)|r]=Γ(1+r2)√πδr,∀r>0,E[eϵ∫τ+tτ|z(θsω)|ds]≤eϵ√δt,0<ϵ2≤δ3,t≥0,E[eϵ∫τ+tτ|z(θsω)|2ds]≤eϵδt,0<2ϵ≤1,t≥0, | (3.2) |
where Γ(⋅) is the Gamma function, "E" denotes the expection.
Let v=˙u+εu−auz(θtω) and φ=(u,v)T, where u is the solution of the system (3.1). Then the system (3.1) is equivalent to the following random system without the white noise term:
{˙φ+Λφ=F(φ,θtω),φ0=(u0,v0)T=(u0,u1,0+εu0−au0z(ω))T,t>0 | (3.3) |
where
Λφ=(εu−vλu−ε(δ−ε)u+(δ−ε)v), | (3.4) |
F(φ,θtω)=(az(θtω)u−α(Au)−β(Bu)+13k(D(D∗u)3)+(2aεz(θtω)−a2z2(θtω))u−az(θtω)v+f(˜σ(t))). | (3.5) |
Lemma 3.1. Let (H1)–(H3) hold, then
(i) For all ω∈Ω,t∈[0,T],T>0,φ0(ω)∈E, the system (3.3) has a unique solution φ(⋅,ω,σ,φ0(ω))∈C([0,+∞),E) and the solution φ is measurable in ω;
(ii) Let φ(i)(⋅,ω,σ,φ(i)0(ω)) be the solution of system (3.3) with σi∈Tm and φ(i)0(ω)∈E,i=1,2, T>0 is fixed, then there exists a constant s(T,ω)>0 such that for all t∈[0,T],
‖φ(1)(t,ω,σ1,φ(1)0(ω))−φ(2)(t,ω,σ1,φ(2)0(ω))‖2E≤es(T,ω)t(‖φ(1)0−φ(2)0‖2E+‖σ1−σ2‖2Tm). |
Proof. It is easy to verify that for all ω∈Ω, F(φ,θtω) is continuous in t and φ. Let Q be a bounded set in E; then there exists a positive constant L(Q) depending on Q, such that for all φ(i)=(u(i),v(i))T∈Q,i=1,2,‖φ(i)‖E≤L(Q). For all ω∈Ω,t∈[0,T], it follows that
‖F(φ(1),θtω)−F(φ(2),θtω)‖E≤a|z(θtω)|‖u(1)−u(2)‖λ+α‖A(u(1)−u(2))‖+|β|‖B(u(1)−u(2))‖+k3‖D(D∗u(1))3−D(D∗u(2))3‖+(2εa|z(θtω)|‖u(1)−u(2)‖+a2z2(θtω)‖u(1)−u(2)‖+a|z(θtω)|‖v(1)−v(2)‖≤[amaxt∈[0,T]|z(θtω)|+12√2α+4|β|+2εamaxt∈[0,T]|z(θtω)|+a2maxt∈[0,T]z2(θtω)√λ+16k√λ3L2(Q)]‖φ(1)−φ(2)‖E. |
Thus, F satisfies the local Lipschiz condition in φ; by the standard theory of ordinary differential equations, we obtain that there exists a Tmax≤+∞ such that the system (3.3) has a unique solution φ(t)∈C([0,Tmax),E) satisfying that lim supt→Tmax‖φ‖E=+∞ if Tmax≤+∞. Next, we prove that this local solution is a global one.
Let T∈[0,Tmax), taking the inner product of (3.3) with φ in E, we have
12ddt‖φ‖2E+(Λφ,φ)E=(F(φ,θtω),φ)E, | (3.6) |
where
(Λφ,φ)E≥ε2‖φ‖2E+δ2‖v‖2. | (3.7) |
(F(φ,θtω),φ)E=(az(θtω)u,u)λ−α(Au,v)−β(Bu,v)+13k(D(D∗u)3,v)−az(θtω)(v−2εu+az(θtω)u,v)+(f(˜σ(t),v), | (3.8) |
where
{(az(θtω)u,u)λ≤a|z(θtω)|‖u‖2λ,−α(Au,v)−β(Bu,v)≤6√2α+2|β|√λ‖φ‖2E,13k(D(D∗u)3,v)=−k12ddt‖(D∗u)2‖2−k(ε−az(θtω))3‖(D∗u)2‖2,−az(θtω)(v−2εu+az(θtω)u,v)≤a|z(θtω)|‖v‖2+2aε|z(θtω)|+a2z2(θtω)2√λ‖φ‖2E,(f(˜σ(t),v)≤12δ‖f‖2C+δ2‖v‖2. | (3.9) |
Combining (3.6)–(3.9), we obtain that
ddt(‖φ‖2E+k6‖(D∗u)2‖2)≤(−ε+ρ(θtω))(‖φ‖2E+k6‖(D∗u)2‖2)+1δ‖f‖2C, | (3.10) |
where
ρ(θtω)=2a|z(θtω)|+12√2α+4|β|√λ+2aε|z(θtω)|+a2z2(θtω)√λ. | (3.11) |
Applying Gronwall's inequality in (3.10) over [0,t](0≤t<Tmax), we obtain
‖φ‖2E+k6‖(D∗u)2‖2≤e∫t0(−ε+ρ(θsω))ds(‖φ0‖2E+k6‖(D∗u0)2‖2)+∫t0e∫tl(−ε+ρ(θsω))ds1δ‖f‖2Cdl. | (3.12) |
We further obtain that
‖φ‖2E≤e∫T0(−ε+ρ(θsω))ds(‖φ0‖2E+k6‖(D∗u0)2‖2)+1δ‖f‖2C∫T0e∫Tl(−ε+ρ(θsω))dsdl<+∞. | (3.13) |
Thus, the statement (i) holds.
(ii) Let φ(i)(t,ω)=(u(i),v(i))T=φ(t,ω,σi,φ(i)0(ω)),i=1,2,˜φ=(˜u,˜v)T=φ(1)(t,ω)−φ(2)(t,ω), then
{˙˜φ+Λ˜φ=F(φ(1),θtω)−F(φ(2),θtω),~φ0=φ(1)0−φ(2)0,t>0. | (3.14) |
Taking the inner product of (3.14) with ˜φ in E, we obtain
12ddt‖˜φ‖2E+(Λ˜φ,˜φ)E=(F(φ(1),θtω)−F(φ(2),θtω),˜φ)E, | (3.15) |
where
(Λ˜φ,˜φ)E≥ε2‖˜φ‖2E+δ2‖˜v‖2. | (3.16) |
and
(F(φ(1),θtω)−F(φ(2),θtω),˜φ)E=(az(θtω)˜u,˜u)λ+13k(D((D∗u(1))3−(D∗u(2))3),˜v)−α(A˜u,˜v)−β(B˜u,˜v)−az(θtω)(˜v−2ε˜u+az(θtω)˜u,˜v)+(f(~σ1(t))−f(~σ2(t)),˜v). | (3.17) |
By (H2), we derive each term on the right-hand side of (3.17),
(az(θtω)˜u,˜u)λ≤a|z(θtω)|‖˜u‖2λ, | (3.18) |
13k(D((D∗u(1))3−(D∗u(2))3),˜v)≤4Nk29δ‖(D∗u(1))3−(D∗u(2))3)‖2+δ4‖˜v‖2≤64N2k2δ(‖u(1)‖2+‖u(2)‖2)2‖u(1)−u(2)‖2+δ4‖˜v‖2≤256N2k2λ3δL4(Q)‖˜φ‖2E+δ4‖˜v‖2, | (3.19) |
−α(A˜u,˜v)−β(B˜u,˜v)≤6√2α+2|β|√λ‖˜φ‖2E, | (3.20) |
−az(θtω)(˜v−2ε˜u+az(θtω)˜u,˜v)≤a|z(θtω)|‖˜v‖2+2aε|z(θtω)|+a2z2(θtω)2√λ‖˜φ‖2E, | (3.21) |
(f(~σ1(t))−f(~σ2(t)),˜v)≤‖d‖2δ‖σ1−σ2‖2Tm+δ4‖˜v‖2. | (3.22) |
Summing up (3.18)–(3.22) and combining (3.15)–(3.17), we obtain
ddt‖˜φ‖2E≤(−ε+ρ(θtω)+512N2k2λ3δL4(Q))‖˜φ‖2E+2‖d‖2δ‖σ1−σ2‖2Tm, |
which implies
ddt(‖˜φ‖2E+‖σ1−σ2‖2Tm)≤(ε+ρ(θtω)+512N2k2λ3δL4(Q)+2‖d‖2δ)(‖˜φ‖2E+‖σ1−σ2‖2Tm). | (3.23) |
Applying Gronwall's inequality in (3.22) over [0,t](0≤t<T), then
‖˜φ‖2E≤e∫t0(ε+ρ(θsω)+512N2k2λ3δL4(Q)+2‖d‖2δ)ds(‖~φ0‖2E+‖σ1−σ2‖2Tm). |
Let s(T,ω,Q)=ε+max0≤s≤Tρ(θsω)+512N2k2λ3δL4(Q)+2‖d‖2δ.
Thus, the statement (ii) holds. The proof is completed.
From Lemma 3.1, we know that the solution φ(t,ω,σ,φ0(ω)) of the system (3.3) satisfies cocycle definition. Thus, we can define a jointly continuous NRDS Φ:R+×Ω×Tm×E→E,
Φ(t,ω,σ,φ0)=Φ(t,ω,σ)φ0=φ(t,ω,σ,φ0(ω)),t>0. |
Lemma 3.2. Assume that (H1)–(H3) hold. Then for all ω∈Ω and D∈D(E), there exist a TD(ω)≥0 and a tempered random variable R0(ω), such that ∀t≥TD(ω),
‖φ(t,θ−tω,σ,φ0(θ−tω))‖2E+ε2∫t0e∫tl(−ε2+ρ(θsω))ds(‖φ(l,θ−tω,σ,φ0(θ−tω))‖2E+k6‖(D∗u)2‖2)dl≤R20(ω) |
holds uniformly for σ∈Tm.
Proof. Similar to the derivation of (3.10), then
ddt(‖φ‖2E+k6‖(D∗u)2‖2)+ε2‖φ‖2E≤(−ε2+ρ(θtω))(‖φ‖2E+k6‖(D∗u)2‖2)+1δ‖f‖2C. | (3.24) |
Using Gronwall's inequality in (3.24) over [0,t], we obtain
‖φ‖2E+k6‖(D∗u)2‖2+ε2∫t0e−∫tl(ε2−ρ(θsω))ds‖φ(l,ω,σ,φ0(ω)‖2Edl≤e−∫t0(ε2−ρ(θsω))ds(‖φ0‖2E+k6‖(D∗u0)2‖2)+1δ‖f‖2C∫t0e−∫tl(ε2−ρ(θsω))dsdl. |
For t≥0, replacing ω by θ−tω, we have
‖φ(t,θ−tω,σ,φ0(θ−tω))‖2E+ε2∫t0e−∫tl(ε2−ρ(θs−tω))ds‖φ(l,θ−tω,σ,φ0(θ−tω))‖2Edl≤e−∫0−t(ε2−ρ(θsω))ds(‖φ0‖2E+k6‖(D∗u0)2‖2)+12R20(ω), | (3.25) |
where
R20(ω)=2δ‖f‖2C∫0−∞e−∫0l(ε2−ρ(θsω))dsdl. | (3.26) |
By (H3), we have
limt→+∞e−∫0−t(ε2−ρ(θsω))ds(‖φ0‖2E+k6‖(D∗u0)2‖2)=0. |
Since ρ(ω) is tempered with respect to {θt}t∈R, we know that R20(ω)(<∞) is also tempered. The proof is completed.
According to Lemma 3.2, we can obtain that the random set
B0={B0(ω)={φ∈E:‖φ‖≤R0(ω)},ω∈Ω}∈D |
is a uniformly (with respect to σ∈Tm) bounded closed absorbing set for Φ, then there exists a TB0(ω)≥0 such that Φ(t,θ−tω,σ,B0(θ−tω))⊆B0(ω) for any t≥TB0(ω).
Choosing an increasing smooth function μ∈C′(R+,[0,1]), such that
{μ(s)=0,0≤s≤1,0≤μ(s)≤1,1≤s≤2,μ(s)=1,2≤s<+∞,|μ′(s)|≤μ0,∀s∈R+,μ0>0. |
Lemma 3.3. Assume that (H1) and (H3) hold, and let φ(t,ω,σ,φ0(ω)) be the solution of (3.3) with (σ,φ0(ω))∈Tm×B0(ω). Then for every ω∈Ω,J∈N, and for any ν>0, there exists Tν(ω)>0 such that
∑j∈ZNμ(‖j‖J)‖φj(t,θ−tω,σ,φ0(θ−tω))‖2E≤ν+c2(1J+γ1,J)R20(ω),t>Tν(ω), | (3.27) |
where c2 and γ1,J are given in the proof below.
Proof. Taking the inner product of (3.3) with ϕ(t)=(x,y)T=(xj,yj)Tj∈ZN=(μ(‖j‖J)φj(t))j∈ZN in E, where xj=μ(‖j‖J)uj,yj=μ(‖j‖J)vj, we have
12ddt∑j∈ZNμ(‖j‖J)‖φj‖2E+∑j∈ZNμ(‖j‖J)(ε2‖φj‖2E+δ2|vj|2)≤(F(φ,θtω),ϕ)E, | (3.28) |
where
(F(φ,θtω),ϕ)E=(az(θtω)u,x)λ−α(Au,y)−β(Bu,y)+13k(D(D∗u)3,y)−(az(θtω)v,y)+((2aεz(θtω)−a2z2(θtω))u,y)+(f(˜σ(t)),y). | (3.29) |
By calculation, we obtain the following estimates:
(az(θtω)u,x)λ−(az(θtω)v,y)≤a|z(θtω)|∑j∈ZNμ(‖j‖J)‖φj‖2E, | (3.30) |
−α(Au,y)−β(Bu,y)≤6√2α+2|β|√λ∑j∈ZNμ(‖j‖J)‖φj‖2E+8μ0NKJ√λ‖φ‖2E, | (3.31) |
where K=max{α,|β|},
13k(D(D∗u)3,y)=−k3∑j∈ZNμ(‖j‖J)(14ddt(D∗u)4j+(ε−az(θtω))(D∗u)4j)−k3∑j∈ZN(D∗u)3j(μ(‖j‖J)−μ(‖j−1‖J))vj−1≤−k3∑j∈ZNμ(‖j‖J)(14ddt(D∗u)4j+(ε−az(θtω))(D∗u)4j)+kμ0N3J√λ3‖φ‖4E, | (3.32) |
((2aεz(θtω)−a2z2(θtω))u,y)≤2aε|z(θtω)|+a2z2(θtω)2√λ∑j∈ZNμ(‖j‖J)‖φj‖2E, | (3.33) |
(f(˜σ(t),y)≤12δ∑j∈ZNμ(‖j‖J)f2j(˜σ(t))+δ2∑j∈ZNμ(‖j‖J)|vj|2. | (3.34) |
From (3.28)–(3.34), we obtain
ddt∑j∈ZNμ(‖j‖J)(‖φj‖2E+k6(D∗u)4j)≤(−ε+ρ(θtω))∑j∈ZNμ(‖j‖J)(‖φj‖2E+k6(D∗u)4j)+1δ∑j∈ZNμ(‖j‖J)f2j(˜σ(t))+c1J‖φ‖2E, | (3.35) |
where
c1=16μ0NK√λ+2kμ0N3√λ3R20(ω). |
By (3.25), we have
∫t0e−∫tl(ε2−ρ(θs−tω))ds‖φ(l,θ−tω,σ,φ0(θ−tω)‖2Edl≤2εe−∫0−t(ε2−ρ(θsω))ds(R20(θ−tω)+8k3‖u0‖4)+1εR20(ω). | (3.36) |
By applying Gronwall's inequality in (3.35) over [0,t](t≥0) and replacing ω by θ−tω, we obtain that for any J∈N,
∑j∈ZNμ(‖j‖J)‖φj(t,θ−tω,σ,φ0(θ−tω))‖2E≤e−∫0−t(ε2−ρ(θsω))ds(‖φ0(θ−tω)‖2E+k6‖D∗u0‖4)+1δsupσ∈Tm∑‖j‖≥Jf2j(σ)+c1J∫t0e−∫tl(ε2−ρ(θs−tω))ds‖φ(l,θ−tω,σ,φ0(θ−tω))‖2Edl∫t0e−∫tl(ε2−ρ(θs−tω))dsdl≤(1+2c1Jε)e−∫0−t(ε2−ρ(θsω))ds(R20(θ−tω)+8k3‖u0‖4)+c1JεR20(ω)+12‖f‖2Csupσ∈Tm∑‖j‖≥Jf2j(σ)R20(ω)≤(1+2c1Jε)e−∫0−t(ε2−ρ(θsω))ds(R20(θ−tω)+8k3‖u0‖4)+c2(1J+γ1,J)R20(ω), | (3.37) |
where c2=max{c1ε,12‖f‖2C},γ1,J=supσ∈Tm∑‖j‖≥Jf2j(σ).
By (H3), limt→+∞(1+2c1Jε)e−∫0−t(ε2−ρ(θsω))ds(R20(θ−tω)+8k3‖u0‖4)=0. Thus, for any ν>0,ω∈Ω, there exists Tν(ω)>0 such that (3.27) holds. The proof is completed.
For every ω∈Ω,s≥0,ν>0, set T0(ω)=T(ω,B0) and
B(θ−sω)=¯∪t≥max{T0(θ−sω),T0(ω),T0(θ−Tν(ω)ω)}+Tν(ω)π(t,θ−t−sω)Tm×B0(θ−t−sω), | (3.38) |
where π is the skew-product cocycle generated by Φ and ϑ:
π(t,θ−t−sω)Tm×B0(θ−t−sω)=∪σ∈Tm(ϑtσ)×φ(t,θ−t−sω,σ)B0(θ−t−sω). |
It is easy to check from Lemma 3.2 and Lemma 3.3 that B has the following properties:
(A1) for every ω∈Ω,B(ω)⊆Tm×B0(ω), the diameter of B(ω) in Tm×E is bounded by (m(2π)2+4R20(ω))12, where R20(θtω) is continuous in t∈R;
(A2) B(ω) is positive invariant, i.e, for every ω∈Ω,t≥0,π(t,θ−tω)B(θ−tω)⊆B(ω) and by PEB⊆B0, where PE denotes the projection from Tm×E to E;
(A3) B is pullback absorbing in DE. Really, for all D∈DE, there exist ˜t(D,ω)>0 such that π(t,θ−tω)D(θ−tω)⊆B(ω),t≥˜t(D,ω);
(A4) for all {σ}×{φ}∈B(ω), the following is true.
∑j∈ZNμ(‖j‖J)‖φj‖2E≤ν+c2(1J+γ1,J)R20(ω). | (3.39) |
For any r≥0,t≥0,ω∈Ω,{σi}×{φ(i)0(ω)}∈B(ω),i=1,2, let φ(i)(r)=φ(i)(r,θ−tω,σi,φ(i)0(θ−tω))=(u(i),v(i))T and ˜φ(r)=φ(1)(r)−φ(2)(r)=(˜u,˜v)T, then
{d˜φdr+Λ˜φ=F(φ(1),θr−tω)−F(φ(2),θr−tω),~φ0(θ−tω)=φ(1)0(θ−tω)−φ(2)0(θ−tω). | (3.40) |
By (A2), we have
φ(i)(r)∈B0(θr−tω),‖φ(i)(r)‖E≤R0(θr−tω),i=1,2. | (3.41) |
Lemma 3.4. Assume that (H1)–(H3) hold. Then for all r≥0,t≥0,ω∈Ω,J(≥1)∈N,{σi}×{φ(i)0(θ−tω)}∈B(θ−tω),i=1,2, there exist random variables C1(ω),C2(ω),C3(ω)≥0, such that
‖π(t,θ−tω){σ1}×{φ(1)0(θ−tω)}−π(t,θ−tω){σ2}×{φ(2)0(θ−tω)}‖2E≤e2∫0−tC1(θsω)ds(‖σ1−σ2‖2Tm+‖φ(1)0(θ−tω)−φ(2)0(θ−tω)‖2E), | (3.42) |
and
∑‖j‖≥4J+1‖~φj(t)‖2E≤(e∫0−t(−ε2+C2(θsω)ds+δJ2e∫0−tC3(θsω)ds)2(‖σ1−σ2‖2Tm+‖φ(1)0(θ−tω)−φ(2)0(θ−tω)‖2E), | (3.43) |
where δJ is given in the proof below.
Proof. (i) Taking the inner product of (3.40) with ˜φ(r) in E, we have
12ddr‖˜φ(r)‖2E+(Λ˜φ(r),˜φ(r))E=(F(φ(1)(r),θtω)−F(φ(2)(r),θtω),˜φ(r))E. | (3.44) |
Similar to (3.15)–(3.22) in Lemma 3.1, we obtain
ddt(‖˜φ(r)‖2E+‖σ1−σ2‖2Tm)≤2C1(θr−tω)(‖˜φ(r)‖2E+‖σ1−σ2‖2Tm), | (3.45) |
where
C1(θr−tω)=ε2+ρ(θtω)2+256N2k2λ3δR40(θr−tω)+‖d‖2δ. | (3.46) |
Using Gronwall's inequality in (3.45) over [0,t](t≥0) and replacing ω by θ−tω, we obtain
‖φ(1)(t)−φ(2)(t)‖2E+‖σ1−σ2‖2Tm≤e∫0−t2C1(θsω)ds(‖φ(1)0−φ(2)0‖2E+‖σ1−σ2‖2Tm). | (3.47) |
Thus, (3.42) holds.
(ii) Let I∈N,~ϕj=(~xj,~yj)T=μ(‖j‖I)~φj=(μ(‖j‖I)~uj,μ(‖j‖I)~vj)T, ˜ϕ=(˜x,˜y)T=(~ϕj)j∈ZN. Taking the inner product of (3.40) with ˜ϕ in E, we have
12ddt∑j∈ZNμ(‖j‖I)‖~φj‖2E+∑j∈ZNμ(‖j‖I)(ε2‖~φj‖2E+δ2|~vj|2)≤(F(φ(1),θr−tω)−F(φ(2),θr−tω),˜ϕ)E, | (3.48) |
where
(F(φ(1),θr−tω)−F(φ(2),θr−tω),˜ϕ)E=(az(θr−tω)˜u,˜x)λ−α(A˜u,˜y)−β(B˜u,˜y)+13k(D((D∗u(1))3−(D∗u(2))3),˜y)+((2aεz(θr−tω)−a2z2(θr−tω))˜u,˜y)−(az(θr−tω)˜v,˜y)+(f(~σ1(r))−f(~σ2(r)),˜y). | (3.49) |
By (H2) and (3.39), we have that for ‖j‖≥2J,J∈N,
{(az(θr−tω)˜u,˜x)λ−(az(θr−tω)˜v,˜y)≤a|z(θr−tω)|∑j∈ZNμ(‖j‖I)‖~φj‖2E,−α(A˜u,˜y)−β(B˜u,˜y)≤6√2α+2|β|√λ∑j∈ZNμ(‖j‖I)‖~φj‖2E+8μ0NKI√λ‖˜φ‖2E,13k(D((D∗u(1))3−(D∗u(2))3),˜y)=−13k((D∗u(1))3−(D∗u(2))3,D∗˜y)≤2k√λ∑j∈ZNμ(‖j‖I)(‖~φj‖2E+‖˜φj−1‖2E)(|u(1)j|2+|u(2)j|2)≤4kν√λ3∑j∈ZNμ(‖j‖I)‖~φj‖2E+[2kμ0I√λ3(ν+c2(1J+γ1,J)R20(θr−tω))+4kc2√λ3(1J+γ1,J)R20(θr−tω)]‖˜φ‖2E,((2aεz(θr−tω)−a2z2(θr−tω))˜u,˜y)≤2aε|z(θr−tω)|+a2z2(θr−tω)2√λ∑j∈ZNμ(‖j‖I)‖~φj‖2E,(f(~σ1(r))−f(~σ2(r)),˜y)≤12δ∑j∈ZNμ(‖j‖I)d2j‖σ1−σ2‖2Tm+δ2∑j∈ZNμ(‖j‖I)|~vj|2‖˜φ‖2E. | (3.50) |
By (3.48)–(3.50), we obtain that for I≥2J,
ddt∑j∈ZNμ(‖j‖I)‖~φj‖2E≤(−ε+ρ(θr−tω)+8kν√λ3)∑j∈ZNμ(‖j‖I)‖~φj‖2E+1δ∑‖j‖≥Id2j‖σ1−σ2‖2Tm+[16μ0NKJ√λ+4kμ0J√λ3(ν+c2(1J+γ1,J)R20(θr−tω))+8kc2√λ3(1J+γ1,J)R20(θr−tω)]‖˜φ‖2E≤(−ε+2C2(θr−t))∑j∈ZNμ(‖j‖I)‖~φj‖2E+c3~δJ(1+R20(θr−tω))‖˜φ‖2E, | (3.51) |
where
~δJ=γ2,J+(1J+1)(1J+γ1,J),γ2,J=∑‖j‖≥Id2j,c3=1δ+16μ0NKJ√λ+4kμ0√λ3(ν+c2)+8kc2√λ3, |
C2(ω)=ρ(ω)2+4kν√λ3. | (3.52) |
By (3.47) and applying Gronwall's inequality in (3.51) over [0,t], we have that for I≥2J,
∑j∈ZNμ(‖j‖I)‖~φj‖2E≤e∫0−t(−ε+2C2(θsω))ds(‖φ(1)0−φ(2)0‖2+‖σ1−σ2‖2Tm)+~δJe∫0−t(2C1(θsω)+2C2(θsω))ds(‖φ(1)0−φ(2)0‖2+‖σ1−σ2‖2Tm)×∫0−tc3eεl(1+R20(θlω))dl. | (3.53) |
Since for all p≥0,√p≤ep, it follows that
∫0−tc3eεl(1+R20(θlω))dl≤(∫0−te2εldl)12(∫0−tc23(1+R20(θlω))dl)12≤1√2εe∫0−t2c23(1+R40(θlω))2dl. |
By (3.53), it follows that for I≥2J,
∑‖j‖≥4J‖~φj‖2E≤∑j∈ZNμ(‖j‖I)‖~φj‖2E≤(e∫0−t(−ε+2C2(θsω))ds+δ2J4e∫0−t2C3(θsω)ds)(‖φ(1)0−φ(2)0‖2+‖σ1−σ2‖2Tm), | (3.54) |
where δ2J=4~δJ√2ε and
C3(ω)=C1(ω)+C2(ω)+c23(1+R40(ω)). | (3.55) |
Thus, (3.43) holds. The proof is completed.
Lemma 3.5. Assume that the coefficient a and ν=ν0>0 satisfy
a<min{ε√δ8,√λδ8,√δελ142}, | (3.56) |
a√πδ+6√2α+2|β|√λ+aε√πλδ+a24δ√λ+4kν0√λ3<ε32. | (3.57) |
Then
0≤E(C2(ω))≤ε32,0≤E(C23(ω))<+∞. |
Proof. By (3.2), (3.11), (3.52), and (3.57), it is easy to have the following
E(C2(ω))=a√πδ+6√2α+2|β|√λ+aε√πλδ+a24δ√λ+4kν0√λ3<ε32. |
By (3.55), we have
E(C23(ω))≤4(E(C21(ω))+E(C22(ω))+c43+c43E(R80(ω))). | (3.58) |
By (3.46), we know that
C21(ω)≤ε2+ρ2(ω)+5122N4k4λ6δ2R80(ω)+4‖d‖4δ2, |
C22(ω)=(ρ(ω)2+4kν0√λ3)2≤ρ2(ω)2+32k2ν20λ3. |
By (3.26), (3.56), and H¨older's inequality, we have
E(R80(ω))=28δ4‖f‖8CE(∫0−∞eε2l+∫0lρ(θsω)dsdl)4≤28δ4‖f‖8C(∫0−∞eε3ldl)3E(∫0−∞eεl+∫0l4ρ(θsω)dsdl)≤28⋅33δ4ε3‖f‖8C(1ε−8a√δ+1ε−48√2α+16|β|√λ+1ε−8aε√δλ+1ε−4a2√λδ)<∞. | (3.59) |
Thus,
0≤E(R40(ω))≤12(1+E[R80(ω)])<∞. | (3.60) |
E[ρ2(ω)]≤4(4a2E[|z(ω)|2]+(12√2α+4|β|)2λ+4a2ε2λE[|z(ω)|2]+a4λE[|z(ω)|4])=8a2δ+4(12√2α+4|β|)2λ+8a2ε2λδ+3a4λδ2<∞. | (3.61) |
By (3.58)–(3.61), we have E[C23(ω)]<∞. The proof is completed.
Theorem 3.1. Assume that (H1)–(H3), (3.56), and (3.57) hold. Then {Φ(t,ω,σ)}t≥0,ω∈Ω,σ∈Tm has a D− random uniform exponential attractor A={A(ω)}ω∈Ω with the following properties:
(i) A is a compact set of E and measurable in ω;
(ii) There exists J0∈N such that dimfA(ω)≤2[m+2(8J0+1)]ln(2√m+2(8J0+1)δJ0+1)ln43<∞,∀ω∈Ω;
(iii) For every ω∈Ω,D∈D, there exist ˜T(ω,D)≥0 and a tempered random variable ˜h(ω)>0, such that for any t≥˜T(ω,D),
supσ∈TmdistE(Φ(t,θ−tω,ϑ−tσ)D(θ−tω),A(ω))≤˜h(ω)e−εln4364ln2t, |
where D=D×Tm.
Proof. From Lemma 3.5, taking t=t0=16ln2ε in (3.42) and (3.43), it follows that
0<t20(2E[C23(ω)]+ε2E[C3(ω)])<+∞. |
Let
κ=min{116,e−2ln32t20(2E[C23(ω)]+ε2E[C3(ω)])} |
be a finite positive constant. By (H1), when J→+∞,δJ→0, thus, we choose a large enough positive integer J=J0 such that δJ≤κ. Based on Theorem 2.1 in [33] and Theorem 2.6 in [35], it follows from Lemmas 3.1–3.5 that the proof of Theorem 3.1 is completed.
In this paper, based on the existence criterion of a random uniform exponential attractor for non-autonomous random dynamical systems from Theorem 2.1 in [33] and Theorem 2.6 in [35], we proved the existence of a random exponential attractor for the non-autonomous stochastic Boussinesq lattice system with quasi-periodic forces and multiplicative white noise. The random uniform exponential attractor with finite fractal dimension is more stable than the random attractor. Therefore, the asymptotic behavior of the solution of the system (1.1) can be described by finite independent parameters. Applying the same idea, we can also consider the existence of a random exponential attractor for the non-autonomous stochastic Boussinesq lattice system with additive white noise. However, we do not need to restrict the coefficient of the random term to small enough, because the additive noise term is independent of the state variable. Inspired by [36,37] and the references therein, we will consider the long-time asymptotic behavior of the non-autonomous stochastic Boussinesq lattice equation with nonlinear colored noise in future works.
The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.
The author would like to express their sincere thanks to the referee for his/her helpful comments and suggestions which greatly improved the presentation of this paper. The author also would like to thank the editors for their kind help. This work was supported by the Natural Science Research Key Project of the Education Department of Anhui Province (No.2024AH051359).
The author declares no conflict of interest regarding the publication of this paper.
[1] |
A. Y. Abdallah, Global attractor for the lattice dynamical system of a nonlinear Boussinesq equation, Abstr. Appl. Anal., 6 (2005), 655–671. http://dx.doi.org/10.1155/aaa.2005.655 doi: 10.1155/aaa.2005.655
![]() |
[2] |
P. W. Bates, K. Lu, B. Wang, Attractors for lattice dynamical systems, Int. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143–153. https://dx.doi.org/10.1142/S0218127401002031 doi: 10.1142/S0218127401002031
![]() |
[3] | V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Providence: American Mathematical Society, 2002. |
[4] |
B. Wang, Dynamics of systems on infinite lattices, J. Diff. Equ., 221 (2006), 224–245. https://dx.doi.org/10.1016/j.jde.2005.01.003 doi: 10.1016/j.jde.2005.01.003
![]() |
[5] |
B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121–136. https://dx.doi.org/10.1016/j.jmaa.2006.08.070 doi: 10.1016/j.jmaa.2006.08.070
![]() |
[6] |
S. Zhou, W. Shi, Attractors and dimension of dissipative lattice system, J. Diff. Equ., 224 (2006), 172–204. https://dx.doi.org/10.1016/j.jde.2005.06.024 doi: 10.1016/j.jde.2005.06.024
![]() |
[7] |
A. Adili, B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser., 18 (2013), 643–666. http://dx.doi.org/10.3934/dcdsb.2013.18.643 doi: 10.3934/dcdsb.2013.18.643
![]() |
[8] | L. Arnold, Random dynamical systems, Berlin: Springer, 1998. https://dx.doi.org/10.1007/978-3-662-12878-7 |
[9] |
P. W. Bates, K. Lu, B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32–50. http://dx.doi.org/10.1016/j.physd.2014.08.004 doi: 10.1016/j.physd.2014.08.004
![]() |
[10] |
T. Caraballo, F. Morillas, J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Diff. Equ., 253 (2012), 667–693. http://dx.doi.org/10.1016/j.jde.2012.03.020 doi: 10.1016/j.jde.2012.03.020
![]() |
[11] |
H. Cui, M. Freitas, J. A. Langa, On random cocycle attractors with autonomous attraction universes, Discrete Contin. Dyn. Syst. Ser. B., 22 (2017), 3379–3407. http://dx.doi.org/10.3934/dcdsb.2017142 doi: 10.3934/dcdsb.2017142
![]() |
[12] |
H. Cui, J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Diff. Equ., 263 (2017), 1225–1268. http://dx.doi.org/10.1016/j.jde.2017.03.018 doi: 10.1016/j.jde.2017.03.018
![]() |
[13] |
X. Fan, Attractors for a damped stochastic wave equation of Sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767–793. http://dx.doi.org/10.1080/07362990600751860 doi: 10.1080/07362990600751860
![]() |
[14] |
X. Han, W. Shen, S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Diff. Equ., 250 (2011), 1235–1266. http://dx.doi.org/10.1016/j.jde.2010.10.018 doi: 10.1016/j.jde.2010.10.018
![]() |
[15] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Diff. Equ., 253 (2012), 1544–1583. http://dx.doi.org/10.1016/j.jde.2012.05.015 doi: 10.1016/j.jde.2012.05.015
![]() |
[16] |
Z. Wang, S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwan J. Math., 20 (2016), 589–616. http://dx.doi.org/10.11650/tjm.20.2016.6699 doi: 10.11650/tjm.20.2016.6699
![]() |
[17] |
M. Zhao, S. Zhou, Random attractor of non-autonomous stochastic Boussinesq lattice system, J. Math. Phys., 56 (2015), 092702. http://dx.doi.org/10.1063/1.4930195 doi: 10.1063/1.4930195
![]() |
[18] |
Z. Li, W. Zhao, Stability of stochastic reaction-diffusion equation under random influences in high regular spaces, J. Math. Phys., 64 (2023), 081508. http://dx.doi.org/10.1063/5.0148290 doi: 10.1063/5.0148290
![]() |
[19] |
Q. Zhang, Well-posedness and dynamics of stochastic retarded FitzHugh-Nagumo Lattice systems, J. Math. Phys., 64 (2023), 121506. http://dx.doi.org/10.1063/5.0173334 doi: 10.1063/5.0173334
![]() |
[20] |
A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential attractors for dissipative evolution equations, Amer. Math. Monthly, 37 (1995), 825–825. https://dx.doi.org/10.1137/1038025 doi: 10.1137/1038025
![]() |
[21] |
A. Y. Abdallah, Uniform exponential attractors for first-order non-autonomous lattice dynamical systems, J. Diff. Equ., 251 (2011), 1489–1504. http://dx.doi.org/10.1016/j.jde.2011.05.030 doi: 10.1016/j.jde.2011.05.030
![]() |
[22] |
A. N. Carvalho, S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141–1165. http://dx.doi.org/10.3934/cpaa.2014.13.1141 doi: 10.3934/cpaa.2014.13.1141
![]() |
[23] |
M. Efendiev, S. Zelik, A. Miranville, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A., 135 (2005), 703–730. http://dx.doi.org/10.1017/s030821050000408x doi: 10.1017/s030821050000408x
![]() |
[24] |
J. A. Langa, A. Miranville, J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329–1357. http://dx.doi.org/10.3934/dcds.2010.26.1329 doi: 10.3934/dcds.2010.26.1329
![]() |
[25] |
M. Zhao, S. Zhou, Exponential attractor for lattice system of nonlinear Boussinesq equation, Discrete. Dyn. Nat. Soc., 2013 (2013), 1–6. http://dx.doi.org/10.1155/2013/869621 doi: 10.1155/2013/869621
![]() |
[26] |
M. Zhao, S. Zhou, Pullback and uniform exponential attractors for nonautonomous Boussinesq lattice system, Int. J. Bifurc. Chaos, 25 (2015), 1–10. http://dx.doi.org/10.1142/S021812741550100X doi: 10.1142/S021812741550100X
![]() |
[27] |
S. Zhou, X. Han, Uniform exponential attractors for non-autonomous KGS and Zakharov lattice systems with quasi-periodic external forces, Nonlinear Anal., 78 (2013), 141–155. http://dx.doi.org/10.1016/j.na.2012.10.001 doi: 10.1016/j.na.2012.10.001
![]() |
[28] |
T. Caraballo, S. Sonner, Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces, Discrete Contin. Dyn. Syst., 37 (2017), 6383–6403. http://dx.doi.org/10.3934/dcds.2017277 doi: 10.3934/dcds.2017277
![]() |
[29] |
A. Shirikyan, S. Zelik, Exponential attractors for random dynamical systems and applications, Stoch. Partial Diff. Equ. Anal. Comput., 1 (2013), 241–281. http://dx.doi.org/10.1007/s40072-013-0007-1 doi: 10.1007/s40072-013-0007-1
![]() |
[30] |
H. Su, S. Zhou, L.Wu, Random exponential attractor for second order non-autonomous stochastic lattice dynamical systems with multiplicative white noise in weighted spaces, Adv. Diff. Equ., 2019 (2019), 1–21. http://dx.doi.org/10.1186/s13662-019-1983-x doi: 10.1186/s13662-019-1983-x
![]() |
[31] |
S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise, J. Diff. Equ., 263 (2017), 2247–2279. http://dx.doi.org/10.1016/j.jde.2017.03.044 doi: 10.1016/j.jde.2017.03.044
![]() |
[32] |
S. Zhou, Random exponential attractor for stochastic reaction-diffusion equation with multiplicative noise in R3, J. Diff. Equ., 263 (2017), 6347–6383. http://dx.doi.org/10.1016/j.jde.2017.07.013 doi: 10.1016/j.jde.2017.07.013
![]() |
[33] |
Z. Han, S. Zhou, Random uniform exponential attractors for non-autonomous stochastic lattice systems and FitzHugh-Nagumo lattice systems with quasi-periodic forces and multiplicative noise, Stoch. Dyn., 20 (2020), 2050036. http://dx.doi.org/10.1142/s0219493720500367 doi: 10.1142/s0219493720500367
![]() |
[34] |
R. Lin, M. Zhao, Random uniform exponential attractors for non-autonomous stochastic discrete long wave-short wave resonance equations, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 5775–5799. http://dx.doi.org/10.3934/dcdsb.2023077 doi: 10.3934/dcdsb.2023077
![]() |
[35] |
S. Zhang, S. Zhou, Random uniform exponential attractors for Schr¨odinger lattice systems with quasi-periodic forces and multiplicative white noise, Discrete Contin. Dyn. Syst. Ser. S, 16 (2023), 753–772. http://dx.doi.org/10.3934/dcdss.2022056 doi: 10.3934/dcdss.2022056
![]() |
[36] |
B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Diff. Equ., 268 (2019), 1–59. http://dx.doi.org/10.1016/j.jde.2019.08.007 doi: 10.1016/j.jde.2019.08.007
![]() |
[37] |
B. Wang, Dynamics of stochastic reaction-diffusion lattice system driven by nonlinear noise, J. Math. Anal. Appl., 477 (2019), 104–132. http://dx.doi.org/10.1016/j.jmaa.2019.04.015 doi: 10.1016/j.jmaa.2019.04.015
![]() |