Abstract
These days of astrophysics are full of exciting discoveries. Gravitational waves are directly found for the first time by Laser Interferometer Gravitational-wave Observatory. Merging of compact astrophysical objects (neutron star and neutron star) is detected via multi-messengers of gravitational wave and all wavelengths of photons for the first time by worldwide observatories on ground and in space. Interesting unknowns of the gamma-ray sky are introduced by Fermi, and many details of gamma-ray bursts (GRBs) become unveiled by the Swift space mission and ground based observatories. Astrophysical neutrinos with the highest energy are detected by the IceCube telescope. Hot and Warm sports, anisotropy of ultra-high energy cosmic rays, are found by the Telescope Array and Pierre Auger observatories, respectively. The spectral break in cosmic rays around 200 GeV is discovered and verified for all elements of cosmic rays, which requires a completely different paradigm in cosmic ray propagation. Combining all of those information allows us to learn the structure and evolution of the universe including thermal and non-thermal astrophysical sources, their spatial distributions, time evolutions and properties. Here we overview a few topics particularly emphasizing GRBs, as sources of multi-messenger astrophysics, in connection to GWs, neutrinos, and cosmic rays. Finally we introduce our space experiments on GRBs and cosmic rays for those physics targets.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
B. C. Barish and R. Weiss, Physics Today. 52, 10 (1999).
N. Gehrels et al., Astrophys. J. 611, 1005 (2004).
The IceCube Collaboration, Astropart. Phys. 26, 155 (2006).
E. Waxman, Nucl. Phys. B, Proc. Suppl. 151, 46 (2006).
The Telescope Array Collaboration, Nucl. Instrum. Meth. A 689, 87 (2012).
The Pierre Auger Collaboration, Nucl. Instrum. Meth. A 798, 172 (2015).
B. P. Abbott et al., Astrophys. J. 848, 12 (2017).
B. P. Abbott et al., Phys. Rev. Lett. 119, 16 (2017).
The Virgo collaboration, JInst. 7, P0312 (2012).
B. P. Abbott et al., Astrophys. J. Lett. 848, L12 (2017).
M. G. Aartsen et al., Science 361, 1378 (2018).
M. G. Aartsen et al., Science 342, 1242856 (2013).
M. G. Aartsen et al., Astrophys. J. 833, 3 (2016).
V. Lipunov et al., Adv. Astron. 2010, 349171 (2010).
A. J. Castro-Tirado et al., ASI Conference Series. 7, 314 (2013).
R. W. Klebesadel et al., Astrophys. J. 182, 85 (1973).
R. Salvaterra et al., Nature 461, 1258 (2009).
N. R. Tanvir et al., Nature 461, 1254 (2009).
D. Q. Lamb and D. E. Reichart, Astrophys. J. 536, 1 (2000).
V. Bromm and A. Loeb, Astrophys. J. 642, 382 (2006).
M. D. Kistler et al., Astrophys. J. 705, L104 (2009).
L. Amati et al., Mon. Not. R. Astron. Soc. 391, 577 (2008).
G. Ghirlanda et al., New J. Phys. 8, 123 (2006).
A. Panaitescu and W. Vestrand, Mon. Not. R. Astron. 387, 497 (2008).
D. Kocevski, Astrophys. J. 747 146 (2012).
B. Zhang et al., Astrophys. J. 703, 1696 (2009).
J. Greiner et al., Astron. Astrophys. 526, 10 (2011).
S. Naoz and O. Bromberg, Mon. Not. R. Astron. Soc. 380, 757 (2007).
C. Cutler and K. S. Thorne, arXiv:gr-qc/0204090 (2002).
A. Abramovici et al., Science 256, 325 (1992).
B. P. Abbott et al., Astrophys. J. 13, 826L (2016).
H. Tokuno et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 676, 54 (2012).
J. Abraham et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 523, 50 (2004).
M. I. Panasyuk et al., J. Cosmol. 18, 7964 (2012).
Y. Takahashi, New J. Phys. 11, 065009 (2009).
F. Halzen and S. R. Klein, Rev. Sci. Instrum. 81, 08110 (2010).
P. W. Gorham et al., Astropart. Phys. 32, 10 (2009).
B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
T. Piran et al., Mon. Not. R. Astron. Soc. 430, 2121 (2013).
L. Dessart et al., Astrophys. J. 690, 1681 (2009).
J. Abadie et al., Class. Quant. Grav. 27, 173001 (2010).
B. Sathyaprakash et al., Class. Quant. Grav. 29, 124013 (2012).
B. P. Abbott et al., arXiv:1710.05835 (2017).
N. Dalal et al., Phys. Rev. D 74, 063006 (2006).
L. Amati et al., arXiv1306.5259v1 (2013).
J. K. Becker et al., Phys. Rep. 458, 172 (2008).
E. Waxman et al., Phys. Rev. Lett. 78, 2292 (1997).
R. Abbasi et al., Nature 484, 351 (2012).
S. Hummer et al., Phys. Rev. Lett. 108, 231101 (2012).
J. Hjorth et al., Nature 423, 847 (2003).
A. Letessier-Selvon et al., Rev. Mod. Phys. 83, 907 (2011).
A. M. Hillas et al., Annu. Rev. Astron. Astrophys. 22, 425 (1984).
E. Waxman, Phys. Rev. Lett. 75, 386 (1995).
M. Vietri, Astrophys. J. 453, 883(1995).
M. Milgrom and V. Usov, Astrophys. J. 449, L37 (1995).
R. U. Abbasi et al., Astrophysical Journal Letters 790, L21 (2014).
V. A. Sadovnichii et al., Space Sci. Rev. 212, 1705 (2017).
E. Fermi, Phys. Rev. 75, 1169 (1949).
V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays (New York: Macmillan, 1964).
W. Axford, E. Lear and G. Skadron, in Proceedings of the 17th ICRC (Plovdiv, Bulgaria) (Bulgarian Academy of Sciences, Sofia, Bulgaria, 1977), p. 132.
A. R. Bell, Mon. Not. R. Astron. Soc. 182, 443 (1978).
R. D. Blandford and J. P. Ostriker, Astrophys. J. 221, L29 (1978).
L. O. Drury, Rep. Prog. Phys. 46, 973 (1983).
R. Blandford and D. Eichler, Phys. Rep. 154, 1 (1987).
J. R. Jokipii, Astrophys. J. 313, 842 (1987).
F. C. Jones and D. C. Ellison, Space Sci. Rev. 58, 259 (1991).
A. R. Bell, Mon. Not. R. Astron. Soc. 353, 550 (2004).
A. Achterberg, Y. A. Gallant, J. G. Kirk and A. W. Guthmann, Mon. Not. R. Astron. 328, 393 (2001).
E. G. Berezhko, Astropart. Phys. 5, 367 (1996).
V. Ptuskin, V. Zirakashvili and E. Seo, Astrophys. J. 718, 31 (2010).
I. H. Park et al., Nucl. Instr. and Meth. A 570, 286 (2007).
S. Nam et al., IEEE Tr. Nucl. Sci. 54, 1743 (2007).
H. S. Ahn et al., Astrophysical J. 715, 1400 (2010).
H. S. Ahn et al., Astrophysical J. 714, L89 (2010).
Tanvir, arXiv:1307.6156v1 (2013).
N. Produit et al., Nucl. Instrum. Methods A 550, 616 (2005).
J. Paul et al., C. R. Phys. 12, 298 (2011).
P. W. A. Roming et al., Mem. Soc. Astron. Suppl. 21, 155 (2012).
I. H. Park et al., New J. Phys. 15, 023031 (2013).
S. Jeong et al., Opt. Exp. 21, 2263 (2013).
G. Gaikov et al., Opt. Exp. 25, 29143 (2017).
I. H. Park et al., Space Sci. Rev. 214, 14, (2018).
S. Jeong et al., Space Sci. Rev. 214, 16, (2018).
M. Jelinek et al., Adv. Astron. 2010, 432172 (2010).
C. Akerlof et al., Nature 398, 400 (1999).
E. Molinari et al., Astron. Astrophys. 469, 13 (2007).
A. Panaitescu and W. Vestrand, Mon. Not. R. Astron. 387, 497 (2008).
D. B. Cline et al., Int. J. Astron. Astrophys. 1, 164 (2011).
J. Ellis et al., Astropart. Phys. 25, 402 (2006).
V. A. Kostelecky and M. Mewes, Astrophys. J. 689, L1 (2008).
I. H. Park et al., arXiv:0912.0773 (2009).
Acknowledgments
The authors would like to acknowledge support by National Research Foundation grants of 2018R1A2A1A05022685, 2017K1A4A3015188, and 2018R1D1A1B07048993.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Park, I.H., Jeong, S. A Few Selected Topics in Extreme Astrophysical Phenomena: Gamma-ray Burst as a Source of Multi-messenger Astrophysics and Cosmic Particles as a Would-be Messenger. J. Korean Phys. Soc. 73, 736–746 (2018). https://doi.org/10.3938/jkps.73.736
Received:
Published:
Issue Date:
DOI: https://doi.org/10.3938/jkps.73.736