Thermoelectric Energy Conversion and Ceramic Thermoelectrics

Article Preview

Abstract:

Oxide thermoelectrics are relatively new materials that are workable at temperatures in the range of 400K≤T≤1200K. There are several types of thermoelectric oxide, namely, cobalt oxides (p-type semi-conductors), manganese oxides (n-type) and zinc oxides (n-type semi-conductors) for high temperature energy harvesting. The Seebeck coefficient of 3d metal oxide thermoelectrics is relatively high due to either high density of states at Fermi surfaces or spin entropy flow associated with the carrier flow. The spin entropy part dominates the Seebeck coefficient of 3d-metal oxides at temperatures above 300K. Introduction of impurity particles or quantum-well structures to enhance thermionic emission and energy filtering effects for the oxide semiconductors may lead to a significant improvement of thermoelectric performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-20

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Japanese Ministry of Economy, Trade and Industry; Cool Earth, Energy Innovation Technology, Technology Development Road Map , Mar. (2008).

Google Scholar

[2] International Energy Agency (IEA) among the Organization for Economic Co-operation and Development (OECD); Road Map for the Development of New Technologies, G8 report, (2008).

Google Scholar

[3] J.T. Kummer and N. Weber, U.S. Patent 3, 458, 356. (1969). I. Wynn Jones; U.S. Patent 4, 042, 757. (1977). N. Weber; U.S. Patent 4, 505, 991. (1985).

Google Scholar

[4] K. Onda, T. Masuda, S. Nagata and K. Nozaki: J. Power Source Vol. 55 (1995), 231-236.

Google Scholar

[5] K. Uchida, S. Tahahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa and E. Saitoh: Nature Vol. 455 (2008), 778-781.

DOI: 10.1038/nature07321

Google Scholar

[6] K. Uchida, T. Ota, K. Harii, S. Takahashi, S. Maekawa, Y. Fujikawa and E. Saitoh: Solid State Commun. Vol. 150 (2010) 524-528.

DOI: 10.1016/j.ssc.2009.10.045

Google Scholar

[7] S. Takahashi and S. Maekawa: J. Phys. Soc. Jpn. Vol. 77 (2008), 031009.

Google Scholar

[8] H. -F. Lü, L. -C. Zhu, X. -T. Zu and H. -W. Zhang: Appl. Phys. Let. Vol. 96 (2010), 123111.

Google Scholar

[9] X. Liu and X.C. Xie: Solid State Commun. Vol. 150 (2010), 471-474.

Google Scholar

[10] L.D. Hicks and M.S. Dresselhaus: Phys. Rev. Vol. B47 (1993), 12727-12731.

Google Scholar

[11] L.D. Hickes, T.C. Harman and M.S. Dresselhaus: Appl. Phys. Lett. Vol. 63 (1993), 3230-3232.

Google Scholar

[12] G.D. Mahan: J. Appl. Phys. Vol. 76 (1994), 4362-4366.

Google Scholar

[13] G.D. Mahan and L.M. Woods: Phys. Rev. Lett. Vol. 80 (1998), 4016-4019.

Google Scholar

[14] G.D. Mahan, J.O. Sofo and M. Bartkowiak: J. Appl. Phys. Vol. 83 (1998), 4683-4689.

Google Scholar

[15] Ali Shakouri and J.E. Bowers: Appl. Phys. Lett. Vol. 71 (1997), 1234-1236.

Google Scholar

[16] M. Jansen and R. Hoppe: Z. Anorg. Allg. Chem. Vol. 408 (1974), 104-106.

Google Scholar

[17] M. Molenda, C. Delmas and P. Hagenmuller: Solid State Ionics Vol. 9&10 (1983), 431-436.

DOI: 10.1016/0167-2738(83)90271-0

Google Scholar

[18] T. Tanaka, S. Nakamura and S. Ieda: Jpn.J. Appl. Phys. Vol. 33 (1994), L581-L582.

Google Scholar

[19] I. Terasaki, Y. Sasago and K. Uchinokura: Phys. Rev. Vol. B56 (1997), R12685-R12687.

Google Scholar

[20] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izui, R.A. Dilanian and T. Sakai: Nature Vol. 422(2003), 53-55.

DOI: 10.1038/nature01450

Google Scholar

[21] K. Fujita, T. Mochida and K. Nakamura: Jpn.J. Appl. Phys. Vol. 40 (2001), 4644-4647.

Google Scholar

[22] D.J. Singh: Phys. Rev. Vol. B61 (2000), 13397-13404.

Google Scholar

[23] P.M. Chaikin and G. Beni: Phys. Rev. Vol. B13 (1976), 647-651.

Google Scholar

[24] W. Koshibae, K. Tsutsui and S. Maekawa: Phys. Rev. Vol. B62 (2000), 6869-6872.

Google Scholar

[25] Y. Miyazaki, Y. Suzuki, M. Onoda, Y. Ishii, Y. Mori and T. Kajitani: Jpn. J. Appl. Phys. Vol. 43 (2004), 6262-6258.

Google Scholar

[26] Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike and T. Kajitani: Jpn.J. Appl. Phs. Vol. 39 (2000), L531-L533.

Google Scholar

[27] T. Kajitani, K. Yubuta, X. Huang and Y. Miyazaki: J. Elec. Mat. Vol. 38 (2009), 1462-1467.

Google Scholar

[28] A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer and B. Raveau: Phys. Rev. Vol. B62 (2000), 166-175.

Google Scholar

[29] S. Li, R. Funahashi, I. Matsubara, K. Ueno and H. Yamada: J. Mater. Chem. Vol. 9 (1999), 1659-1660.

Google Scholar

[30] X.Y. Huang, Y. Miyazaki, K. Yubuta, Y. Oide and T. Kajitani: Proc. ICT2006, Aug. 6-10, Australia, 89-91.

Google Scholar

[31] J. -M. Tarascon, R. Ramesh, P. Barboux, M.S. Hedge, G.W. Hull, L.H. Greene, M. Giroud, Y. LePage, W.R. McKinnon, J.V. Waszcak and L.F. Schneemeyer: Solid State Commun. Vol. 71 (1989), 663-668.

DOI: 10.1016/0038-1098(89)91813-9

Google Scholar

[32] P. Boullay, B. Domengés, M. Hervieu, D. Groult and B. Raveau: Chem. Mater. Vol. 8 (1996), 1482-1489.

Google Scholar

[33] P. Boullay, R. Seshadri, F. Studer, M. Hervieu, D. Groult and B. Raveau: Chem. Mater. Vol. 10 (1998), 91-102.

Google Scholar

[34] H. Leligny, D. Grebille, O. Pérez, A.C. Masset, M. Hervieu and B. Raveau: Act. Cryst. Vol. B56 (2000), 173.

Google Scholar

[35] Y. Miyazaki, T. Miura, Y. Ono and T. Kajitani: Jpn.J. Appl. Phys. Vol. 41 (2002), L849-L851.

DOI: 10.1143/jjap.41.l849

Google Scholar

[36] Y. Miyazaki, X.Y. Huang and T. Kajitani: J. Solid State Chem. Vol. 178 (2005), 2973-2979.

Google Scholar

[37] T. Kobayashi, H. Takazawa, T. Endo, T. Sato, H. Taguchi and M. Nagao: J. Solid State Chem. Vol. 92 (1991), 116-129.

Google Scholar

[38] M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi and H. Arai: J. Solid State Chem. Vol. 120 (1995), 105-111.

Google Scholar

[39] I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu and K. Ueno: Appl. Phys. Lett. Vol. 78 (2001), 3627-3629.

DOI: 10.1063/1.1376155

Google Scholar

[40] D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta and K. Koumoto: J. Appl. Phys. Vol. 100 (2006), 084911.

DOI: 10.1063/1.2362922

Google Scholar

[41] X.Y. Huang, Y. Miyazaki, T. Kajitani: Solid State Commun. Vol. 145 (2008), 132-136.

Google Scholar

[42] F. Kawashima, X.Y. Huang, K. Hayashi, Y. Miyazaki and T. Kajitani: J. Elec. Mat. Vol. 38 (2009), 1159-1162.

Google Scholar

[43] K. Tezuka, M. Inamura, Y. Hinatsu, Y. Shimojo and Y. Morii: J. Solid State Commun. Vol. 145 (1999), 705-710.

DOI: 10.1006/jssc.1999.8290

Google Scholar

[44] Ü. Öygür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, and H. Morkoç: J. Appl. Phys. Vol. 98 (2005), 041301.

DOI: 10.1063/1.1992666

Google Scholar

[45] M. Ohtaki, T. Tsubota, K. Eguchi and H. Arai: J. Appl. Phys. Vol. 79 (1996), 1816-1818.

Google Scholar

[46] T. Tsubota, M. Ohtaki, K. Eguchi and H. Arai: J. Mater. Chem. Vol. 7 (1997), 85-90.

Google Scholar

[47] Y. Kinemuchi, M. Mikami, K. Kobayashi, K. Watari and Y. Hotta: J. Elect. Mater. Vol. 39 (2010), 2059-(2063).

Google Scholar