Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Apr 2022 (v1), last revised 9 May 2022 (this version, v2)]
Title:Atmospheric Turbulence Removal with Complex-Valued Convolutional Neural Network
View PDFAbstract:Atmospheric turbulence distorts visual imagery and is always problematic for information interpretation by both human and machine. Most well-developed approaches to remove atmospheric turbulence distortion are model-based. However, these methods require high computation and large memory making real-time operation infeasible. Deep learning-based approaches have hence gained more attention but currently work efficiently only on static scenes. This paper presents a novel learning-based framework offering short temporal spanning to support dynamic scenes. We exploit complex-valued convolutions as phase information, altered by atmospheric turbulence, is captured better than using ordinary real-valued convolutions. Two concatenated modules are proposed. The first module aims to remove geometric distortions and, if enough memory, the second module is applied to refine micro details of the videos. Experimental results show that our proposed framework efficiently mitigates the atmospheric turbulence distortion and significantly outperforms existing methods.
Submission history
From: Nantheera Anantrasirichai [view email][v1] Thu, 14 Apr 2022 14:29:32 UTC (4,730 KB)
[v2] Mon, 9 May 2022 03:56:14 UTC (4,730 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.