• 左
  • 右

模拟高放废物深地质处置条件下Se在铁基材料上的氧化还原行为

许强伟, 方升, 刘晨, 龙浩骑, 陈曦, 王波, 徐毓炜, 周舵

许强伟, 方升, 刘晨, 龙浩骑, 陈曦, 王波, 徐毓炜, 周舵. 模拟高放废物深地质处置条件下Se在铁基材料上的氧化还原行为[J]. 核化学与放射化学, 2022, 44(6): 627-634. DOI: 10.7538/hhx.2022.YX.2021093
引用本文: 许强伟, 方升, 刘晨, 龙浩骑, 陈曦, 王波, 徐毓炜, 周舵. 模拟高放废物深地质处置条件下Se在铁基材料上的氧化还原行为[J]. 核化学与放射化学, 2022, 44(6): 627-634. DOI: 10.7538/hhx.2022.YX.2021093
XU Qiang-wei, FANG Sheng, LIU Chen, LONG Hao-qi, CHEN Xi, WANG Bo, XU Yu-wei, ZHOU Duo. Redox Behavior of Se on Iron-Based Materials in Simulated Geological Disposal Environment of HLW[J]. Journal of Nuclear and Radiochemistry, 2022, 44(6): 627-634. DOI: 10.7538/hhx.2022.YX.2021093
Citation: XU Qiang-wei, FANG Sheng, LIU Chen, LONG Hao-qi, CHEN Xi, WANG Bo, XU Yu-wei, ZHOU Duo. Redox Behavior of Se on Iron-Based Materials in Simulated Geological Disposal Environment of HLW[J]. Journal of Nuclear and Radiochemistry, 2022, 44(6): 627-634. DOI: 10.7538/hhx.2022.YX.2021093

模拟高放废物深地质处置条件下Se在铁基材料上的氧化还原行为

Redox Behavior of Se on Iron-Based Materials in Simulated Geological Disposal Environment of HLW

  • 摘要: 以铁基材料(纯铁和304L不锈钢)和Na2SeO4/Na2SeO3溶液为研究对象,依托低氧手套箱,在常温、低氧条件下,采用静态批式法开展了Se(Ⅵ/Ⅳ)和铁基材料氧化还原作用研究,利用离子色谱法分析研究浸泡铁基材料的Na2SeO4溶液和Na2SeO3溶液浓度变化,运用扫描电子显微镜(SEM)、X射线能谱分析(EDS)和拉曼光谱(Raman)等技术,对反应前后铁基材料样品的表观形貌、元素分布、物相组成进行较为系统的物理-化学表征。结果表明,SeO2-4/SeO2-3在纯铁体系中的反应速率明显快于其在304L不锈钢体系中的反应速率;铁基材料还原SeO2-3的速率快于SeO2-4的。
    Abstract: In this paper, reduction-oxidation between Se and iron-based materials(pure iron and 304L stainless steel) was carried out in glove box under ambient temperature and low-oxygen. Using ion chromatography to analyse the concentration changes of sodium selenate solution and sodium selenite solution in which iron-based materials were immersed. The iron-based material samples before and after the reaction were analysed by scanning electron microscopy(SEM), energy dispersive spectrometer(EDS) and Raman spectrometry. The results show that the oxidation-reduction reaction rate of SeO2-4/SeO2-3 and pure iron is significantly faster than that of SeO2-4/SeO2-3 and 304L stainless steel; the reaction rate of ironbased materials and SeO2-3 is higher than that of iron-based materials and SeO2-4.
  •   5719

  • [1] Ewing R C, Park S. The concept of geological disposal of highly radioactive nuclear waste[J]. Reference Module in Earth Systems and Environmental Sciences, 2021: 588-602.
    [2] Haynes H M, Bailey M T, Lloyd J R. Bentonite barrier materials and the control of microbial processes: safety case implications for the geological disposal of radioactive waste[J]. Chem Geol, 2021, 581: 1-13.
    [3] Ju W, Liang C, Rui S, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests[J]. J Rock Mech Geotech, 2018, 10(3): 411-435.
    [4] Kursten B, Smailos E, Azkarate I, et al. State of the art document on the corrosion behaviour of container materials, COBECOMA Project 20014-20138[R]∥5th Euratorn Framework Programme. 2004.
    [5] Ma B, Charlet L, Fernandez-Martinez A, et al. A review of the retention mechanisms of redox-sensitive radionuclides in multi-barrier systems[J]. Appl Geochem, 2019, 100: 414-431.
    [6] Xie Y, Dong H, Zeng G, et al. The comparison of Se(Ⅳ) and Se(Ⅵ) sequestration by nanoscale zero-valent iron in aqueous solutions: the roles of solution chemistry[J]. J Hazard Mater, 2017, 338: 306-312.
    [7] Liang L, Yang W, Guan X, et al. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron[J]. Water Res, 2013, 47(15): 5846-5855.
    [8] Puranen A, Jonsson M, Dahn R, et al. Reduction of selenite and selenate on anoxically corroded iron and the synergistic effect of uranyl reduction[J]. J Nucl Mater, 2010, 406(2): 230-237.
    [9] Li T, Huang G K, Feng Y P, et al. Effects of different ions and temperature on corrosion behavior of pure iron in anoxic simulated groundwater[J]. Materials, 2020, 13: 1-18.
    [10] Liang L P, Guan X H, Huang Y Y, et al. Efficient selenate removal by zero-valent iron in the presence of weak magnetic field[J]. Sep Purif Technol, 2015, 156: 1064-1072.
    [11] 曹楚南.腐蚀电化学原理[M].北京:工业装备与信息工程出版中心,2004.
    [12] 赵麦群,雷阿丽.金属的腐蚀与防护[M].北京:国防工业出版社,2002.
    [13] Klas S, Kirk D W. Understanding the positive effects of low pH and limited aeration on selenate removal from water by elemental iron[J]. Sep Purif Technol, 2013, 116: 222-229.
    [14] Dong H, Chen Y, Sheng G, et al. The roles of a pillared bentonite on enhancing Se(Ⅵ) removal by ZVI and the influence of co-existing solutes in groundwater[J]. J Hazard Mater, 2016, 304: 306-312.
  • 期刊类型引用(1)

    1. 杨军,孙培杰,彭翠婷,胡梦岩,黄茜,张祎轩,黄宇航,罗志鹏,徐乐瑾. 世界核能科技发展前沿进展. 科技导报. 2024(23): 7-30 . 百度学术

    其他类型引用(0)

图(1)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  0
  • PDF下载量:  1541
  • 被引次数: 1
出版历程
  • 刊出日期:  2022-12-19

目录

    /

    返回文章
    返回