氚微量热计标定及含氚样品量热验证

欧阳慧平, 袁晓明, 何长水, 李卓希, 张培旭, 杨洪广

欧阳慧平, 袁晓明, 何长水, 李卓希, 张培旭, 杨洪广. 氚微量热计标定及含氚样品量热验证[J]. 同位素, 2023, 36(4): 440-445. DOI: 10.7538/tws.2022.youxian.023
引用本文: 欧阳慧平, 袁晓明, 何长水, 李卓希, 张培旭, 杨洪广. 氚微量热计标定及含氚样品量热验证[J]. 同位素, 2023, 36(4): 440-445. DOI: 10.7538/tws.2022.youxian.023
OUYANG Huiping, YUAN Xiaoming, HE Changshui, LI Zhuoxi, ZHANG Peixu, YANG Hongguang. Calibration of Tritium Microcalorimeter and Calorimetric Verification of Tritium Samples[J]. Journal of Isotopes, 2023, 36(4): 440-445. DOI: 10.7538/tws.2022.youxian.023
Citation: OUYANG Huiping, YUAN Xiaoming, HE Changshui, LI Zhuoxi, ZHANG Peixu, YANG Hongguang. Calibration of Tritium Microcalorimeter and Calorimetric Verification of Tritium Samples[J]. Journal of Isotopes, 2023, 36(4): 440-445. DOI: 10.7538/tws.2022.youxian.023

氚微量热计标定及含氚样品量热验证

Calibration of Tritium Microcalorimeter and Calorimetric Verification of Tritium Samples

  • 摘要: 放射性同位素衰变放出热量,衰变热是计算放射性同位素活度的重要依据。为了测量氚的衰变热,本研究对一种μW级别的低检测限微量热计进行检测限测试、工作曲线标定以及含氚样品量热验证。测量结果表明,微量热计的检测限为1.28 μW,即38 mCi氚。在165~5 063 μW(5~150 Ci氚)范围内对微量热计的输出热电势U-输入热功率P进行标定,获得的标定关系式为U(μV)=0.141 P(μW),对应氚活度与输出热电势关系式为A(Ci)=0.213U(μV),线性相关系数R2>0.999。含氚样品的重复测量标准偏差为1.14%,与PVT法测量偏差为2.45%。本研究使用的量热计通过水浴与真空环境减小测量环境的波动,保证测量的一致性。标定后的量热计在不破坏氚样品完整性的条件下测量其活度,相比其他氚测量方法更适用于固态氚样品的测量,具有工程应用价值。
    Abstract: Radioactive isotope decay gives off heat, which is an important basis for calculating the activity of radioactive isotope. In order to measure the heat emitted by tritium decay, the detection limit test, working curve calibration and tritium sample measurement verification of a low detection limit microcalorimeter of μW grade were carried out. The measurement results show that the detection limit of microcalorimeter is 1.28 μW, i.e. 38 mCi tritium. In this paper, the output thermoelectric potential U-input thermal power P of microcalorimeter was calibrated in the range of 165-5063 μW (5-50 Ci tritium), and the calibration relationship obtained is U(μV)=0.141P(μW), corresponding to the relation between tritium activity and output thermoelectric potential A(Ci)=0.213U(μV), and the liner correlation coefficient is greater than 0.999. The standard deviation of repeated measurement of tritium samples was 1.14%, and the deviation from PVT method was 2.45%. In order to ensure the consistency of measurement, the calorimeter used in this paper reduces the fluctuation of measurement environment through water bath and vacuum environment. The calibrated calorimeter can measure the activity of tritium samples without damaging their integrity. Compared with other tritium measurement methods, calorimetry is more suitable for the measurement of solid tritium samples and has great engineering application value.
  • [1] Moran J, Alexander T, Aalseth C, et al. Improvements to sample processing and measurement to enable more widespread environmental application of tritium[J]. Applied Radiation and Isotopes, 2017, 126: 61-65.
    [2] Song K, Chen Z, Chen Z, et al. Design of a solid scintillation counter for tritium water measurement based on Ca2F(Eu) sheet using Monte Carlo simulation[J]. Fusion Engineering and Design, 2021, 170: 112701.
    [3] Chen Z, Lai C, Li Y, et al. A planar-type ionization chamber for tritium surface contamination measurements in fusion facility[J]. Fusion Engineering and Design, 2021, 165: 112258.
    [4] Chen Z, Peng S, Chen P, et al. Improvement of ionization chamber for tritium measurements in in-pile tritium extraction experiments[J]. Fusion Engineering and Design, 2019, 147: 111222.
    [5] 刘丽飞,武超,胡石林,等. 放射性核素量热计研制[J]. 核技术,2022,45(2):8.
    Liu Lifei, Wu Chao, Hu Shilin, et al. Development of radionuclide calorimeter[J]. Nuclear Techniques, 2022, 45(2): 8(in Chinese).
    [6] Genka T, Imahashi T. Radioactivity measurements of 153Gd pellet sources by calorimetric methods[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 312(1): 193-197.
    [7] 罗学建,罗文华,蒋国强,等. 量热法测量贮氚容器中的氚[J]. 原子能科学技术,2004,38(2):174-178.
    Luo Xue jian,Luo Wen hua,Jiang Guo qiang,et al. Measurement of tritium in the tritium storied vessel with calorimetry[J]. Atomic Energy Science And Technology, 2004, 38(2): 174-178(in Chinese).
    [8] West D S, Frame K J, Thompson J, et al. Evaluation of a newly developed tritium calorimeter at los alamos national laboratory[J]. Fusion Science & Technology, 2008, 54(1): 178-181.
    [9] Thornton M I, Vassallo G, Miller J, et al. Design and performance testing of a tritium calorimeter[J]. Nuclear Instruments & Methods in Physics Research, 1995, 363(3): 598-603.
    [10] 罗老永,漆明森,张劲松,等. 医用同位素微量热计性能研究[J]. 同位素,2022,34(4):266-273.
    Luo Laoyong, Qi Mingsen, Zhang Jinsong, et al. The performance of medical isotope microcalorimeter[J]. Journal of Isotopes, 2022,34(4): 266-273(in Chinese).
    [11] 李玮,陈细林,袁大庆,等. 低能β活度微量热计性能研究[J]. 原子能科学技术,2008,42(2):107-111.
    Li Wei, Chen Xilin, Yuan Daqing, et al. Research on performance of microcalorimeter for radioactivity measurement of low-energy beta emitters[J]. Atomic Energy Science And Technology,2008,42(2):107-111(in Chinese).
    [12] 刘红明,贾伟江,张廷生,等. 低能β核素微热量热计研制[J]. 原子能科学技术,2008,42(3):258-261.
    Liu Hongming, Jia Weijiang, Zhang Tingsheng, et al. Development of low-energy B micro-calorimeter[J]. Atomic Energy Science And Technology, 2008, 42(3): 258-261(in Chinese).
    [13] 董传江,蒲显恩,刘莎莎,等. 水中氚活度浓度测量不确定度评定[J]. 核电子学与探测技术,2021,41(5):741-746.
    Dong Chuanjiang, Pu Xianen, Liu Shasha, et al. Evaluation of uncertainty in measurement of tritium activity concentration in water[J]. Nuclear Electronics & Detection Technology, 2021, 41(5): 741-746(in Chinese).
    [14] Lee E S, Cho S, Ahn M Y, et al.Accuracy assessment of the in-bed calorimetry employed in ITER SDS[J]. Fusion Engineering And Design, 2008, 83(10-12): 1424-1428.
计量
  • 文章访问数:  433
  • HTML全文浏览量:  6
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 刊出日期:  2023-08-19

目录

    /

    返回文章
    返回