Results 11 to 20 of about 225 (63)

Infinitely-many solutions for subquadratic fractional Hamiltonian systems with potential changing sign

open access: yesAdvances in Nonlinear Analysis, 2015
In this paper we are concerned with the existence of infinitely-many solutions for fractional Hamiltonian systems of the form tD∞α(-∞Dtαu(t))+L(t)u(t)=∇W(t,u(t))${\,}_tD^{\alpha }_{\infty }(_{-\infty }D^{\alpha }_{t}u(t))+L(t)u(t)=\nabla W(t,u(t ...
Zhang Ziheng, Yuan Rong
doaj   +1 more source

A Generalized Version of the Lions-Type Lemma

open access: yesAnnales Mathematicae Silesianae, 2023
In this short paper, I recall the history of dealing with the lack of compactness of a sequence in the case of an unbounded domain and prove the vanishing Lions-type result for a sequence of Lebesgue-measurable functions.
Chmara Magdalena
doaj   +1 more source

Multiple solutions of $p$-biharmonic equations with Navier boundary conditions [PDF]

open access: yesComplex Var. Elliptic Equ. 59:2 (2014), 271-284, 2016
In this paper, exploiting variational methods, the existence of multiple weak solutions for a class of elliptic Navier boundary problems involving the $p$-biharmonic operator is investigated. Moreover, a concrete example of an application is presented.
arxiv   +1 more source

p(x)-Kirchhoff bi-nonlocal elliptic problem driven by both p(x)-Laplacian and p(x)-Biharmonic operators

open access: yesMoroccan Journal of Pure and Applied Analysis, 2023
We investigate the existence of non-trivial weak solutions for the following p(x)-Kirchhoff bi-nonlocal elliptic problem driven by both p(x)-Laplacian and p(x)-Biharmonic operators {M(σ)(Δp(x)2u-Δp(x)u)=λϑ(x)|u|q(x)-2u(∫Ωϑ(x)q(x)|u|q(x)dx)r in Ω,u∈W2,p(.)
Jennane Mohsine, Alaoui My Driss Morchid
doaj   +1 more source

Nontrivial Solutions for Potential Systems Involving the Mean Curvature Operator in Minkowski Space

open access: yesAdvanced Nonlinear Studies, 2017
In this paper, we use the critical point theory for convex, lower semicontinuous perturbations of C1{C^{1}}-functionals to obtain the existence of multiple nontrivial solutions for one parameter potential systems involving the operator u↦div⁡(∇⁡u1-|∇⁡u|2)
Gurban Daniela   +2 more
doaj   +1 more source

Infinitely many symmetric solutions for anisotropic problems driven by nonhomogeneous operators [PDF]

open access: yesDiscrete Contin. Dyn. Syst. Ser. S 12:2 (2019), 401-411, 2018
We are concerned with the existence of infinitely many radial symmetric solutions for a nonlinear stationary problem driven by a new class of nonhomogeneous differential operators. Our proof relies on the symmetric version of the mountain pass theorem.
arxiv   +1 more source

Weak homoclinic solutions of anisotropic discrete nonlinear system with variable exponent

open access: yesNonautonomous Dynamical Systems, 2020
We prove the existence of weak solutions for an anisotropic homoclinic discrete nonlinear system. Suitable Hilbert spaces and norms are constructed. The proof of the main result is based on a minimization method.
Ibrango Idrissa   +3 more
doaj   +1 more source

Construction of Solutions for Hénon-Type Equation with Critical Growth

open access: yesAdvanced Nonlinear Studies, 2021
We consider the following Hénon-type problem with critical growth:
Guo Yuxia, Liu Ting
doaj   +1 more source

Large Energy Bubble Solutions for Schrödinger Equation with Supercritical Growth

open access: yesAdvanced Nonlinear Studies, 2021
We consider the following nonlinear Schrödinger equation involving supercritical growth:
Guo Yuxia, Liu Ting
doaj   +1 more source

On fractional logarithmic Schrödinger equations

open access: yesAdvanced Nonlinear Studies, 2022
We study the following fractional logarithmic Schrödinger equation: (−Δ)su+V(x)u=ulogu2,x∈RN,{\left(-\Delta )}^{s}u+V\left(x)u=u\log {u}^{2},\hspace{1em}x\in {{\mathbb{R}}}^{N}, where N≥1N\ge 1, (−Δ)s{\left(-\Delta )}^{s} denotes the fractional Laplace ...
Li Qi, Peng Shuangjie, Shuai Wei
doaj   +1 more source

Home - About - Disclaimer - Privacy