Results 11 to 20 of about 1,166,647 (124)
Cones generated by a generalized fractional maximal function [PDF]
The paper considers the space of generalized fractional-maximal function, constructed on the basis of a rearrangement-invariant space. Two types of cones generated by a nonincreasing rearrangement of a generalized fractional-maximal function and
N.А. Bokayev+2 more
doaj +3 more sources
In this paper, we first show that the $ p $-adic version of maximal function $ \mathcal{M}_{L\log L}^{p} $ is equivalent to the maximal function $ \mathcal{M}^{p}(\mathcal{M}^{p}) $ and that the class of functions for which the maximal commutators and ...
Qianjun He, Xiang Li
doaj +1 more source
WEIGHTED VARIABLE HARDY SPACES ASSOCIATED WITH OPERATORS SATISFYING DAVIES-GAFFNEY ESTIMATES
We introduce the weighted variable Hardy space 𝐻(^𝑝(·) _𝐿,𝑤) (ℝ^𝑛) associated with the operator 𝐿, which has a bounded holomorphic functional calculus and fulfills the Davies-Gaffney estimates. More precisely, we establish the molecular characterization
B. Laadjal+3 more
doaj +1 more source
Maximal Function Characterizations of Hardy Spaces on
In 2011, Dekel et al.
Aiting Wang, Wenhua Wang, Baode Li
doaj +1 more source
Variable Anisotropic Hardy Spaces with Variable Exponents
Let p(·) : ℝn → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝn introduced by Dekel et al. [12].
Yang Zhenzhen+3 more
doaj +1 more source
Centered Hardy-Littlewood maximal function on product manifolds
Let X be the direct product of Xi where Xi is smooth manifold for 1 ≤ i ≤ k. As is known, if every Xi satisfies the doubling volume condition, then the centered Hardy-Littlewood maximal function M on X is weak (1,1) bounded.
Zhao Shiliang
doaj +1 more source
The theory of boundedness of classical operators of real analyses on Morrey spaces defined on Carleson curves has made significant progress in recent years as it allows for various applications.
Merve Esra Türkay
doaj +1 more source
Gagliardo-Nirenberg-type inequalities using fractional Sobolev spaces and Besov spaces
Our main purpose is to establish Gagliardo-Nirenberg-type inequalities using fractional homogeneous Sobolev spaces and homogeneous Besov spaces. In particular, we extend some of the results obtained by the authors in previous studies.
Dao Nguyen Anh
doaj +1 more source
The dimension-free estimate for the truncated maximal operator
We mainly study the dimension-free Lp{L}^{p}-inequality of the truncated maximal operator Mnaf(x)=supt>01∣Ba1∣∫Ba1f(x−ty)dy,{M}_{n}^{a}f\left(x)=\mathop{\sup }\limits_{t\gt 0}\frac{1}{| {B}_{a}^{1}| }\left|\mathop{\int }\limits_{{B}_{a}^{1}}f\left(x-ty){\
Nie Xudong, Wang Panwang
doaj +1 more source
In this article, we define a kind of truncated maximal function on the Heisenberg space by Mγcfx ...
Xiang Li, Xingsong Zhang
doaj +1 more source