Results 21 to 30 of about 456 (78)
Infinitely many symmetric solutions for anisotropic problems driven by nonhomogeneous operators [PDF]
We are concerned with the existence of infinitely many radial symmetric solutions for a nonlinear stationary problem driven by a new class of nonhomogeneous differential operators. Our proof relies on the symmetric version of the mountain pass theorem.
arxiv +1 more source
Nontrivial Solutions for Potential Systems Involving the Mean Curvature Operator in Minkowski Space
In this paper, we use the critical point theory for convex, lower semicontinuous perturbations of C1{C^{1}}-functionals to obtain the existence of multiple nontrivial solutions for one parameter potential systems involving the operator u↦div(∇u1-|∇u|2)
Gurban Daniela+2 more
doaj +1 more source
Robust transitivity for endomorphisms admitting critical points [PDF]
We address the problem of giving necessary and sufficient conditions in order to have robustly transitive endomorphisms admitting persistent critical sets.
Iglesias, Jorge+2 more
core +1 more source
Construction of Solutions for Hénon-Type Equation with Critical Growth
We consider the following Hénon-type problem with critical growth:
Guo Yuxia, Liu Ting
doaj +1 more source
Multiple perturbations of a singular eigenvalue problem
We study the perturbation by a critical term and a $(p-1)$-superlinear subcritical nonlinearity of a quasilinear elliptic equation containing a singular potential. By means of variational arguments and a version of the concentration-compactness principle
Cencelj, Matija+2 more
core +1 more source
Large Energy Bubble Solutions for Schrödinger Equation with Supercritical Growth
We consider the following nonlinear Schrödinger equation involving supercritical growth:
Guo Yuxia, Liu Ting
doaj +1 more source
The coupling between dilatation and vorticity, two coexisting and fundamental processes in fluid dynamics is investigated here, in the simplest cases of inviscid 2D isotropic Burgers and pressureless Euler-Coriolis fluids respectively modeled by single ...
Choquard, Philippe, Vuffray, Marc
core +1 more source
On fractional logarithmic Schrödinger equations
We study the following fractional logarithmic Schrödinger equation: (−Δ)su+V(x)u=ulogu2,x∈RN,{\left(-\Delta )}^{s}u+V\left(x)u=u\log {u}^{2},\hspace{1em}x\in {{\mathbb{R}}}^{N}, where N≥1N\ge 1, (−Δ)s{\left(-\Delta )}^{s} denotes the fractional Laplace ...
Li Qi, Peng Shuangjie, Shuai Wei
doaj +1 more source
Quasilinear equations with indefinite nonlinearity
In this paper, we are concerned with quasilinear equations with indefinite nonlinearity and explore the existence of infinitely many solutions.
Zhao Junfang+2 more
doaj +1 more source
Asymptotic properties of critical points for subcritical Trudinger-Moser functional
On a smooth bounded domain we study the Trudinger-Moser functional Eα(u)≔∫Ω(eαu2−1)dx,u∈H1(Ω){E}_{\alpha }\left(u):= \mathop{\int }\limits_{\Omega }({e}^{\alpha {u}^{2}}-1){\rm{d}}x,\hspace{1.0em}u\in {H}^{1}\left(\Omega ) for α∈(0,2π)\alpha \in \left(0 ...
Hashizume Masato
doaj +1 more source