[A lightweight classification network for single-lead atrial fibrillation based on depthwise separable convolution and attention mechanism]. [PDF]
Hong Y, Zhang X, Lin M, Wu Q, Chen C.
europepmc +1 more source
[Construction of recognition models for subthreshold depression based on multiple machine learning algorithms and vocal emotional characteristics]. [PDF]
Chen M+5 more
europepmc +1 more source
[A novel approach for assessing quality of electrocardiogram signal by integrating multi-scale temporal features]. [PDF]
Chen C, Zhang A, Ma Y, Qi Y, Li J.
europepmc +1 more source
[Effect of repeated transcranial magnetic stimulation on excitability of glutaminergic neurons and gamma-aminobutyric neurons in mouse hippocampus]. [PDF]
Wang J+5 more
europepmc +1 more source
[Application Value of an AI-based Imaging Feature Parameter Model for Predicting the Malignancy of Part-solid Pulmonary Nodule]. [PDF]
Lin M+8 more
europepmc +1 more source
[Effectiveness of modified single patellar tunnel medial patella femoral ligament reconstruction for recurrent patellar dislocation]. [PDF]
Wang G+5 more
europepmc +1 more source
[Neural network for auditory speech enhancement featuring feedback-driven attention and lateral inhibition]. [PDF]
Cai Y, Liu X, Liao X, Zhou Y.
europepmc +1 more source
Related searches:
人工智能医学应用中的技术路径与法律边界—— 以强化学习与蒸馏技术为视角
Metaverse in Medicine本文探讨了先进人工智能技术在医学领域的应用,特别关注强化学习与蒸馏技术的创新应用及应用中需注意的法律合规问题。以最新的大型语言模型(LLM)技术结合强化学习和蒸馏技术发展为例,分析了AI技术知识产权边界、医疗数据使用合规性以及医疗AI监管框架的关键问题。文章讨论了如何在推进医疗AI创新的同时,确保患者权益保护和医疗伦理 规范遵守,为医疗AI的健康发展提供了理论参考。
叶婷 卢, 宇平 杨
semanticscholar +1 more source
针对无线多跳网络中BATS码存在的批构造效率低、动态适应性差等问题,本文提出分层强化学习优化框架。通过Tanner图拓扑预训练生成均匀覆盖的批构造策略,设计混合BP-灭活解码算法降低30\%计算复杂度。实验表明:Rainbow-DQN在稳定网络中解码成功率提升25%,PPO在时变信道下性能波动降低40%,DDPG在边缘设备实现15ms级低延迟推理。本方案在NS-3仿真中达到90.1%的传输可靠性,为5G/6G网络提供高效工程实现路径。
苏天辰
semanticscholar +1 more source
建筑构件运输过程的容量约束与路径优化问题相互交织,形成一个复杂的耦合难题。针对这一难题,本文深入研究基于Q-learning算法动态路径规划在建筑构件运输的应用。为了引导算法朝着更优的路径决策方向学习,设计基于距离惩罚的奖励函数。通过这种方式,奖励算法在不断的学习过程中,逐渐探索出成本更低、效率更高的运输路线,并以仿真验证该方法的有效性和优越性。仿真结果显示,与传统算法相比,强化学习Q-learning算法能降低19.49%的运输距离,缩短0.11%运输成本。这使得建筑构件能够以成本更低 ...
朱帅, 林士飏
semanticscholar +1 more source